Properties

Label 6223.2.a.p.1.12
Level $6223$
Weight $2$
Character 6223.1
Self dual yes
Analytic conductor $49.691$
Analytic rank $0$
Dimension $38$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6223,2,Mod(1,6223)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6223, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6223.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6223 = 7^{2} \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6223.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [38,-2,11,38,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.6909051778\)
Analytic rank: \(0\)
Dimension: \(38\)
Twist minimal: no (minimal twist has level 889)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.12
Character \(\chi\) \(=\) 6223.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.31336 q^{2} +2.15446 q^{3} -0.275086 q^{4} -2.87032 q^{5} -2.82958 q^{6} +2.98801 q^{8} +1.64168 q^{9} +3.76976 q^{10} +1.59111 q^{11} -0.592661 q^{12} -4.65625 q^{13} -6.18398 q^{15} -3.37416 q^{16} -1.70368 q^{17} -2.15612 q^{18} -4.60752 q^{19} +0.789584 q^{20} -2.08970 q^{22} -0.103769 q^{23} +6.43753 q^{24} +3.23873 q^{25} +6.11533 q^{26} -2.92644 q^{27} -7.33090 q^{29} +8.12178 q^{30} +5.98705 q^{31} -1.54453 q^{32} +3.42798 q^{33} +2.23754 q^{34} -0.451604 q^{36} +2.47284 q^{37} +6.05133 q^{38} -10.0317 q^{39} -8.57653 q^{40} +10.0813 q^{41} +2.98728 q^{43} -0.437692 q^{44} -4.71215 q^{45} +0.136285 q^{46} -5.25039 q^{47} -7.26947 q^{48} -4.25361 q^{50} -3.67050 q^{51} +1.28087 q^{52} -8.35024 q^{53} +3.84346 q^{54} -4.56699 q^{55} -9.92671 q^{57} +9.62811 q^{58} +6.58904 q^{59} +1.70112 q^{60} +5.23865 q^{61} -7.86316 q^{62} +8.77684 q^{64} +13.3649 q^{65} -4.50217 q^{66} -7.44431 q^{67} +0.468658 q^{68} -0.223565 q^{69} -14.2742 q^{71} +4.90536 q^{72} +9.12572 q^{73} -3.24773 q^{74} +6.97769 q^{75} +1.26746 q^{76} +13.1752 q^{78} -10.0197 q^{79} +9.68490 q^{80} -11.2299 q^{81} -13.2403 q^{82} +7.66914 q^{83} +4.89010 q^{85} -3.92338 q^{86} -15.7941 q^{87} +4.75425 q^{88} +8.35255 q^{89} +6.18875 q^{90} +0.0285453 q^{92} +12.8988 q^{93} +6.89565 q^{94} +13.2251 q^{95} -3.32763 q^{96} +7.47347 q^{97} +2.61210 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 38 q - 2 q^{2} + 11 q^{3} + 38 q^{4} + 16 q^{5} + 11 q^{6} + 47 q^{9} + 12 q^{10} - 2 q^{11} + 30 q^{12} + 21 q^{13} + 7 q^{15} + 46 q^{16} + 58 q^{17} - 13 q^{18} + 17 q^{19} + 44 q^{20} + 21 q^{22} + 7 q^{23}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.31336 −0.928686 −0.464343 0.885656i \(-0.653709\pi\)
−0.464343 + 0.885656i \(0.653709\pi\)
\(3\) 2.15446 1.24388 0.621938 0.783066i \(-0.286346\pi\)
0.621938 + 0.783066i \(0.286346\pi\)
\(4\) −0.275086 −0.137543
\(5\) −2.87032 −1.28365 −0.641823 0.766853i \(-0.721821\pi\)
−0.641823 + 0.766853i \(0.721821\pi\)
\(6\) −2.82958 −1.15517
\(7\) 0 0
\(8\) 2.98801 1.05642
\(9\) 1.64168 0.547228
\(10\) 3.76976 1.19210
\(11\) 1.59111 0.479738 0.239869 0.970805i \(-0.422896\pi\)
0.239869 + 0.970805i \(0.422896\pi\)
\(12\) −0.592661 −0.171086
\(13\) −4.65625 −1.29141 −0.645705 0.763587i \(-0.723436\pi\)
−0.645705 + 0.763587i \(0.723436\pi\)
\(14\) 0 0
\(15\) −6.18398 −1.59670
\(16\) −3.37416 −0.843539
\(17\) −1.70368 −0.413203 −0.206601 0.978425i \(-0.566240\pi\)
−0.206601 + 0.978425i \(0.566240\pi\)
\(18\) −2.15612 −0.508202
\(19\) −4.60752 −1.05704 −0.528519 0.848921i \(-0.677252\pi\)
−0.528519 + 0.848921i \(0.677252\pi\)
\(20\) 0.789584 0.176556
\(21\) 0 0
\(22\) −2.08970 −0.445525
\(23\) −0.103769 −0.0216372 −0.0108186 0.999941i \(-0.503444\pi\)
−0.0108186 + 0.999941i \(0.503444\pi\)
\(24\) 6.43753 1.31406
\(25\) 3.23873 0.647745
\(26\) 6.11533 1.19931
\(27\) −2.92644 −0.563193
\(28\) 0 0
\(29\) −7.33090 −1.36131 −0.680657 0.732602i \(-0.738306\pi\)
−0.680657 + 0.732602i \(0.738306\pi\)
\(30\) 8.12178 1.48283
\(31\) 5.98705 1.07531 0.537653 0.843166i \(-0.319311\pi\)
0.537653 + 0.843166i \(0.319311\pi\)
\(32\) −1.54453 −0.273037
\(33\) 3.42798 0.596734
\(34\) 2.23754 0.383736
\(35\) 0 0
\(36\) −0.451604 −0.0752673
\(37\) 2.47284 0.406532 0.203266 0.979124i \(-0.434844\pi\)
0.203266 + 0.979124i \(0.434844\pi\)
\(38\) 6.05133 0.981656
\(39\) −10.0317 −1.60635
\(40\) −8.57653 −1.35607
\(41\) 10.0813 1.57443 0.787214 0.616680i \(-0.211523\pi\)
0.787214 + 0.616680i \(0.211523\pi\)
\(42\) 0 0
\(43\) 2.98728 0.455556 0.227778 0.973713i \(-0.426854\pi\)
0.227778 + 0.973713i \(0.426854\pi\)
\(44\) −0.437692 −0.0659846
\(45\) −4.71215 −0.702446
\(46\) 0.136285 0.0200942
\(47\) −5.25039 −0.765848 −0.382924 0.923780i \(-0.625083\pi\)
−0.382924 + 0.923780i \(0.625083\pi\)
\(48\) −7.26947 −1.04926
\(49\) 0 0
\(50\) −4.25361 −0.601551
\(51\) −3.67050 −0.513973
\(52\) 1.28087 0.177624
\(53\) −8.35024 −1.14699 −0.573497 0.819208i \(-0.694413\pi\)
−0.573497 + 0.819208i \(0.694413\pi\)
\(54\) 3.84346 0.523029
\(55\) −4.56699 −0.615813
\(56\) 0 0
\(57\) −9.92671 −1.31482
\(58\) 9.62811 1.26423
\(59\) 6.58904 0.857820 0.428910 0.903347i \(-0.358898\pi\)
0.428910 + 0.903347i \(0.358898\pi\)
\(60\) 1.70112 0.219614
\(61\) 5.23865 0.670740 0.335370 0.942086i \(-0.391139\pi\)
0.335370 + 0.942086i \(0.391139\pi\)
\(62\) −7.86316 −0.998622
\(63\) 0 0
\(64\) 8.77684 1.09710
\(65\) 13.3649 1.65771
\(66\) −4.50217 −0.554178
\(67\) −7.44431 −0.909467 −0.454734 0.890627i \(-0.650266\pi\)
−0.454734 + 0.890627i \(0.650266\pi\)
\(68\) 0.468658 0.0568332
\(69\) −0.223565 −0.0269141
\(70\) 0 0
\(71\) −14.2742 −1.69404 −0.847019 0.531563i \(-0.821605\pi\)
−0.847019 + 0.531563i \(0.821605\pi\)
\(72\) 4.90536 0.578102
\(73\) 9.12572 1.06808 0.534042 0.845458i \(-0.320672\pi\)
0.534042 + 0.845458i \(0.320672\pi\)
\(74\) −3.24773 −0.377541
\(75\) 6.97769 0.805714
\(76\) 1.26746 0.145388
\(77\) 0 0
\(78\) 13.1752 1.49180
\(79\) −10.0197 −1.12730 −0.563650 0.826014i \(-0.690603\pi\)
−0.563650 + 0.826014i \(0.690603\pi\)
\(80\) 9.68490 1.08280
\(81\) −11.2299 −1.24777
\(82\) −13.2403 −1.46215
\(83\) 7.66914 0.841797 0.420898 0.907108i \(-0.361715\pi\)
0.420898 + 0.907108i \(0.361715\pi\)
\(84\) 0 0
\(85\) 4.89010 0.530406
\(86\) −3.92338 −0.423068
\(87\) −15.7941 −1.69331
\(88\) 4.75425 0.506804
\(89\) 8.35255 0.885368 0.442684 0.896678i \(-0.354026\pi\)
0.442684 + 0.896678i \(0.354026\pi\)
\(90\) 6.18875 0.652352
\(91\) 0 0
\(92\) 0.0285453 0.00297605
\(93\) 12.8988 1.33755
\(94\) 6.89565 0.711232
\(95\) 13.2251 1.35686
\(96\) −3.32763 −0.339625
\(97\) 7.47347 0.758816 0.379408 0.925229i \(-0.376128\pi\)
0.379408 + 0.925229i \(0.376128\pi\)
\(98\) 0 0
\(99\) 2.61210 0.262526
\(100\) −0.890928 −0.0890928
\(101\) 11.4744 1.14174 0.570872 0.821039i \(-0.306605\pi\)
0.570872 + 0.821039i \(0.306605\pi\)
\(102\) 4.82069 0.477319
\(103\) −3.03163 −0.298716 −0.149358 0.988783i \(-0.547721\pi\)
−0.149358 + 0.988783i \(0.547721\pi\)
\(104\) −13.9129 −1.36427
\(105\) 0 0
\(106\) 10.9669 1.06520
\(107\) 10.3035 0.996073 0.498037 0.867156i \(-0.334055\pi\)
0.498037 + 0.867156i \(0.334055\pi\)
\(108\) 0.805021 0.0774632
\(109\) 5.60984 0.537325 0.268663 0.963234i \(-0.413418\pi\)
0.268663 + 0.963234i \(0.413418\pi\)
\(110\) 5.99810 0.571897
\(111\) 5.32763 0.505676
\(112\) 0 0
\(113\) 14.7725 1.38968 0.694841 0.719163i \(-0.255475\pi\)
0.694841 + 0.719163i \(0.255475\pi\)
\(114\) 13.0373 1.22106
\(115\) 0.297849 0.0277745
\(116\) 2.01663 0.187239
\(117\) −7.64408 −0.706695
\(118\) −8.65378 −0.796645
\(119\) 0 0
\(120\) −18.4778 −1.68678
\(121\) −8.46837 −0.769852
\(122\) −6.88023 −0.622907
\(123\) 21.7196 1.95839
\(124\) −1.64695 −0.147901
\(125\) 5.05542 0.452170
\(126\) 0 0
\(127\) 1.00000 0.0887357
\(128\) −8.43808 −0.745828
\(129\) 6.43597 0.566655
\(130\) −17.5529 −1.53949
\(131\) −19.9988 −1.74730 −0.873650 0.486555i \(-0.838253\pi\)
−0.873650 + 0.486555i \(0.838253\pi\)
\(132\) −0.942988 −0.0820766
\(133\) 0 0
\(134\) 9.77706 0.844609
\(135\) 8.39980 0.722940
\(136\) −5.09060 −0.436516
\(137\) −4.51559 −0.385793 −0.192896 0.981219i \(-0.561788\pi\)
−0.192896 + 0.981219i \(0.561788\pi\)
\(138\) 0.293621 0.0249947
\(139\) 8.75094 0.742245 0.371122 0.928584i \(-0.378973\pi\)
0.371122 + 0.928584i \(0.378973\pi\)
\(140\) 0 0
\(141\) −11.3117 −0.952620
\(142\) 18.7472 1.57323
\(143\) −7.40860 −0.619538
\(144\) −5.53929 −0.461608
\(145\) 21.0420 1.74744
\(146\) −11.9854 −0.991915
\(147\) 0 0
\(148\) −0.680244 −0.0559157
\(149\) −15.1936 −1.24471 −0.622354 0.782736i \(-0.713823\pi\)
−0.622354 + 0.782736i \(0.713823\pi\)
\(150\) −9.16422 −0.748255
\(151\) 11.7614 0.957126 0.478563 0.878053i \(-0.341158\pi\)
0.478563 + 0.878053i \(0.341158\pi\)
\(152\) −13.7673 −1.11668
\(153\) −2.79690 −0.226116
\(154\) 0 0
\(155\) −17.1847 −1.38031
\(156\) 2.75957 0.220943
\(157\) 11.2842 0.900576 0.450288 0.892883i \(-0.351321\pi\)
0.450288 + 0.892883i \(0.351321\pi\)
\(158\) 13.1594 1.04691
\(159\) −17.9902 −1.42672
\(160\) 4.43330 0.350483
\(161\) 0 0
\(162\) 14.7489 1.15879
\(163\) −18.2298 −1.42786 −0.713932 0.700215i \(-0.753088\pi\)
−0.713932 + 0.700215i \(0.753088\pi\)
\(164\) −2.77321 −0.216551
\(165\) −9.83938 −0.765995
\(166\) −10.0723 −0.781765
\(167\) 7.66446 0.593094 0.296547 0.955018i \(-0.404165\pi\)
0.296547 + 0.955018i \(0.404165\pi\)
\(168\) 0 0
\(169\) 8.68062 0.667740
\(170\) −6.42246 −0.492580
\(171\) −7.56409 −0.578440
\(172\) −0.821759 −0.0626586
\(173\) 2.59760 0.197492 0.0987460 0.995113i \(-0.468517\pi\)
0.0987460 + 0.995113i \(0.468517\pi\)
\(174\) 20.7434 1.57255
\(175\) 0 0
\(176\) −5.36865 −0.404677
\(177\) 14.1958 1.06702
\(178\) −10.9699 −0.822229
\(179\) 18.9673 1.41768 0.708842 0.705367i \(-0.249218\pi\)
0.708842 + 0.705367i \(0.249218\pi\)
\(180\) 1.29625 0.0966165
\(181\) −3.85473 −0.286520 −0.143260 0.989685i \(-0.545758\pi\)
−0.143260 + 0.989685i \(0.545758\pi\)
\(182\) 0 0
\(183\) 11.2864 0.834318
\(184\) −0.310061 −0.0228580
\(185\) −7.09784 −0.521843
\(186\) −16.9408 −1.24216
\(187\) −2.71074 −0.198229
\(188\) 1.44431 0.105337
\(189\) 0 0
\(190\) −17.3693 −1.26010
\(191\) −4.74571 −0.343387 −0.171694 0.985150i \(-0.554924\pi\)
−0.171694 + 0.985150i \(0.554924\pi\)
\(192\) 18.9093 1.36466
\(193\) 1.81361 0.130547 0.0652734 0.997867i \(-0.479208\pi\)
0.0652734 + 0.997867i \(0.479208\pi\)
\(194\) −9.81536 −0.704702
\(195\) 28.7941 2.06199
\(196\) 0 0
\(197\) −18.0861 −1.28858 −0.644292 0.764780i \(-0.722848\pi\)
−0.644292 + 0.764780i \(0.722848\pi\)
\(198\) −3.43062 −0.243804
\(199\) −7.28332 −0.516301 −0.258150 0.966105i \(-0.583113\pi\)
−0.258150 + 0.966105i \(0.583113\pi\)
\(200\) 9.67733 0.684291
\(201\) −16.0384 −1.13126
\(202\) −15.0700 −1.06032
\(203\) 0 0
\(204\) 1.00970 0.0706934
\(205\) −28.9364 −2.02101
\(206\) 3.98163 0.277413
\(207\) −0.170355 −0.0118405
\(208\) 15.7109 1.08935
\(209\) −7.33107 −0.507101
\(210\) 0 0
\(211\) 4.93418 0.339683 0.169841 0.985471i \(-0.445674\pi\)
0.169841 + 0.985471i \(0.445674\pi\)
\(212\) 2.29703 0.157761
\(213\) −30.7532 −2.10717
\(214\) −13.5322 −0.925039
\(215\) −8.57445 −0.584772
\(216\) −8.74421 −0.594968
\(217\) 0 0
\(218\) −7.36774 −0.499006
\(219\) 19.6610 1.32857
\(220\) 1.25632 0.0847008
\(221\) 7.93275 0.533614
\(222\) −6.99709 −0.469614
\(223\) −7.52334 −0.503800 −0.251900 0.967753i \(-0.581055\pi\)
−0.251900 + 0.967753i \(0.581055\pi\)
\(224\) 0 0
\(225\) 5.31696 0.354464
\(226\) −19.4016 −1.29058
\(227\) −0.262476 −0.0174212 −0.00871058 0.999962i \(-0.502773\pi\)
−0.00871058 + 0.999962i \(0.502773\pi\)
\(228\) 2.73070 0.180845
\(229\) 4.30565 0.284525 0.142263 0.989829i \(-0.454562\pi\)
0.142263 + 0.989829i \(0.454562\pi\)
\(230\) −0.391183 −0.0257938
\(231\) 0 0
\(232\) −21.9048 −1.43812
\(233\) 13.0087 0.852229 0.426115 0.904669i \(-0.359882\pi\)
0.426115 + 0.904669i \(0.359882\pi\)
\(234\) 10.0394 0.656298
\(235\) 15.0703 0.983077
\(236\) −1.81255 −0.117987
\(237\) −21.5869 −1.40222
\(238\) 0 0
\(239\) 29.3685 1.89969 0.949844 0.312723i \(-0.101241\pi\)
0.949844 + 0.312723i \(0.101241\pi\)
\(240\) 20.8657 1.34687
\(241\) −26.6496 −1.71665 −0.858325 0.513107i \(-0.828494\pi\)
−0.858325 + 0.513107i \(0.828494\pi\)
\(242\) 11.1220 0.714950
\(243\) −15.4151 −0.988878
\(244\) −1.44108 −0.0922556
\(245\) 0 0
\(246\) −28.5257 −1.81873
\(247\) 21.4538 1.36507
\(248\) 17.8894 1.13598
\(249\) 16.5228 1.04709
\(250\) −6.63958 −0.419924
\(251\) −0.00157963 −9.97052e−5 0 −4.98526e−5 1.00000i \(-0.500016\pi\)
−4.98526e−5 1.00000i \(0.500016\pi\)
\(252\) 0 0
\(253\) −0.165107 −0.0103802
\(254\) −1.31336 −0.0824075
\(255\) 10.5355 0.659759
\(256\) −6.47144 −0.404465
\(257\) 11.1076 0.692872 0.346436 0.938074i \(-0.387392\pi\)
0.346436 + 0.938074i \(0.387392\pi\)
\(258\) −8.45274 −0.526245
\(259\) 0 0
\(260\) −3.67650 −0.228007
\(261\) −12.0350 −0.744949
\(262\) 26.2656 1.62269
\(263\) −0.562872 −0.0347082 −0.0173541 0.999849i \(-0.505524\pi\)
−0.0173541 + 0.999849i \(0.505524\pi\)
\(264\) 10.2428 0.630402
\(265\) 23.9678 1.47233
\(266\) 0 0
\(267\) 17.9952 1.10129
\(268\) 2.04783 0.125091
\(269\) 27.3716 1.66888 0.834439 0.551100i \(-0.185792\pi\)
0.834439 + 0.551100i \(0.185792\pi\)
\(270\) −11.0320 −0.671384
\(271\) 19.9530 1.21206 0.606030 0.795442i \(-0.292761\pi\)
0.606030 + 0.795442i \(0.292761\pi\)
\(272\) 5.74848 0.348553
\(273\) 0 0
\(274\) 5.93059 0.358280
\(275\) 5.15317 0.310748
\(276\) 0.0614996 0.00370184
\(277\) −12.2014 −0.733109 −0.366555 0.930397i \(-0.619463\pi\)
−0.366555 + 0.930397i \(0.619463\pi\)
\(278\) −11.4931 −0.689312
\(279\) 9.82884 0.588438
\(280\) 0 0
\(281\) 22.9501 1.36909 0.684543 0.728972i \(-0.260002\pi\)
0.684543 + 0.728972i \(0.260002\pi\)
\(282\) 14.8564 0.884685
\(283\) 16.2550 0.966261 0.483131 0.875548i \(-0.339500\pi\)
0.483131 + 0.875548i \(0.339500\pi\)
\(284\) 3.92664 0.233003
\(285\) 28.4928 1.68777
\(286\) 9.73016 0.575356
\(287\) 0 0
\(288\) −2.53563 −0.149414
\(289\) −14.0975 −0.829263
\(290\) −27.6357 −1.62283
\(291\) 16.1013 0.943873
\(292\) −2.51036 −0.146908
\(293\) 23.1704 1.35363 0.676813 0.736155i \(-0.263360\pi\)
0.676813 + 0.736155i \(0.263360\pi\)
\(294\) 0 0
\(295\) −18.9126 −1.10114
\(296\) 7.38886 0.429469
\(297\) −4.65628 −0.270185
\(298\) 19.9546 1.15594
\(299\) 0.483172 0.0279426
\(300\) −1.91947 −0.110820
\(301\) 0 0
\(302\) −15.4469 −0.888869
\(303\) 24.7210 1.42019
\(304\) 15.5465 0.891653
\(305\) −15.0366 −0.860993
\(306\) 3.67334 0.209991
\(307\) 14.4329 0.823731 0.411866 0.911245i \(-0.364877\pi\)
0.411866 + 0.911245i \(0.364877\pi\)
\(308\) 0 0
\(309\) −6.53153 −0.371566
\(310\) 22.5698 1.28188
\(311\) −16.6407 −0.943608 −0.471804 0.881703i \(-0.656397\pi\)
−0.471804 + 0.881703i \(0.656397\pi\)
\(312\) −29.9747 −1.69698
\(313\) 26.0908 1.47474 0.737370 0.675489i \(-0.236068\pi\)
0.737370 + 0.675489i \(0.236068\pi\)
\(314\) −14.8202 −0.836352
\(315\) 0 0
\(316\) 2.75627 0.155052
\(317\) 25.1016 1.40985 0.704924 0.709283i \(-0.250981\pi\)
0.704924 + 0.709283i \(0.250981\pi\)
\(318\) 23.6276 1.32497
\(319\) −11.6643 −0.653074
\(320\) −25.1923 −1.40829
\(321\) 22.1984 1.23899
\(322\) 0 0
\(323\) 7.84974 0.436771
\(324\) 3.08920 0.171622
\(325\) −15.0803 −0.836505
\(326\) 23.9422 1.32604
\(327\) 12.0862 0.668366
\(328\) 30.1229 1.66326
\(329\) 0 0
\(330\) 12.9227 0.711369
\(331\) 30.5855 1.68113 0.840566 0.541710i \(-0.182223\pi\)
0.840566 + 0.541710i \(0.182223\pi\)
\(332\) −2.10967 −0.115783
\(333\) 4.05962 0.222466
\(334\) −10.0662 −0.550797
\(335\) 21.3675 1.16743
\(336\) 0 0
\(337\) 19.1142 1.04122 0.520608 0.853796i \(-0.325705\pi\)
0.520608 + 0.853796i \(0.325705\pi\)
\(338\) −11.4008 −0.620121
\(339\) 31.8268 1.72859
\(340\) −1.34520 −0.0729536
\(341\) 9.52606 0.515865
\(342\) 9.93437 0.537189
\(343\) 0 0
\(344\) 8.92602 0.481259
\(345\) 0.641702 0.0345481
\(346\) −3.41158 −0.183408
\(347\) −6.14957 −0.330126 −0.165063 0.986283i \(-0.552783\pi\)
−0.165063 + 0.986283i \(0.552783\pi\)
\(348\) 4.34474 0.232902
\(349\) −15.5329 −0.831454 −0.415727 0.909489i \(-0.636473\pi\)
−0.415727 + 0.909489i \(0.636473\pi\)
\(350\) 0 0
\(351\) 13.6262 0.727313
\(352\) −2.45752 −0.130986
\(353\) −14.9628 −0.796389 −0.398194 0.917301i \(-0.630363\pi\)
−0.398194 + 0.917301i \(0.630363\pi\)
\(354\) −18.6442 −0.990928
\(355\) 40.9715 2.17454
\(356\) −2.29767 −0.121776
\(357\) 0 0
\(358\) −24.9109 −1.31658
\(359\) −19.5952 −1.03419 −0.517097 0.855927i \(-0.672987\pi\)
−0.517097 + 0.855927i \(0.672987\pi\)
\(360\) −14.0799 −0.742078
\(361\) 2.22926 0.117330
\(362\) 5.06265 0.266087
\(363\) −18.2447 −0.957600
\(364\) 0 0
\(365\) −26.1937 −1.37104
\(366\) −14.8232 −0.774819
\(367\) −1.41231 −0.0737220 −0.0368610 0.999320i \(-0.511736\pi\)
−0.0368610 + 0.999320i \(0.511736\pi\)
\(368\) 0.350131 0.0182519
\(369\) 16.5502 0.861570
\(370\) 9.32201 0.484628
\(371\) 0 0
\(372\) −3.54829 −0.183970
\(373\) 33.8601 1.75321 0.876606 0.481209i \(-0.159802\pi\)
0.876606 + 0.481209i \(0.159802\pi\)
\(374\) 3.56018 0.184092
\(375\) 10.8917 0.562444
\(376\) −15.6882 −0.809057
\(377\) 34.1345 1.75802
\(378\) 0 0
\(379\) −20.8193 −1.06942 −0.534708 0.845037i \(-0.679578\pi\)
−0.534708 + 0.845037i \(0.679578\pi\)
\(380\) −3.63803 −0.186627
\(381\) 2.15446 0.110376
\(382\) 6.23282 0.318899
\(383\) 18.2299 0.931503 0.465751 0.884916i \(-0.345784\pi\)
0.465751 + 0.884916i \(0.345784\pi\)
\(384\) −18.1795 −0.927718
\(385\) 0 0
\(386\) −2.38193 −0.121237
\(387\) 4.90417 0.249293
\(388\) −2.05585 −0.104370
\(389\) −13.1892 −0.668717 −0.334358 0.942446i \(-0.608520\pi\)
−0.334358 + 0.942446i \(0.608520\pi\)
\(390\) −37.8170 −1.91494
\(391\) 0.176788 0.00894057
\(392\) 0 0
\(393\) −43.0865 −2.17342
\(394\) 23.7536 1.19669
\(395\) 28.7596 1.44705
\(396\) −0.718552 −0.0361086
\(397\) −13.6246 −0.683798 −0.341899 0.939737i \(-0.611070\pi\)
−0.341899 + 0.939737i \(0.611070\pi\)
\(398\) 9.56562 0.479481
\(399\) 0 0
\(400\) −10.9280 −0.546398
\(401\) 10.0237 0.500560 0.250280 0.968174i \(-0.419477\pi\)
0.250280 + 0.968174i \(0.419477\pi\)
\(402\) 21.0642 1.05059
\(403\) −27.8772 −1.38866
\(404\) −3.15644 −0.157039
\(405\) 32.2335 1.60169
\(406\) 0 0
\(407\) 3.93456 0.195029
\(408\) −10.9675 −0.542971
\(409\) 13.2007 0.652731 0.326366 0.945244i \(-0.394176\pi\)
0.326366 + 0.945244i \(0.394176\pi\)
\(410\) 38.0039 1.87688
\(411\) −9.72864 −0.479878
\(412\) 0.833960 0.0410863
\(413\) 0 0
\(414\) 0.223738 0.0109961
\(415\) −22.0129 −1.08057
\(416\) 7.19172 0.352603
\(417\) 18.8535 0.923260
\(418\) 9.62834 0.470937
\(419\) −37.1218 −1.81352 −0.906760 0.421647i \(-0.861452\pi\)
−0.906760 + 0.421647i \(0.861452\pi\)
\(420\) 0 0
\(421\) 34.8887 1.70037 0.850186 0.526482i \(-0.176489\pi\)
0.850186 + 0.526482i \(0.176489\pi\)
\(422\) −6.48035 −0.315459
\(423\) −8.61948 −0.419093
\(424\) −24.9506 −1.21171
\(425\) −5.51775 −0.267650
\(426\) 40.3900 1.95690
\(427\) 0 0
\(428\) −2.83434 −0.137003
\(429\) −15.9615 −0.770629
\(430\) 11.2613 0.543070
\(431\) −12.7253 −0.612954 −0.306477 0.951878i \(-0.599150\pi\)
−0.306477 + 0.951878i \(0.599150\pi\)
\(432\) 9.87425 0.475075
\(433\) 16.7833 0.806553 0.403276 0.915078i \(-0.367871\pi\)
0.403276 + 0.915078i \(0.367871\pi\)
\(434\) 0 0
\(435\) 45.3341 2.17360
\(436\) −1.54319 −0.0739054
\(437\) 0.478116 0.0228714
\(438\) −25.8219 −1.23382
\(439\) −7.34357 −0.350490 −0.175245 0.984525i \(-0.556072\pi\)
−0.175245 + 0.984525i \(0.556072\pi\)
\(440\) −13.6462 −0.650557
\(441\) 0 0
\(442\) −10.4186 −0.495560
\(443\) 4.94929 0.235148 0.117574 0.993064i \(-0.462488\pi\)
0.117574 + 0.993064i \(0.462488\pi\)
\(444\) −1.46556 −0.0695522
\(445\) −23.9745 −1.13650
\(446\) 9.88085 0.467872
\(447\) −32.7339 −1.54826
\(448\) 0 0
\(449\) 14.6272 0.690298 0.345149 0.938548i \(-0.387828\pi\)
0.345149 + 0.938548i \(0.387828\pi\)
\(450\) −6.98308 −0.329186
\(451\) 16.0404 0.755312
\(452\) −4.06371 −0.191141
\(453\) 25.3393 1.19055
\(454\) 0.344726 0.0161788
\(455\) 0 0
\(456\) −29.6611 −1.38901
\(457\) −21.2857 −0.995705 −0.497852 0.867262i \(-0.665878\pi\)
−0.497852 + 0.867262i \(0.665878\pi\)
\(458\) −5.65486 −0.264234
\(459\) 4.98571 0.232713
\(460\) −0.0819340 −0.00382019
\(461\) 35.4400 1.65060 0.825302 0.564692i \(-0.191005\pi\)
0.825302 + 0.564692i \(0.191005\pi\)
\(462\) 0 0
\(463\) 13.5341 0.628984 0.314492 0.949260i \(-0.398166\pi\)
0.314492 + 0.949260i \(0.398166\pi\)
\(464\) 24.7356 1.14832
\(465\) −37.0238 −1.71694
\(466\) −17.0851 −0.791453
\(467\) 37.1297 1.71816 0.859078 0.511845i \(-0.171038\pi\)
0.859078 + 0.511845i \(0.171038\pi\)
\(468\) 2.10278 0.0972010
\(469\) 0 0
\(470\) −19.7927 −0.912970
\(471\) 24.3113 1.12020
\(472\) 19.6881 0.906218
\(473\) 4.75309 0.218547
\(474\) 28.3514 1.30222
\(475\) −14.9225 −0.684691
\(476\) 0 0
\(477\) −13.7084 −0.627666
\(478\) −38.5714 −1.76421
\(479\) 10.6647 0.487284 0.243642 0.969865i \(-0.421658\pi\)
0.243642 + 0.969865i \(0.421658\pi\)
\(480\) 9.55135 0.435958
\(481\) −11.5142 −0.525000
\(482\) 35.0005 1.59423
\(483\) 0 0
\(484\) 2.32953 0.105888
\(485\) −21.4512 −0.974051
\(486\) 20.2455 0.918357
\(487\) 0.867698 0.0393192 0.0196596 0.999807i \(-0.493742\pi\)
0.0196596 + 0.999807i \(0.493742\pi\)
\(488\) 15.6531 0.708583
\(489\) −39.2752 −1.77609
\(490\) 0 0
\(491\) −11.2654 −0.508399 −0.254200 0.967152i \(-0.581812\pi\)
−0.254200 + 0.967152i \(0.581812\pi\)
\(492\) −5.97476 −0.269363
\(493\) 12.4895 0.562499
\(494\) −28.1765 −1.26772
\(495\) −7.49755 −0.336990
\(496\) −20.2013 −0.907063
\(497\) 0 0
\(498\) −21.7004 −0.972418
\(499\) 5.82592 0.260804 0.130402 0.991461i \(-0.458373\pi\)
0.130402 + 0.991461i \(0.458373\pi\)
\(500\) −1.39068 −0.0621929
\(501\) 16.5127 0.737735
\(502\) 0.00207462 9.25948e−5 0
\(503\) −22.4988 −1.00317 −0.501585 0.865108i \(-0.667250\pi\)
−0.501585 + 0.865108i \(0.667250\pi\)
\(504\) 0 0
\(505\) −32.9351 −1.46559
\(506\) 0.216845 0.00963994
\(507\) 18.7020 0.830586
\(508\) −0.275086 −0.0122050
\(509\) 33.9763 1.50597 0.752987 0.658035i \(-0.228612\pi\)
0.752987 + 0.658035i \(0.228612\pi\)
\(510\) −13.8369 −0.612709
\(511\) 0 0
\(512\) 25.3755 1.12145
\(513\) 13.4836 0.595316
\(514\) −14.5882 −0.643460
\(515\) 8.70176 0.383445
\(516\) −1.77044 −0.0779395
\(517\) −8.35395 −0.367406
\(518\) 0 0
\(519\) 5.59642 0.245655
\(520\) 39.9344 1.75124
\(521\) 7.88458 0.345430 0.172715 0.984972i \(-0.444746\pi\)
0.172715 + 0.984972i \(0.444746\pi\)
\(522\) 15.8063 0.691823
\(523\) −8.08077 −0.353347 −0.176674 0.984269i \(-0.556534\pi\)
−0.176674 + 0.984269i \(0.556534\pi\)
\(524\) 5.50138 0.240329
\(525\) 0 0
\(526\) 0.739254 0.0322330
\(527\) −10.2000 −0.444320
\(528\) −11.5665 −0.503369
\(529\) −22.9892 −0.999532
\(530\) −31.4784 −1.36733
\(531\) 10.8171 0.469423
\(532\) 0 0
\(533\) −46.9408 −2.03323
\(534\) −23.6342 −1.02275
\(535\) −29.5742 −1.27860
\(536\) −22.2437 −0.960779
\(537\) 40.8643 1.76342
\(538\) −35.9488 −1.54986
\(539\) 0 0
\(540\) −2.31067 −0.0994353
\(541\) −29.0363 −1.24837 −0.624183 0.781278i \(-0.714568\pi\)
−0.624183 + 0.781278i \(0.714568\pi\)
\(542\) −26.2055 −1.12562
\(543\) −8.30485 −0.356395
\(544\) 2.63139 0.112820
\(545\) −16.1020 −0.689735
\(546\) 0 0
\(547\) −22.8596 −0.977406 −0.488703 0.872450i \(-0.662530\pi\)
−0.488703 + 0.872450i \(0.662530\pi\)
\(548\) 1.24218 0.0530631
\(549\) 8.60020 0.367048
\(550\) −6.76796 −0.288587
\(551\) 33.7773 1.43896
\(552\) −0.668013 −0.0284325
\(553\) 0 0
\(554\) 16.0248 0.680828
\(555\) −15.2920 −0.649108
\(556\) −2.40726 −0.102091
\(557\) 3.10093 0.131391 0.0656953 0.997840i \(-0.479073\pi\)
0.0656953 + 0.997840i \(0.479073\pi\)
\(558\) −12.9088 −0.546473
\(559\) −13.9095 −0.588310
\(560\) 0 0
\(561\) −5.84017 −0.246572
\(562\) −30.1417 −1.27145
\(563\) 33.4493 1.40972 0.704860 0.709347i \(-0.251010\pi\)
0.704860 + 0.709347i \(0.251010\pi\)
\(564\) 3.11170 0.131026
\(565\) −42.4018 −1.78386
\(566\) −21.3487 −0.897353
\(567\) 0 0
\(568\) −42.6515 −1.78962
\(569\) 21.1981 0.888671 0.444335 0.895861i \(-0.353440\pi\)
0.444335 + 0.895861i \(0.353440\pi\)
\(570\) −37.4213 −1.56741
\(571\) −37.8686 −1.58475 −0.792377 0.610032i \(-0.791157\pi\)
−0.792377 + 0.610032i \(0.791157\pi\)
\(572\) 2.03800 0.0852131
\(573\) −10.2244 −0.427131
\(574\) 0 0
\(575\) −0.336078 −0.0140154
\(576\) 14.4088 0.600366
\(577\) −34.0007 −1.41547 −0.707734 0.706479i \(-0.750282\pi\)
−0.707734 + 0.706479i \(0.750282\pi\)
\(578\) 18.5151 0.770125
\(579\) 3.90735 0.162384
\(580\) −5.78837 −0.240349
\(581\) 0 0
\(582\) −21.1468 −0.876562
\(583\) −13.2861 −0.550256
\(584\) 27.2677 1.12835
\(585\) 21.9409 0.907146
\(586\) −30.4310 −1.25709
\(587\) 13.4607 0.555583 0.277792 0.960641i \(-0.410398\pi\)
0.277792 + 0.960641i \(0.410398\pi\)
\(588\) 0 0
\(589\) −27.5855 −1.13664
\(590\) 24.8391 1.02261
\(591\) −38.9658 −1.60284
\(592\) −8.34375 −0.342926
\(593\) 35.6827 1.46531 0.732657 0.680598i \(-0.238280\pi\)
0.732657 + 0.680598i \(0.238280\pi\)
\(594\) 6.11537 0.250917
\(595\) 0 0
\(596\) 4.17954 0.171201
\(597\) −15.6916 −0.642214
\(598\) −0.634579 −0.0259499
\(599\) 13.0709 0.534061 0.267031 0.963688i \(-0.413958\pi\)
0.267031 + 0.963688i \(0.413958\pi\)
\(600\) 20.8494 0.851173
\(601\) 24.2381 0.988694 0.494347 0.869265i \(-0.335407\pi\)
0.494347 + 0.869265i \(0.335407\pi\)
\(602\) 0 0
\(603\) −12.2212 −0.497686
\(604\) −3.23538 −0.131646
\(605\) 24.3069 0.988217
\(606\) −32.4676 −1.31891
\(607\) 3.03367 0.123133 0.0615665 0.998103i \(-0.480390\pi\)
0.0615665 + 0.998103i \(0.480390\pi\)
\(608\) 7.11647 0.288611
\(609\) 0 0
\(610\) 19.7485 0.799591
\(611\) 24.4471 0.989024
\(612\) 0.769388 0.0311007
\(613\) −13.8288 −0.558539 −0.279269 0.960213i \(-0.590092\pi\)
−0.279269 + 0.960213i \(0.590092\pi\)
\(614\) −18.9556 −0.764987
\(615\) −62.3422 −2.51388
\(616\) 0 0
\(617\) −10.0221 −0.403474 −0.201737 0.979440i \(-0.564659\pi\)
−0.201737 + 0.979440i \(0.564659\pi\)
\(618\) 8.57824 0.345068
\(619\) 22.1084 0.888613 0.444306 0.895875i \(-0.353450\pi\)
0.444306 + 0.895875i \(0.353450\pi\)
\(620\) 4.72728 0.189852
\(621\) 0.303672 0.0121859
\(622\) 21.8552 0.876315
\(623\) 0 0
\(624\) 33.8484 1.35502
\(625\) −30.7043 −1.22817
\(626\) −34.2666 −1.36957
\(627\) −15.7945 −0.630771
\(628\) −3.10412 −0.123868
\(629\) −4.21292 −0.167980
\(630\) 0 0
\(631\) 44.9892 1.79099 0.895495 0.445071i \(-0.146822\pi\)
0.895495 + 0.445071i \(0.146822\pi\)
\(632\) −29.9388 −1.19090
\(633\) 10.6305 0.422523
\(634\) −32.9675 −1.30931
\(635\) −2.87032 −0.113905
\(636\) 4.94886 0.196235
\(637\) 0 0
\(638\) 15.3194 0.606500
\(639\) −23.4337 −0.927024
\(640\) 24.2200 0.957379
\(641\) 26.0573 1.02920 0.514602 0.857429i \(-0.327940\pi\)
0.514602 + 0.857429i \(0.327940\pi\)
\(642\) −29.1544 −1.15063
\(643\) 6.31691 0.249115 0.124557 0.992212i \(-0.460249\pi\)
0.124557 + 0.992212i \(0.460249\pi\)
\(644\) 0 0
\(645\) −18.4733 −0.727384
\(646\) −10.3095 −0.405623
\(647\) 10.3120 0.405407 0.202704 0.979240i \(-0.435027\pi\)
0.202704 + 0.979240i \(0.435027\pi\)
\(648\) −33.5551 −1.31817
\(649\) 10.4839 0.411529
\(650\) 19.8059 0.776850
\(651\) 0 0
\(652\) 5.01475 0.196393
\(653\) −18.4623 −0.722485 −0.361243 0.932472i \(-0.617647\pi\)
−0.361243 + 0.932472i \(0.617647\pi\)
\(654\) −15.8735 −0.620702
\(655\) 57.4028 2.24291
\(656\) −34.0157 −1.32809
\(657\) 14.9815 0.584486
\(658\) 0 0
\(659\) −11.6728 −0.454706 −0.227353 0.973812i \(-0.573007\pi\)
−0.227353 + 0.973812i \(0.573007\pi\)
\(660\) 2.70668 0.105357
\(661\) −47.4022 −1.84373 −0.921866 0.387508i \(-0.873336\pi\)
−0.921866 + 0.387508i \(0.873336\pi\)
\(662\) −40.1698 −1.56124
\(663\) 17.0908 0.663750
\(664\) 22.9154 0.889291
\(665\) 0 0
\(666\) −5.33174 −0.206601
\(667\) 0.760717 0.0294551
\(668\) −2.10838 −0.0815759
\(669\) −16.2087 −0.626665
\(670\) −28.0633 −1.08418
\(671\) 8.33527 0.321779
\(672\) 0 0
\(673\) −28.5338 −1.09990 −0.549949 0.835199i \(-0.685353\pi\)
−0.549949 + 0.835199i \(0.685353\pi\)
\(674\) −25.1038 −0.966963
\(675\) −9.47792 −0.364805
\(676\) −2.38792 −0.0918430
\(677\) −44.3296 −1.70373 −0.851863 0.523765i \(-0.824527\pi\)
−0.851863 + 0.523765i \(0.824527\pi\)
\(678\) −41.8000 −1.60532
\(679\) 0 0
\(680\) 14.6117 0.560331
\(681\) −0.565494 −0.0216698
\(682\) −12.5111 −0.479077
\(683\) 35.3285 1.35181 0.675904 0.736990i \(-0.263753\pi\)
0.675904 + 0.736990i \(0.263753\pi\)
\(684\) 2.08078 0.0795604
\(685\) 12.9612 0.495221
\(686\) 0 0
\(687\) 9.27633 0.353914
\(688\) −10.0796 −0.384279
\(689\) 38.8808 1.48124
\(690\) −0.842786 −0.0320843
\(691\) 14.2738 0.543002 0.271501 0.962438i \(-0.412480\pi\)
0.271501 + 0.962438i \(0.412480\pi\)
\(692\) −0.714564 −0.0271636
\(693\) 0 0
\(694\) 8.07660 0.306584
\(695\) −25.1180 −0.952779
\(696\) −47.1929 −1.78884
\(697\) −17.1752 −0.650558
\(698\) 20.4002 0.772160
\(699\) 28.0267 1.06007
\(700\) 0 0
\(701\) 19.8244 0.748759 0.374379 0.927276i \(-0.377856\pi\)
0.374379 + 0.927276i \(0.377856\pi\)
\(702\) −17.8961 −0.675445
\(703\) −11.3937 −0.429720
\(704\) 13.9649 0.526322
\(705\) 32.4683 1.22283
\(706\) 19.6515 0.739595
\(707\) 0 0
\(708\) −3.90507 −0.146761
\(709\) −44.3096 −1.66408 −0.832041 0.554714i \(-0.812828\pi\)
−0.832041 + 0.554714i \(0.812828\pi\)
\(710\) −53.8104 −2.01947
\(711\) −16.4491 −0.616890
\(712\) 24.9575 0.935321
\(713\) −0.621268 −0.0232667
\(714\) 0 0
\(715\) 21.2650 0.795267
\(716\) −5.21764 −0.194992
\(717\) 63.2731 2.36298
\(718\) 25.7355 0.960440
\(719\) 36.3924 1.35721 0.678603 0.734505i \(-0.262586\pi\)
0.678603 + 0.734505i \(0.262586\pi\)
\(720\) 15.8995 0.592541
\(721\) 0 0
\(722\) −2.92782 −0.108962
\(723\) −57.4153 −2.13530
\(724\) 1.06038 0.0394088
\(725\) −23.7428 −0.881785
\(726\) 23.9619 0.889310
\(727\) −28.9004 −1.07186 −0.535929 0.844263i \(-0.680038\pi\)
−0.535929 + 0.844263i \(0.680038\pi\)
\(728\) 0 0
\(729\) 0.478655 0.0177280
\(730\) 34.4018 1.27327
\(731\) −5.08937 −0.188237
\(732\) −3.10474 −0.114755
\(733\) −16.5945 −0.612934 −0.306467 0.951881i \(-0.599147\pi\)
−0.306467 + 0.951881i \(0.599147\pi\)
\(734\) 1.85487 0.0684645
\(735\) 0 0
\(736\) 0.160274 0.00590778
\(737\) −11.8447 −0.436306
\(738\) −21.7364 −0.800128
\(739\) 32.7856 1.20604 0.603019 0.797727i \(-0.293964\pi\)
0.603019 + 0.797727i \(0.293964\pi\)
\(740\) 1.95252 0.0717759
\(741\) 46.2212 1.69798
\(742\) 0 0
\(743\) 31.3429 1.14986 0.574929 0.818203i \(-0.305030\pi\)
0.574929 + 0.818203i \(0.305030\pi\)
\(744\) 38.5418 1.41301
\(745\) 43.6104 1.59776
\(746\) −44.4705 −1.62818
\(747\) 12.5903 0.460655
\(748\) 0.745687 0.0272650
\(749\) 0 0
\(750\) −14.3047 −0.522334
\(751\) 33.2746 1.21421 0.607104 0.794622i \(-0.292331\pi\)
0.607104 + 0.794622i \(0.292331\pi\)
\(752\) 17.7156 0.646023
\(753\) −0.00340324 −0.000124021 0
\(754\) −44.8309 −1.63264
\(755\) −33.7588 −1.22861
\(756\) 0 0
\(757\) 10.1688 0.369591 0.184796 0.982777i \(-0.440838\pi\)
0.184796 + 0.982777i \(0.440838\pi\)
\(758\) 27.3432 0.993151
\(759\) −0.355716 −0.0129117
\(760\) 39.5165 1.43342
\(761\) 1.93614 0.0701851 0.0350925 0.999384i \(-0.488827\pi\)
0.0350925 + 0.999384i \(0.488827\pi\)
\(762\) −2.82958 −0.102505
\(763\) 0 0
\(764\) 1.30548 0.0472305
\(765\) 8.02799 0.290253
\(766\) −23.9424 −0.865073
\(767\) −30.6802 −1.10780
\(768\) −13.9424 −0.503104
\(769\) −4.48664 −0.161792 −0.0808961 0.996723i \(-0.525778\pi\)
−0.0808961 + 0.996723i \(0.525778\pi\)
\(770\) 0 0
\(771\) 23.9308 0.861847
\(772\) −0.498900 −0.0179558
\(773\) 54.3911 1.95631 0.978155 0.207875i \(-0.0666546\pi\)
0.978155 + 0.207875i \(0.0666546\pi\)
\(774\) −6.44094 −0.231515
\(775\) 19.3904 0.696525
\(776\) 22.3308 0.801629
\(777\) 0 0
\(778\) 17.3221 0.621028
\(779\) −46.4496 −1.66423
\(780\) −7.92086 −0.283612
\(781\) −22.7118 −0.812694
\(782\) −0.232187 −0.00830298
\(783\) 21.4534 0.766682
\(784\) 0 0
\(785\) −32.3892 −1.15602
\(786\) 56.5880 2.01843
\(787\) −55.2407 −1.96912 −0.984560 0.175050i \(-0.943991\pi\)
−0.984560 + 0.175050i \(0.943991\pi\)
\(788\) 4.97524 0.177236
\(789\) −1.21268 −0.0431727
\(790\) −37.7717 −1.34386
\(791\) 0 0
\(792\) 7.80497 0.277337
\(793\) −24.3924 −0.866201
\(794\) 17.8940 0.635034
\(795\) 51.6377 1.83140
\(796\) 2.00354 0.0710135
\(797\) −5.80327 −0.205562 −0.102781 0.994704i \(-0.532774\pi\)
−0.102781 + 0.994704i \(0.532774\pi\)
\(798\) 0 0
\(799\) 8.94498 0.316451
\(800\) −5.00232 −0.176859
\(801\) 13.7122 0.484498
\(802\) −13.1647 −0.464863
\(803\) 14.5200 0.512401
\(804\) 4.41195 0.155598
\(805\) 0 0
\(806\) 36.6128 1.28963
\(807\) 58.9710 2.07588
\(808\) 34.2855 1.20616
\(809\) 6.34449 0.223060 0.111530 0.993761i \(-0.464425\pi\)
0.111530 + 0.993761i \(0.464425\pi\)
\(810\) −42.3341 −1.48747
\(811\) −0.941916 −0.0330752 −0.0165376 0.999863i \(-0.505264\pi\)
−0.0165376 + 0.999863i \(0.505264\pi\)
\(812\) 0 0
\(813\) 42.9879 1.50765
\(814\) −5.16749 −0.181121
\(815\) 52.3252 1.83287
\(816\) 12.3848 0.433556
\(817\) −13.7640 −0.481540
\(818\) −17.3372 −0.606182
\(819\) 0 0
\(820\) 7.96000 0.277975
\(821\) −33.4339 −1.16685 −0.583426 0.812166i \(-0.698288\pi\)
−0.583426 + 0.812166i \(0.698288\pi\)
\(822\) 12.7772 0.445656
\(823\) 6.06800 0.211517 0.105759 0.994392i \(-0.466273\pi\)
0.105759 + 0.994392i \(0.466273\pi\)
\(824\) −9.05854 −0.315569
\(825\) 11.1023 0.386532
\(826\) 0 0
\(827\) −11.5578 −0.401905 −0.200953 0.979601i \(-0.564404\pi\)
−0.200953 + 0.979601i \(0.564404\pi\)
\(828\) 0.0468623 0.00162858
\(829\) −2.42424 −0.0841975 −0.0420987 0.999113i \(-0.513404\pi\)
−0.0420987 + 0.999113i \(0.513404\pi\)
\(830\) 28.9108 1.00351
\(831\) −26.2873 −0.911897
\(832\) −40.8671 −1.41681
\(833\) 0 0
\(834\) −24.7614 −0.857419
\(835\) −21.9994 −0.761322
\(836\) 2.01668 0.0697482
\(837\) −17.5207 −0.605605
\(838\) 48.7543 1.68419
\(839\) −29.0493 −1.00289 −0.501447 0.865189i \(-0.667199\pi\)
−0.501447 + 0.865189i \(0.667199\pi\)
\(840\) 0 0
\(841\) 24.7421 0.853177
\(842\) −45.8215 −1.57911
\(843\) 49.4449 1.70297
\(844\) −1.35732 −0.0467210
\(845\) −24.9162 −0.857142
\(846\) 11.3205 0.389206
\(847\) 0 0
\(848\) 28.1750 0.967533
\(849\) 35.0208 1.20191
\(850\) 7.24679 0.248563
\(851\) −0.256603 −0.00879624
\(852\) 8.45977 0.289827
\(853\) −41.0726 −1.40630 −0.703149 0.711043i \(-0.748223\pi\)
−0.703149 + 0.711043i \(0.748223\pi\)
\(854\) 0 0
\(855\) 21.7113 0.742512
\(856\) 30.7868 1.05227
\(857\) 21.4981 0.734362 0.367181 0.930150i \(-0.380323\pi\)
0.367181 + 0.930150i \(0.380323\pi\)
\(858\) 20.9632 0.715672
\(859\) −45.3398 −1.54697 −0.773487 0.633812i \(-0.781489\pi\)
−0.773487 + 0.633812i \(0.781489\pi\)
\(860\) 2.35871 0.0804314
\(861\) 0 0
\(862\) 16.7128 0.569241
\(863\) 50.6983 1.72579 0.862896 0.505382i \(-0.168648\pi\)
0.862896 + 0.505382i \(0.168648\pi\)
\(864\) 4.51997 0.153773
\(865\) −7.45594 −0.253510
\(866\) −22.0425 −0.749034
\(867\) −30.3724 −1.03150
\(868\) 0 0
\(869\) −15.9424 −0.540808
\(870\) −59.5400 −2.01860
\(871\) 34.6625 1.17450
\(872\) 16.7622 0.567641
\(873\) 12.2691 0.415245
\(874\) −0.627938 −0.0212403
\(875\) 0 0
\(876\) −5.40846 −0.182735
\(877\) 31.1264 1.05106 0.525532 0.850774i \(-0.323866\pi\)
0.525532 + 0.850774i \(0.323866\pi\)
\(878\) 9.64475 0.325495
\(879\) 49.9195 1.68374
\(880\) 15.4097 0.519462
\(881\) 8.88546 0.299359 0.149679 0.988735i \(-0.452176\pi\)
0.149679 + 0.988735i \(0.452176\pi\)
\(882\) 0 0
\(883\) 32.1160 1.08079 0.540394 0.841412i \(-0.318275\pi\)
0.540394 + 0.841412i \(0.318275\pi\)
\(884\) −2.18219 −0.0733949
\(885\) −40.7465 −1.36968
\(886\) −6.50020 −0.218379
\(887\) −41.3922 −1.38981 −0.694907 0.719099i \(-0.744555\pi\)
−0.694907 + 0.719099i \(0.744555\pi\)
\(888\) 15.9190 0.534206
\(889\) 0 0
\(890\) 31.4871 1.05545
\(891\) −17.8680 −0.598602
\(892\) 2.06956 0.0692942
\(893\) 24.1913 0.809531
\(894\) 42.9914 1.43785
\(895\) −54.4422 −1.81980
\(896\) 0 0
\(897\) 1.04097 0.0347571
\(898\) −19.2107 −0.641070
\(899\) −43.8905 −1.46383
\(900\) −1.46262 −0.0487540
\(901\) 14.2261 0.473941
\(902\) −21.0668 −0.701447
\(903\) 0 0
\(904\) 44.1404 1.46809
\(905\) 11.0643 0.367790
\(906\) −33.2797 −1.10564
\(907\) −39.2293 −1.30259 −0.651295 0.758825i \(-0.725774\pi\)
−0.651295 + 0.758825i \(0.725774\pi\)
\(908\) 0.0722036 0.00239616
\(909\) 18.8373 0.624793
\(910\) 0 0
\(911\) 40.2594 1.33385 0.666926 0.745124i \(-0.267610\pi\)
0.666926 + 0.745124i \(0.267610\pi\)
\(912\) 33.4943 1.10911
\(913\) 12.2024 0.403842
\(914\) 27.9558 0.924697
\(915\) −32.3957 −1.07097
\(916\) −1.18442 −0.0391344
\(917\) 0 0
\(918\) −6.54803 −0.216117
\(919\) −37.0755 −1.22301 −0.611505 0.791241i \(-0.709435\pi\)
−0.611505 + 0.791241i \(0.709435\pi\)
\(920\) 0.889974 0.0293416
\(921\) 31.0951 1.02462
\(922\) −46.5454 −1.53289
\(923\) 66.4643 2.18770
\(924\) 0 0
\(925\) 8.00885 0.263329
\(926\) −17.7752 −0.584128
\(927\) −4.97698 −0.163466
\(928\) 11.3228 0.371690
\(929\) 53.5592 1.75722 0.878610 0.477539i \(-0.158471\pi\)
0.878610 + 0.477539i \(0.158471\pi\)
\(930\) 48.6256 1.59450
\(931\) 0 0
\(932\) −3.57851 −0.117218
\(933\) −35.8517 −1.17373
\(934\) −48.7646 −1.59563
\(935\) 7.78069 0.254456
\(936\) −22.8406 −0.746567
\(937\) −24.4182 −0.797709 −0.398855 0.917014i \(-0.630592\pi\)
−0.398855 + 0.917014i \(0.630592\pi\)
\(938\) 0 0
\(939\) 56.2115 1.83439
\(940\) −4.14563 −0.135215
\(941\) 14.5597 0.474634 0.237317 0.971432i \(-0.423732\pi\)
0.237317 + 0.971432i \(0.423732\pi\)
\(942\) −31.9295 −1.04032
\(943\) −1.04612 −0.0340663
\(944\) −22.2324 −0.723604
\(945\) 0 0
\(946\) −6.24252 −0.202962
\(947\) −2.58241 −0.0839172 −0.0419586 0.999119i \(-0.513360\pi\)
−0.0419586 + 0.999119i \(0.513360\pi\)
\(948\) 5.93826 0.192866
\(949\) −42.4916 −1.37934
\(950\) 19.5986 0.635863
\(951\) 54.0804 1.75368
\(952\) 0 0
\(953\) 10.9801 0.355682 0.177841 0.984059i \(-0.443089\pi\)
0.177841 + 0.984059i \(0.443089\pi\)
\(954\) 18.0041 0.582905
\(955\) 13.6217 0.440787
\(956\) −8.07886 −0.261289
\(957\) −25.1302 −0.812343
\(958\) −14.0066 −0.452533
\(959\) 0 0
\(960\) −54.2758 −1.75174
\(961\) 4.84482 0.156285
\(962\) 15.1222 0.487560
\(963\) 16.9150 0.545079
\(964\) 7.33092 0.236113
\(965\) −5.20565 −0.167576
\(966\) 0 0
\(967\) 34.1180 1.09716 0.548580 0.836098i \(-0.315168\pi\)
0.548580 + 0.836098i \(0.315168\pi\)
\(968\) −25.3035 −0.813287
\(969\) 16.9119 0.543289
\(970\) 28.1732 0.904587
\(971\) 35.4951 1.13909 0.569547 0.821959i \(-0.307119\pi\)
0.569547 + 0.821959i \(0.307119\pi\)
\(972\) 4.24047 0.136013
\(973\) 0 0
\(974\) −1.13960 −0.0365151
\(975\) −32.4898 −1.04051
\(976\) −17.6760 −0.565796
\(977\) −34.9889 −1.11939 −0.559696 0.828698i \(-0.689082\pi\)
−0.559696 + 0.828698i \(0.689082\pi\)
\(978\) 51.5825 1.64943
\(979\) 13.2898 0.424744
\(980\) 0 0
\(981\) 9.20958 0.294039
\(982\) 14.7955 0.472143
\(983\) −17.4400 −0.556250 −0.278125 0.960545i \(-0.589713\pi\)
−0.278125 + 0.960545i \(0.589713\pi\)
\(984\) 64.8984 2.06888
\(985\) 51.9130 1.65408
\(986\) −16.4032 −0.522385
\(987\) 0 0
\(988\) −5.90163 −0.187756
\(989\) −0.309986 −0.00985698
\(990\) 9.84698 0.312958
\(991\) −28.4282 −0.903052 −0.451526 0.892258i \(-0.649120\pi\)
−0.451526 + 0.892258i \(0.649120\pi\)
\(992\) −9.24720 −0.293599
\(993\) 65.8951 2.09112
\(994\) 0 0
\(995\) 20.9054 0.662747
\(996\) −4.54520 −0.144020
\(997\) −56.7159 −1.79621 −0.898105 0.439781i \(-0.855056\pi\)
−0.898105 + 0.439781i \(0.855056\pi\)
\(998\) −7.65153 −0.242205
\(999\) −7.23661 −0.228956
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6223.2.a.p.1.12 38
7.2 even 3 889.2.f.c.382.27 yes 76
7.4 even 3 889.2.f.c.128.27 76
7.6 odd 2 6223.2.a.o.1.12 38
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
889.2.f.c.128.27 76 7.4 even 3
889.2.f.c.382.27 yes 76 7.2 even 3
6223.2.a.o.1.12 38 7.6 odd 2
6223.2.a.p.1.12 38 1.1 even 1 trivial