Properties

Label 2-6223-1.1-c1-0-64
Degree $2$
Conductor $6223$
Sign $1$
Analytic cond. $49.6909$
Root an. cond. $7.04917$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.31·2-s + 2.15·3-s − 0.275·4-s − 2.87·5-s − 2.82·6-s + 2.98·8-s + 1.64·9-s + 3.76·10-s + 1.59·11-s − 0.592·12-s − 4.65·13-s − 6.18·15-s − 3.37·16-s − 1.70·17-s − 2.15·18-s − 4.60·19-s + 0.789·20-s − 2.08·22-s − 0.103·23-s + 6.43·24-s + 3.23·25-s + 6.11·26-s − 2.92·27-s − 7.33·29-s + 8.12·30-s + 5.98·31-s − 1.54·32-s + ⋯
L(s)  = 1  − 0.928·2-s + 1.24·3-s − 0.137·4-s − 1.28·5-s − 1.15·6-s + 1.05·8-s + 0.547·9-s + 1.19·10-s + 0.479·11-s − 0.171·12-s − 1.29·13-s − 1.59·15-s − 0.843·16-s − 0.413·17-s − 0.508·18-s − 1.05·19-s + 0.176·20-s − 0.445·22-s − 0.0216·23-s + 1.31·24-s + 0.647·25-s + 1.19·26-s − 0.563·27-s − 1.36·29-s + 1.48·30-s + 1.07·31-s − 0.273·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6223\)    =    \(7^{2} \cdot 127\)
Sign: $1$
Analytic conductor: \(49.6909\)
Root analytic conductor: \(7.04917\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6223,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7191747951\)
\(L(\frac12)\) \(\approx\) \(0.7191747951\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
127 \( 1 - T \)
good2 \( 1 + 1.31T + 2T^{2} \)
3 \( 1 - 2.15T + 3T^{2} \)
5 \( 1 + 2.87T + 5T^{2} \)
11 \( 1 - 1.59T + 11T^{2} \)
13 \( 1 + 4.65T + 13T^{2} \)
17 \( 1 + 1.70T + 17T^{2} \)
19 \( 1 + 4.60T + 19T^{2} \)
23 \( 1 + 0.103T + 23T^{2} \)
29 \( 1 + 7.33T + 29T^{2} \)
31 \( 1 - 5.98T + 31T^{2} \)
37 \( 1 - 2.47T + 37T^{2} \)
41 \( 1 - 10.0T + 41T^{2} \)
43 \( 1 - 2.98T + 43T^{2} \)
47 \( 1 + 5.25T + 47T^{2} \)
53 \( 1 + 8.35T + 53T^{2} \)
59 \( 1 - 6.58T + 59T^{2} \)
61 \( 1 - 5.23T + 61T^{2} \)
67 \( 1 + 7.44T + 67T^{2} \)
71 \( 1 + 14.2T + 71T^{2} \)
73 \( 1 - 9.12T + 73T^{2} \)
79 \( 1 + 10.0T + 79T^{2} \)
83 \( 1 - 7.66T + 83T^{2} \)
89 \( 1 - 8.35T + 89T^{2} \)
97 \( 1 - 7.47T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.110051537416789059660263622790, −7.57893139198185424366857899565, −7.24245952691990628087879076920, −6.15409900092438024065781558474, −4.80089929938206105990866932540, −4.26512057402031822241227683083, −3.66509094645901524622260237478, −2.65080329051502542681441149480, −1.86852088572302379016752344057, −0.46567960174872686950206619942, 0.46567960174872686950206619942, 1.86852088572302379016752344057, 2.65080329051502542681441149480, 3.66509094645901524622260237478, 4.26512057402031822241227683083, 4.80089929938206105990866932540, 6.15409900092438024065781558474, 7.24245952691990628087879076920, 7.57893139198185424366857899565, 8.110051537416789059660263622790

Graph of the $Z$-function along the critical line