Properties

Label 6223.2.a.k.1.10
Level $6223$
Weight $2$
Character 6223.1
Self dual yes
Analytic conductor $49.691$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6223,2,Mod(1,6223)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6223.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6223, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6223 = 7^{2} \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6223.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-2,4,12,9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.6909051778\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} - 20 x^{14} + 38 x^{13} + 155 x^{12} - 275 x^{11} - 593 x^{10} + 957 x^{9} + 1177 x^{8} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 889)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Root \(-0.191617\) of defining polynomial
Character \(\chi\) \(=\) 6223.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.191617 q^{2} +2.32908 q^{3} -1.96328 q^{4} -3.92161 q^{5} +0.446291 q^{6} -0.759431 q^{8} +2.42462 q^{9} -0.751445 q^{10} -5.26691 q^{11} -4.57265 q^{12} -6.07655 q^{13} -9.13374 q^{15} +3.78105 q^{16} +4.12322 q^{17} +0.464598 q^{18} -0.0374083 q^{19} +7.69922 q^{20} -1.00923 q^{22} -3.57588 q^{23} -1.76878 q^{24} +10.3790 q^{25} -1.16437 q^{26} -1.34010 q^{27} -2.19905 q^{29} -1.75018 q^{30} -4.14885 q^{31} +2.24337 q^{32} -12.2671 q^{33} +0.790078 q^{34} -4.76022 q^{36} -9.31219 q^{37} -0.00716804 q^{38} -14.1528 q^{39} +2.97819 q^{40} +9.48327 q^{41} -11.4342 q^{43} +10.3404 q^{44} -9.50842 q^{45} -0.685199 q^{46} +3.87164 q^{47} +8.80637 q^{48} +1.98879 q^{50} +9.60333 q^{51} +11.9300 q^{52} -9.97552 q^{53} -0.256785 q^{54} +20.6547 q^{55} -0.0871269 q^{57} -0.421374 q^{58} +9.91129 q^{59} +17.9321 q^{60} +0.382013 q^{61} -0.794988 q^{62} -7.13223 q^{64} +23.8298 q^{65} -2.35057 q^{66} +4.40596 q^{67} -8.09505 q^{68} -8.32853 q^{69} -10.3123 q^{71} -1.84133 q^{72} +3.37816 q^{73} -1.78437 q^{74} +24.1735 q^{75} +0.0734430 q^{76} -2.71191 q^{78} +9.73339 q^{79} -14.8278 q^{80} -10.3951 q^{81} +1.81715 q^{82} -16.5257 q^{83} -16.1697 q^{85} -2.19098 q^{86} -5.12177 q^{87} +3.99985 q^{88} +2.53028 q^{89} -1.82197 q^{90} +7.02047 q^{92} -9.66301 q^{93} +0.741870 q^{94} +0.146700 q^{95} +5.22500 q^{96} +5.85331 q^{97} -12.7703 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{2} + 4 q^{3} + 12 q^{4} + 9 q^{5} + 12 q^{6} - 6 q^{8} + 14 q^{9} + 2 q^{10} - 22 q^{11} + 10 q^{12} + 4 q^{13} - 14 q^{15} + 12 q^{16} + 18 q^{17} - 5 q^{18} + 15 q^{19} + 40 q^{20} - 11 q^{22}+ \cdots - 73 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.191617 0.135493 0.0677467 0.997703i \(-0.478419\pi\)
0.0677467 + 0.997703i \(0.478419\pi\)
\(3\) 2.32908 1.34470 0.672348 0.740235i \(-0.265286\pi\)
0.672348 + 0.740235i \(0.265286\pi\)
\(4\) −1.96328 −0.981642
\(5\) −3.92161 −1.75380 −0.876898 0.480677i \(-0.840391\pi\)
−0.876898 + 0.480677i \(0.840391\pi\)
\(6\) 0.446291 0.182197
\(7\) 0 0
\(8\) −0.759431 −0.268499
\(9\) 2.42462 0.808208
\(10\) −0.751445 −0.237628
\(11\) −5.26691 −1.58803 −0.794016 0.607897i \(-0.792014\pi\)
−0.794016 + 0.607897i \(0.792014\pi\)
\(12\) −4.57265 −1.32001
\(13\) −6.07655 −1.68533 −0.842665 0.538438i \(-0.819015\pi\)
−0.842665 + 0.538438i \(0.819015\pi\)
\(14\) 0 0
\(15\) −9.13374 −2.35832
\(16\) 3.78105 0.945262
\(17\) 4.12322 1.00003 0.500014 0.866017i \(-0.333328\pi\)
0.500014 + 0.866017i \(0.333328\pi\)
\(18\) 0.464598 0.109507
\(19\) −0.0374083 −0.00858204 −0.00429102 0.999991i \(-0.501366\pi\)
−0.00429102 + 0.999991i \(0.501366\pi\)
\(20\) 7.69922 1.72160
\(21\) 0 0
\(22\) −1.00923 −0.215168
\(23\) −3.57588 −0.745623 −0.372812 0.927907i \(-0.621606\pi\)
−0.372812 + 0.927907i \(0.621606\pi\)
\(24\) −1.76878 −0.361050
\(25\) 10.3790 2.07580
\(26\) −1.16437 −0.228351
\(27\) −1.34010 −0.257902
\(28\) 0 0
\(29\) −2.19905 −0.408353 −0.204177 0.978934i \(-0.565452\pi\)
−0.204177 + 0.978934i \(0.565452\pi\)
\(30\) −1.75018 −0.319537
\(31\) −4.14885 −0.745155 −0.372577 0.928001i \(-0.621526\pi\)
−0.372577 + 0.928001i \(0.621526\pi\)
\(32\) 2.24337 0.396576
\(33\) −12.2671 −2.13542
\(34\) 0.790078 0.135497
\(35\) 0 0
\(36\) −4.76022 −0.793371
\(37\) −9.31219 −1.53091 −0.765457 0.643487i \(-0.777487\pi\)
−0.765457 + 0.643487i \(0.777487\pi\)
\(38\) −0.00716804 −0.00116281
\(39\) −14.1528 −2.26626
\(40\) 2.97819 0.470893
\(41\) 9.48327 1.48104 0.740519 0.672035i \(-0.234580\pi\)
0.740519 + 0.672035i \(0.234580\pi\)
\(42\) 0 0
\(43\) −11.4342 −1.74370 −0.871850 0.489774i \(-0.837079\pi\)
−0.871850 + 0.489774i \(0.837079\pi\)
\(44\) 10.3404 1.55888
\(45\) −9.50842 −1.41743
\(46\) −0.685199 −0.101027
\(47\) 3.87164 0.564737 0.282368 0.959306i \(-0.408880\pi\)
0.282368 + 0.959306i \(0.408880\pi\)
\(48\) 8.80637 1.27109
\(49\) 0 0
\(50\) 1.98879 0.281257
\(51\) 9.60333 1.34473
\(52\) 11.9300 1.65439
\(53\) −9.97552 −1.37024 −0.685122 0.728429i \(-0.740251\pi\)
−0.685122 + 0.728429i \(0.740251\pi\)
\(54\) −0.256785 −0.0349440
\(55\) 20.6547 2.78508
\(56\) 0 0
\(57\) −0.0871269 −0.0115402
\(58\) −0.421374 −0.0553292
\(59\) 9.91129 1.29034 0.645170 0.764039i \(-0.276786\pi\)
0.645170 + 0.764039i \(0.276786\pi\)
\(60\) 17.9321 2.31503
\(61\) 0.382013 0.0489118 0.0244559 0.999701i \(-0.492215\pi\)
0.0244559 + 0.999701i \(0.492215\pi\)
\(62\) −0.794988 −0.100964
\(63\) 0 0
\(64\) −7.13223 −0.891528
\(65\) 23.8298 2.95573
\(66\) −2.35057 −0.289335
\(67\) 4.40596 0.538273 0.269137 0.963102i \(-0.413262\pi\)
0.269137 + 0.963102i \(0.413262\pi\)
\(68\) −8.09505 −0.981669
\(69\) −8.32853 −1.00264
\(70\) 0 0
\(71\) −10.3123 −1.22385 −0.611925 0.790916i \(-0.709604\pi\)
−0.611925 + 0.790916i \(0.709604\pi\)
\(72\) −1.84133 −0.217003
\(73\) 3.37816 0.395383 0.197692 0.980264i \(-0.436656\pi\)
0.197692 + 0.980264i \(0.436656\pi\)
\(74\) −1.78437 −0.207429
\(75\) 24.1735 2.79132
\(76\) 0.0734430 0.00842449
\(77\) 0 0
\(78\) −2.71191 −0.307063
\(79\) 9.73339 1.09509 0.547546 0.836776i \(-0.315562\pi\)
0.547546 + 0.836776i \(0.315562\pi\)
\(80\) −14.8278 −1.65780
\(81\) −10.3951 −1.15501
\(82\) 1.81715 0.200671
\(83\) −16.5257 −1.81393 −0.906964 0.421209i \(-0.861606\pi\)
−0.906964 + 0.421209i \(0.861606\pi\)
\(84\) 0 0
\(85\) −16.1697 −1.75385
\(86\) −2.19098 −0.236260
\(87\) −5.12177 −0.549111
\(88\) 3.99985 0.426386
\(89\) 2.53028 0.268209 0.134105 0.990967i \(-0.457184\pi\)
0.134105 + 0.990967i \(0.457184\pi\)
\(90\) −1.82197 −0.192053
\(91\) 0 0
\(92\) 7.02047 0.731935
\(93\) −9.66301 −1.00201
\(94\) 0.741870 0.0765181
\(95\) 0.146700 0.0150512
\(96\) 5.22500 0.533274
\(97\) 5.85331 0.594314 0.297157 0.954829i \(-0.403962\pi\)
0.297157 + 0.954829i \(0.403962\pi\)
\(98\) 0 0
\(99\) −12.7703 −1.28346
\(100\) −20.3769 −2.03769
\(101\) 1.78412 0.177527 0.0887633 0.996053i \(-0.471709\pi\)
0.0887633 + 0.996053i \(0.471709\pi\)
\(102\) 1.84016 0.182203
\(103\) 8.17058 0.805071 0.402536 0.915404i \(-0.368129\pi\)
0.402536 + 0.915404i \(0.368129\pi\)
\(104\) 4.61471 0.452510
\(105\) 0 0
\(106\) −1.91148 −0.185659
\(107\) 3.22757 0.312021 0.156010 0.987755i \(-0.450137\pi\)
0.156010 + 0.987755i \(0.450137\pi\)
\(108\) 2.63099 0.253167
\(109\) 16.9092 1.61961 0.809805 0.586700i \(-0.199573\pi\)
0.809805 + 0.586700i \(0.199573\pi\)
\(110\) 3.95779 0.377360
\(111\) −21.6889 −2.05861
\(112\) 0 0
\(113\) 5.58588 0.525476 0.262738 0.964867i \(-0.415375\pi\)
0.262738 + 0.964867i \(0.415375\pi\)
\(114\) −0.0166950 −0.00156363
\(115\) 14.0232 1.30767
\(116\) 4.31736 0.400857
\(117\) −14.7333 −1.36210
\(118\) 1.89917 0.174833
\(119\) 0 0
\(120\) 6.93644 0.633208
\(121\) 16.7403 1.52185
\(122\) 0.0732001 0.00662722
\(123\) 22.0873 1.99155
\(124\) 8.14536 0.731475
\(125\) −21.0943 −1.88673
\(126\) 0 0
\(127\) −1.00000 −0.0887357
\(128\) −5.85340 −0.517372
\(129\) −26.6312 −2.34475
\(130\) 4.56619 0.400481
\(131\) 15.7005 1.37176 0.685879 0.727716i \(-0.259418\pi\)
0.685879 + 0.727716i \(0.259418\pi\)
\(132\) 24.0837 2.09622
\(133\) 0 0
\(134\) 0.844254 0.0729325
\(135\) 5.25533 0.452307
\(136\) −3.13130 −0.268507
\(137\) 7.97414 0.681277 0.340639 0.940194i \(-0.389357\pi\)
0.340639 + 0.940194i \(0.389357\pi\)
\(138\) −1.59588 −0.135851
\(139\) 3.40873 0.289125 0.144562 0.989496i \(-0.453823\pi\)
0.144562 + 0.989496i \(0.453823\pi\)
\(140\) 0 0
\(141\) 9.01737 0.759399
\(142\) −1.97601 −0.165823
\(143\) 32.0046 2.67636
\(144\) 9.16762 0.763968
\(145\) 8.62381 0.716169
\(146\) 0.647310 0.0535718
\(147\) 0 0
\(148\) 18.2825 1.50281
\(149\) −2.34920 −0.192454 −0.0962271 0.995359i \(-0.530678\pi\)
−0.0962271 + 0.995359i \(0.530678\pi\)
\(150\) 4.63205 0.378205
\(151\) −3.42902 −0.279050 −0.139525 0.990219i \(-0.544558\pi\)
−0.139525 + 0.990219i \(0.544558\pi\)
\(152\) 0.0284090 0.00230427
\(153\) 9.99727 0.808231
\(154\) 0 0
\(155\) 16.2701 1.30685
\(156\) 27.7859 2.22465
\(157\) 19.8947 1.58777 0.793886 0.608067i \(-0.208055\pi\)
0.793886 + 0.608067i \(0.208055\pi\)
\(158\) 1.86508 0.148378
\(159\) −23.2338 −1.84256
\(160\) −8.79762 −0.695513
\(161\) 0 0
\(162\) −1.99187 −0.156496
\(163\) 6.68481 0.523595 0.261797 0.965123i \(-0.415685\pi\)
0.261797 + 0.965123i \(0.415685\pi\)
\(164\) −18.6183 −1.45385
\(165\) 48.1066 3.74509
\(166\) −3.16659 −0.245775
\(167\) −16.0276 −1.24025 −0.620126 0.784502i \(-0.712918\pi\)
−0.620126 + 0.784502i \(0.712918\pi\)
\(168\) 0 0
\(169\) 23.9244 1.84034
\(170\) −3.09837 −0.237634
\(171\) −0.0907010 −0.00693608
\(172\) 22.4486 1.71169
\(173\) 14.8583 1.12965 0.564827 0.825209i \(-0.308943\pi\)
0.564827 + 0.825209i \(0.308943\pi\)
\(174\) −0.981416 −0.0744009
\(175\) 0 0
\(176\) −19.9144 −1.50111
\(177\) 23.0842 1.73512
\(178\) 0.484844 0.0363406
\(179\) −10.4016 −0.777456 −0.388728 0.921353i \(-0.627085\pi\)
−0.388728 + 0.921353i \(0.627085\pi\)
\(180\) 18.6677 1.39141
\(181\) 6.10810 0.454011 0.227006 0.973893i \(-0.427106\pi\)
0.227006 + 0.973893i \(0.427106\pi\)
\(182\) 0 0
\(183\) 0.889740 0.0657715
\(184\) 2.71564 0.200199
\(185\) 36.5187 2.68491
\(186\) −1.85159 −0.135765
\(187\) −21.7166 −1.58808
\(188\) −7.60113 −0.554369
\(189\) 0 0
\(190\) 0.0281102 0.00203933
\(191\) 8.67944 0.628022 0.314011 0.949419i \(-0.398327\pi\)
0.314011 + 0.949419i \(0.398327\pi\)
\(192\) −16.6115 −1.19883
\(193\) −4.28438 −0.308396 −0.154198 0.988040i \(-0.549279\pi\)
−0.154198 + 0.988040i \(0.549279\pi\)
\(194\) 1.12159 0.0805255
\(195\) 55.5016 3.97455
\(196\) 0 0
\(197\) 20.8740 1.48721 0.743606 0.668618i \(-0.233114\pi\)
0.743606 + 0.668618i \(0.233114\pi\)
\(198\) −2.44700 −0.173900
\(199\) −23.3191 −1.65305 −0.826525 0.562900i \(-0.809686\pi\)
−0.826525 + 0.562900i \(0.809686\pi\)
\(200\) −7.88213 −0.557350
\(201\) 10.2618 0.723814
\(202\) 0.341867 0.0240537
\(203\) 0 0
\(204\) −18.8540 −1.32005
\(205\) −37.1897 −2.59744
\(206\) 1.56562 0.109082
\(207\) −8.67018 −0.602619
\(208\) −22.9757 −1.59308
\(209\) 0.197026 0.0136286
\(210\) 0 0
\(211\) −17.2768 −1.18938 −0.594691 0.803954i \(-0.702726\pi\)
−0.594691 + 0.803954i \(0.702726\pi\)
\(212\) 19.5848 1.34509
\(213\) −24.0183 −1.64571
\(214\) 0.618456 0.0422768
\(215\) 44.8404 3.05809
\(216\) 1.01771 0.0692465
\(217\) 0 0
\(218\) 3.24009 0.219446
\(219\) 7.86800 0.531670
\(220\) −40.5511 −2.73395
\(221\) −25.0550 −1.68538
\(222\) −4.15594 −0.278929
\(223\) −26.8248 −1.79632 −0.898162 0.439665i \(-0.855097\pi\)
−0.898162 + 0.439665i \(0.855097\pi\)
\(224\) 0 0
\(225\) 25.1652 1.67768
\(226\) 1.07035 0.0711985
\(227\) −18.2819 −1.21341 −0.606707 0.794925i \(-0.707510\pi\)
−0.606707 + 0.794925i \(0.707510\pi\)
\(228\) 0.171055 0.0113284
\(229\) −4.27326 −0.282385 −0.141192 0.989982i \(-0.545094\pi\)
−0.141192 + 0.989982i \(0.545094\pi\)
\(230\) 2.68708 0.177181
\(231\) 0 0
\(232\) 1.67003 0.109643
\(233\) −0.982041 −0.0643357 −0.0321678 0.999482i \(-0.510241\pi\)
−0.0321678 + 0.999482i \(0.510241\pi\)
\(234\) −2.82315 −0.184555
\(235\) −15.1830 −0.990433
\(236\) −19.4587 −1.26665
\(237\) 22.6699 1.47257
\(238\) 0 0
\(239\) −8.88724 −0.574868 −0.287434 0.957800i \(-0.592802\pi\)
−0.287434 + 0.957800i \(0.592802\pi\)
\(240\) −34.5351 −2.22923
\(241\) 27.4668 1.76929 0.884646 0.466264i \(-0.154400\pi\)
0.884646 + 0.466264i \(0.154400\pi\)
\(242\) 3.20772 0.206200
\(243\) −20.1907 −1.29523
\(244\) −0.750000 −0.0480138
\(245\) 0 0
\(246\) 4.23230 0.269841
\(247\) 0.227313 0.0144636
\(248\) 3.15076 0.200074
\(249\) −38.4896 −2.43918
\(250\) −4.04202 −0.255640
\(251\) 7.65870 0.483413 0.241706 0.970349i \(-0.422293\pi\)
0.241706 + 0.970349i \(0.422293\pi\)
\(252\) 0 0
\(253\) 18.8339 1.18407
\(254\) −0.191617 −0.0120231
\(255\) −37.6605 −2.35839
\(256\) 13.1428 0.821428
\(257\) 19.3455 1.20674 0.603369 0.797462i \(-0.293824\pi\)
0.603369 + 0.797462i \(0.293824\pi\)
\(258\) −5.10298 −0.317697
\(259\) 0 0
\(260\) −46.7847 −2.90146
\(261\) −5.33187 −0.330035
\(262\) 3.00847 0.185864
\(263\) 12.7413 0.785660 0.392830 0.919611i \(-0.371496\pi\)
0.392830 + 0.919611i \(0.371496\pi\)
\(264\) 9.31598 0.573359
\(265\) 39.1201 2.40313
\(266\) 0 0
\(267\) 5.89323 0.360660
\(268\) −8.65014 −0.528392
\(269\) −9.02960 −0.550545 −0.275272 0.961366i \(-0.588768\pi\)
−0.275272 + 0.961366i \(0.588768\pi\)
\(270\) 1.00701 0.0612846
\(271\) −16.6046 −1.00866 −0.504328 0.863512i \(-0.668260\pi\)
−0.504328 + 0.863512i \(0.668260\pi\)
\(272\) 15.5901 0.945289
\(273\) 0 0
\(274\) 1.52798 0.0923085
\(275\) −54.6652 −3.29644
\(276\) 16.3513 0.984230
\(277\) −7.79112 −0.468123 −0.234061 0.972222i \(-0.575202\pi\)
−0.234061 + 0.972222i \(0.575202\pi\)
\(278\) 0.653169 0.0391745
\(279\) −10.0594 −0.602240
\(280\) 0 0
\(281\) −8.94643 −0.533700 −0.266850 0.963738i \(-0.585983\pi\)
−0.266850 + 0.963738i \(0.585983\pi\)
\(282\) 1.72788 0.102894
\(283\) 11.5107 0.684243 0.342121 0.939656i \(-0.388855\pi\)
0.342121 + 0.939656i \(0.388855\pi\)
\(284\) 20.2460 1.20138
\(285\) 0.341678 0.0202392
\(286\) 6.13261 0.362629
\(287\) 0 0
\(288\) 5.43933 0.320516
\(289\) 0.000967701 0 5.69236e−5 0
\(290\) 1.65246 0.0970361
\(291\) 13.6328 0.799171
\(292\) −6.63228 −0.388125
\(293\) 4.41505 0.257930 0.128965 0.991649i \(-0.458834\pi\)
0.128965 + 0.991649i \(0.458834\pi\)
\(294\) 0 0
\(295\) −38.8682 −2.26299
\(296\) 7.07196 0.411049
\(297\) 7.05817 0.409557
\(298\) −0.450146 −0.0260763
\(299\) 21.7290 1.25662
\(300\) −47.4595 −2.74007
\(301\) 0 0
\(302\) −0.657057 −0.0378094
\(303\) 4.15536 0.238719
\(304\) −0.141442 −0.00811228
\(305\) −1.49811 −0.0857813
\(306\) 1.91564 0.109510
\(307\) −4.82910 −0.275611 −0.137806 0.990459i \(-0.544005\pi\)
−0.137806 + 0.990459i \(0.544005\pi\)
\(308\) 0 0
\(309\) 19.0300 1.08258
\(310\) 3.11763 0.177069
\(311\) 15.7618 0.893772 0.446886 0.894591i \(-0.352533\pi\)
0.446886 + 0.894591i \(0.352533\pi\)
\(312\) 10.7480 0.608488
\(313\) −13.2573 −0.749349 −0.374675 0.927156i \(-0.622246\pi\)
−0.374675 + 0.927156i \(0.622246\pi\)
\(314\) 3.81216 0.215132
\(315\) 0 0
\(316\) −19.1094 −1.07499
\(317\) 5.19102 0.291557 0.145778 0.989317i \(-0.453431\pi\)
0.145778 + 0.989317i \(0.453431\pi\)
\(318\) −4.45198 −0.249655
\(319\) 11.5822 0.648479
\(320\) 27.9698 1.56356
\(321\) 7.51727 0.419573
\(322\) 0 0
\(323\) −0.154243 −0.00858229
\(324\) 20.4085 1.13380
\(325\) −63.0684 −3.49841
\(326\) 1.28092 0.0709436
\(327\) 39.3830 2.17788
\(328\) −7.20189 −0.397658
\(329\) 0 0
\(330\) 9.21802 0.507435
\(331\) −11.1884 −0.614969 −0.307485 0.951553i \(-0.599487\pi\)
−0.307485 + 0.951553i \(0.599487\pi\)
\(332\) 32.4446 1.78063
\(333\) −22.5786 −1.23730
\(334\) −3.07115 −0.168046
\(335\) −17.2784 −0.944022
\(336\) 0 0
\(337\) 17.1501 0.934223 0.467111 0.884198i \(-0.345295\pi\)
0.467111 + 0.884198i \(0.345295\pi\)
\(338\) 4.58431 0.249354
\(339\) 13.0100 0.706605
\(340\) 31.7456 1.72165
\(341\) 21.8516 1.18333
\(342\) −0.0173798 −0.000939792 0
\(343\) 0 0
\(344\) 8.68348 0.468182
\(345\) 32.6612 1.75842
\(346\) 2.84709 0.153061
\(347\) 0.0256912 0.00137917 0.000689587 1.00000i \(-0.499780\pi\)
0.000689587 1.00000i \(0.499780\pi\)
\(348\) 10.0555 0.539031
\(349\) −23.9479 −1.28190 −0.640950 0.767583i \(-0.721459\pi\)
−0.640950 + 0.767583i \(0.721459\pi\)
\(350\) 0 0
\(351\) 8.14316 0.434650
\(352\) −11.8156 −0.629775
\(353\) 6.33830 0.337354 0.168677 0.985671i \(-0.446051\pi\)
0.168677 + 0.985671i \(0.446051\pi\)
\(354\) 4.42332 0.235097
\(355\) 40.4409 2.14638
\(356\) −4.96766 −0.263285
\(357\) 0 0
\(358\) −1.99313 −0.105340
\(359\) −10.9811 −0.579563 −0.289781 0.957093i \(-0.593583\pi\)
−0.289781 + 0.957093i \(0.593583\pi\)
\(360\) 7.22099 0.380579
\(361\) −18.9986 −0.999926
\(362\) 1.17041 0.0615155
\(363\) 38.9896 2.04642
\(364\) 0 0
\(365\) −13.2478 −0.693421
\(366\) 0.170489 0.00891160
\(367\) −21.0669 −1.09968 −0.549840 0.835270i \(-0.685311\pi\)
−0.549840 + 0.835270i \(0.685311\pi\)
\(368\) −13.5206 −0.704809
\(369\) 22.9934 1.19699
\(370\) 6.99759 0.363787
\(371\) 0 0
\(372\) 18.9712 0.983612
\(373\) 10.6031 0.549009 0.274505 0.961586i \(-0.411486\pi\)
0.274505 + 0.961586i \(0.411486\pi\)
\(374\) −4.16127 −0.215174
\(375\) −49.1304 −2.53708
\(376\) −2.94024 −0.151631
\(377\) 13.3626 0.688211
\(378\) 0 0
\(379\) −5.57679 −0.286460 −0.143230 0.989689i \(-0.545749\pi\)
−0.143230 + 0.989689i \(0.545749\pi\)
\(380\) −0.288015 −0.0147748
\(381\) −2.32908 −0.119322
\(382\) 1.66312 0.0850928
\(383\) −19.7345 −1.00838 −0.504192 0.863592i \(-0.668209\pi\)
−0.504192 + 0.863592i \(0.668209\pi\)
\(384\) −13.6330 −0.695708
\(385\) 0 0
\(386\) −0.820958 −0.0417857
\(387\) −27.7236 −1.40927
\(388\) −11.4917 −0.583403
\(389\) 16.1098 0.816799 0.408399 0.912803i \(-0.366087\pi\)
0.408399 + 0.912803i \(0.366087\pi\)
\(390\) 10.6350 0.538525
\(391\) −14.7442 −0.745645
\(392\) 0 0
\(393\) 36.5677 1.84460
\(394\) 3.99981 0.201507
\(395\) −38.1705 −1.92057
\(396\) 25.0717 1.25990
\(397\) 6.80662 0.341614 0.170807 0.985304i \(-0.445362\pi\)
0.170807 + 0.985304i \(0.445362\pi\)
\(398\) −4.46833 −0.223977
\(399\) 0 0
\(400\) 39.2435 1.96217
\(401\) −17.1989 −0.858873 −0.429437 0.903097i \(-0.641288\pi\)
−0.429437 + 0.903097i \(0.641288\pi\)
\(402\) 1.96634 0.0980720
\(403\) 25.2107 1.25583
\(404\) −3.50273 −0.174267
\(405\) 40.7654 2.02565
\(406\) 0 0
\(407\) 49.0464 2.43114
\(408\) −7.29306 −0.361060
\(409\) −3.13066 −0.154801 −0.0774005 0.997000i \(-0.524662\pi\)
−0.0774005 + 0.997000i \(0.524662\pi\)
\(410\) −7.12615 −0.351936
\(411\) 18.5724 0.916111
\(412\) −16.0412 −0.790291
\(413\) 0 0
\(414\) −1.66135 −0.0816509
\(415\) 64.8071 3.18126
\(416\) −13.6320 −0.668362
\(417\) 7.93922 0.388785
\(418\) 0.0377534 0.00184658
\(419\) −18.8437 −0.920576 −0.460288 0.887770i \(-0.652254\pi\)
−0.460288 + 0.887770i \(0.652254\pi\)
\(420\) 0 0
\(421\) −13.1531 −0.641045 −0.320523 0.947241i \(-0.603859\pi\)
−0.320523 + 0.947241i \(0.603859\pi\)
\(422\) −3.31052 −0.161153
\(423\) 9.38727 0.456425
\(424\) 7.57572 0.367909
\(425\) 42.7949 2.07586
\(426\) −4.60230 −0.222982
\(427\) 0 0
\(428\) −6.33663 −0.306293
\(429\) 74.5414 3.59889
\(430\) 8.59217 0.414351
\(431\) −38.5459 −1.85669 −0.928346 0.371716i \(-0.878769\pi\)
−0.928346 + 0.371716i \(0.878769\pi\)
\(432\) −5.06697 −0.243785
\(433\) −27.5890 −1.32584 −0.662922 0.748689i \(-0.730684\pi\)
−0.662922 + 0.748689i \(0.730684\pi\)
\(434\) 0 0
\(435\) 20.0856 0.963029
\(436\) −33.1976 −1.58988
\(437\) 0.133768 0.00639897
\(438\) 1.50764 0.0720378
\(439\) 18.5614 0.885887 0.442943 0.896550i \(-0.353934\pi\)
0.442943 + 0.896550i \(0.353934\pi\)
\(440\) −15.6858 −0.747793
\(441\) 0 0
\(442\) −4.80094 −0.228358
\(443\) 4.02148 0.191066 0.0955332 0.995426i \(-0.469544\pi\)
0.0955332 + 0.995426i \(0.469544\pi\)
\(444\) 42.5814 2.02082
\(445\) −9.92277 −0.470384
\(446\) −5.14008 −0.243390
\(447\) −5.47149 −0.258793
\(448\) 0 0
\(449\) −25.0013 −1.17989 −0.589943 0.807445i \(-0.700850\pi\)
−0.589943 + 0.807445i \(0.700850\pi\)
\(450\) 4.82206 0.227314
\(451\) −49.9475 −2.35194
\(452\) −10.9667 −0.515829
\(453\) −7.98647 −0.375237
\(454\) −3.50312 −0.164410
\(455\) 0 0
\(456\) 0.0661669 0.00309855
\(457\) −10.2474 −0.479354 −0.239677 0.970853i \(-0.577042\pi\)
−0.239677 + 0.970853i \(0.577042\pi\)
\(458\) −0.818826 −0.0382612
\(459\) −5.52552 −0.257909
\(460\) −27.5315 −1.28366
\(461\) −10.5197 −0.489951 −0.244975 0.969529i \(-0.578780\pi\)
−0.244975 + 0.969529i \(0.578780\pi\)
\(462\) 0 0
\(463\) 25.2692 1.17436 0.587179 0.809457i \(-0.300238\pi\)
0.587179 + 0.809457i \(0.300238\pi\)
\(464\) −8.31471 −0.386001
\(465\) 37.8945 1.75732
\(466\) −0.188175 −0.00871705
\(467\) −4.08966 −0.189247 −0.0946234 0.995513i \(-0.530165\pi\)
−0.0946234 + 0.995513i \(0.530165\pi\)
\(468\) 28.9257 1.33709
\(469\) 0 0
\(470\) −2.90932 −0.134197
\(471\) 46.3364 2.13507
\(472\) −7.52694 −0.346455
\(473\) 60.2229 2.76905
\(474\) 4.34392 0.199523
\(475\) −0.388260 −0.0178146
\(476\) 0 0
\(477\) −24.1869 −1.10744
\(478\) −1.70294 −0.0778908
\(479\) 36.7606 1.67963 0.839817 0.542869i \(-0.182662\pi\)
0.839817 + 0.542869i \(0.182662\pi\)
\(480\) −20.4904 −0.935254
\(481\) 56.5859 2.58010
\(482\) 5.26309 0.239727
\(483\) 0 0
\(484\) −32.8660 −1.49391
\(485\) −22.9544 −1.04230
\(486\) −3.86887 −0.175495
\(487\) −33.7554 −1.52960 −0.764802 0.644265i \(-0.777163\pi\)
−0.764802 + 0.644265i \(0.777163\pi\)
\(488\) −0.290113 −0.0131328
\(489\) 15.5695 0.704076
\(490\) 0 0
\(491\) 2.85086 0.128657 0.0643286 0.997929i \(-0.479509\pi\)
0.0643286 + 0.997929i \(0.479509\pi\)
\(492\) −43.3637 −1.95499
\(493\) −9.06718 −0.408365
\(494\) 0.0435569 0.00195972
\(495\) 50.0800 2.25093
\(496\) −15.6870 −0.704366
\(497\) 0 0
\(498\) −7.37525 −0.330493
\(499\) −14.9560 −0.669524 −0.334762 0.942303i \(-0.608656\pi\)
−0.334762 + 0.942303i \(0.608656\pi\)
\(500\) 41.4141 1.85209
\(501\) −37.3296 −1.66776
\(502\) 1.46753 0.0654992
\(503\) 8.56487 0.381889 0.190944 0.981601i \(-0.438845\pi\)
0.190944 + 0.981601i \(0.438845\pi\)
\(504\) 0 0
\(505\) −6.99661 −0.311345
\(506\) 3.60888 0.160434
\(507\) 55.7219 2.47470
\(508\) 1.96328 0.0871066
\(509\) −24.3428 −1.07898 −0.539489 0.841993i \(-0.681382\pi\)
−0.539489 + 0.841993i \(0.681382\pi\)
\(510\) −7.21637 −0.319546
\(511\) 0 0
\(512\) 14.2252 0.628670
\(513\) 0.0501307 0.00221333
\(514\) 3.70692 0.163505
\(515\) −32.0418 −1.41193
\(516\) 52.2846 2.30170
\(517\) −20.3916 −0.896820
\(518\) 0 0
\(519\) 34.6061 1.51904
\(520\) −18.0971 −0.793610
\(521\) 33.9526 1.48749 0.743745 0.668464i \(-0.233048\pi\)
0.743745 + 0.668464i \(0.233048\pi\)
\(522\) −1.02167 −0.0447175
\(523\) −33.7243 −1.47466 −0.737331 0.675532i \(-0.763914\pi\)
−0.737331 + 0.675532i \(0.763914\pi\)
\(524\) −30.8245 −1.34657
\(525\) 0 0
\(526\) 2.44144 0.106452
\(527\) −17.1066 −0.745176
\(528\) −46.3823 −2.01853
\(529\) −10.2131 −0.444046
\(530\) 7.49605 0.325608
\(531\) 24.0312 1.04286
\(532\) 0 0
\(533\) −57.6255 −2.49604
\(534\) 1.12924 0.0488670
\(535\) −12.6573 −0.547221
\(536\) −3.34602 −0.144526
\(537\) −24.2263 −1.04544
\(538\) −1.73022 −0.0745951
\(539\) 0 0
\(540\) −10.3177 −0.444004
\(541\) −22.8612 −0.982879 −0.491439 0.870912i \(-0.663529\pi\)
−0.491439 + 0.870912i \(0.663529\pi\)
\(542\) −3.18171 −0.136666
\(543\) 14.2263 0.610508
\(544\) 9.24992 0.396587
\(545\) −66.3113 −2.84046
\(546\) 0 0
\(547\) −30.4179 −1.30058 −0.650288 0.759688i \(-0.725352\pi\)
−0.650288 + 0.759688i \(0.725352\pi\)
\(548\) −15.6555 −0.668770
\(549\) 0.926239 0.0395309
\(550\) −10.4748 −0.446645
\(551\) 0.0822627 0.00350451
\(552\) 6.32494 0.269207
\(553\) 0 0
\(554\) −1.49291 −0.0634275
\(555\) 85.0551 3.61039
\(556\) −6.69230 −0.283817
\(557\) 24.3671 1.03247 0.516233 0.856448i \(-0.327334\pi\)
0.516233 + 0.856448i \(0.327334\pi\)
\(558\) −1.92755 −0.0815995
\(559\) 69.4804 2.93871
\(560\) 0 0
\(561\) −50.5798 −2.13548
\(562\) −1.71428 −0.0723127
\(563\) 39.1345 1.64932 0.824661 0.565627i \(-0.191366\pi\)
0.824661 + 0.565627i \(0.191366\pi\)
\(564\) −17.7036 −0.745458
\(565\) −21.9056 −0.921577
\(566\) 2.20565 0.0927103
\(567\) 0 0
\(568\) 7.83151 0.328603
\(569\) 41.9315 1.75786 0.878930 0.476951i \(-0.158258\pi\)
0.878930 + 0.476951i \(0.158258\pi\)
\(570\) 0.0654711 0.00274228
\(571\) 1.63409 0.0683845 0.0341923 0.999415i \(-0.489114\pi\)
0.0341923 + 0.999415i \(0.489114\pi\)
\(572\) −62.8341 −2.62723
\(573\) 20.2151 0.844499
\(574\) 0 0
\(575\) −37.1141 −1.54776
\(576\) −17.2930 −0.720540
\(577\) 3.28569 0.136785 0.0683925 0.997658i \(-0.478213\pi\)
0.0683925 + 0.997658i \(0.478213\pi\)
\(578\) 0.000185428 0 7.71277e−6 0
\(579\) −9.97867 −0.414700
\(580\) −16.9310 −0.703021
\(581\) 0 0
\(582\) 2.61228 0.108282
\(583\) 52.5402 2.17599
\(584\) −2.56547 −0.106160
\(585\) 57.7784 2.38884
\(586\) 0.845997 0.0349478
\(587\) 37.3079 1.53986 0.769931 0.638127i \(-0.220291\pi\)
0.769931 + 0.638127i \(0.220291\pi\)
\(588\) 0 0
\(589\) 0.155201 0.00639495
\(590\) −7.44779 −0.306621
\(591\) 48.6173 1.99985
\(592\) −35.2098 −1.44711
\(593\) 10.6325 0.436626 0.218313 0.975879i \(-0.429945\pi\)
0.218313 + 0.975879i \(0.429945\pi\)
\(594\) 1.35246 0.0554922
\(595\) 0 0
\(596\) 4.61215 0.188921
\(597\) −54.3122 −2.22285
\(598\) 4.16364 0.170264
\(599\) 42.0174 1.71678 0.858391 0.512995i \(-0.171464\pi\)
0.858391 + 0.512995i \(0.171464\pi\)
\(600\) −18.3581 −0.749467
\(601\) 16.1101 0.657144 0.328572 0.944479i \(-0.393433\pi\)
0.328572 + 0.944479i \(0.393433\pi\)
\(602\) 0 0
\(603\) 10.6828 0.435037
\(604\) 6.73214 0.273927
\(605\) −65.6489 −2.66901
\(606\) 0.796236 0.0323449
\(607\) 14.1660 0.574979 0.287489 0.957784i \(-0.407179\pi\)
0.287489 + 0.957784i \(0.407179\pi\)
\(608\) −0.0839207 −0.00340343
\(609\) 0 0
\(610\) −0.287062 −0.0116228
\(611\) −23.5262 −0.951768
\(612\) −19.6275 −0.793393
\(613\) 17.1420 0.692361 0.346180 0.938168i \(-0.387479\pi\)
0.346180 + 0.938168i \(0.387479\pi\)
\(614\) −0.925335 −0.0373435
\(615\) −86.6178 −3.49277
\(616\) 0 0
\(617\) 30.3241 1.22080 0.610401 0.792092i \(-0.291008\pi\)
0.610401 + 0.792092i \(0.291008\pi\)
\(618\) 3.64645 0.146682
\(619\) 9.91575 0.398547 0.199274 0.979944i \(-0.436142\pi\)
0.199274 + 0.979944i \(0.436142\pi\)
\(620\) −31.9429 −1.28286
\(621\) 4.79203 0.192298
\(622\) 3.02023 0.121100
\(623\) 0 0
\(624\) −53.5123 −2.14221
\(625\) 30.8286 1.23314
\(626\) −2.54033 −0.101532
\(627\) 0.458890 0.0183263
\(628\) −39.0590 −1.55862
\(629\) −38.3962 −1.53096
\(630\) 0 0
\(631\) −4.94297 −0.196777 −0.0983884 0.995148i \(-0.531369\pi\)
−0.0983884 + 0.995148i \(0.531369\pi\)
\(632\) −7.39183 −0.294031
\(633\) −40.2390 −1.59936
\(634\) 0.994685 0.0395040
\(635\) 3.92161 0.155624
\(636\) 45.6146 1.80873
\(637\) 0 0
\(638\) 2.21934 0.0878645
\(639\) −25.0035 −0.989125
\(640\) 22.9547 0.907365
\(641\) 8.92412 0.352481 0.176241 0.984347i \(-0.443606\pi\)
0.176241 + 0.984347i \(0.443606\pi\)
\(642\) 1.44043 0.0568494
\(643\) −8.44158 −0.332903 −0.166452 0.986050i \(-0.553231\pi\)
−0.166452 + 0.986050i \(0.553231\pi\)
\(644\) 0 0
\(645\) 104.437 4.11220
\(646\) −0.0295554 −0.00116284
\(647\) −50.2006 −1.97359 −0.986795 0.161976i \(-0.948213\pi\)
−0.986795 + 0.161976i \(0.948213\pi\)
\(648\) 7.89433 0.310119
\(649\) −52.2019 −2.04910
\(650\) −12.0850 −0.474011
\(651\) 0 0
\(652\) −13.1242 −0.513982
\(653\) 40.5316 1.58612 0.793062 0.609141i \(-0.208486\pi\)
0.793062 + 0.609141i \(0.208486\pi\)
\(654\) 7.54643 0.295089
\(655\) −61.5711 −2.40578
\(656\) 35.8567 1.39997
\(657\) 8.19076 0.319552
\(658\) 0 0
\(659\) 41.9115 1.63264 0.816320 0.577600i \(-0.196011\pi\)
0.816320 + 0.577600i \(0.196011\pi\)
\(660\) −94.4468 −3.67634
\(661\) −27.5407 −1.07121 −0.535605 0.844469i \(-0.679916\pi\)
−0.535605 + 0.844469i \(0.679916\pi\)
\(662\) −2.14388 −0.0833242
\(663\) −58.3550 −2.26632
\(664\) 12.5501 0.487038
\(665\) 0 0
\(666\) −4.32642 −0.167646
\(667\) 7.86355 0.304478
\(668\) 31.4667 1.21748
\(669\) −62.4772 −2.41551
\(670\) −3.31083 −0.127909
\(671\) −2.01203 −0.0776735
\(672\) 0 0
\(673\) 6.81901 0.262853 0.131427 0.991326i \(-0.458044\pi\)
0.131427 + 0.991326i \(0.458044\pi\)
\(674\) 3.28623 0.126581
\(675\) −13.9089 −0.535352
\(676\) −46.9704 −1.80655
\(677\) 6.66448 0.256137 0.128068 0.991765i \(-0.459122\pi\)
0.128068 + 0.991765i \(0.459122\pi\)
\(678\) 2.49293 0.0957403
\(679\) 0 0
\(680\) 12.2797 0.470906
\(681\) −42.5801 −1.63167
\(682\) 4.18713 0.160333
\(683\) 23.2496 0.889623 0.444811 0.895624i \(-0.353271\pi\)
0.444811 + 0.895624i \(0.353271\pi\)
\(684\) 0.178072 0.00680874
\(685\) −31.2715 −1.19482
\(686\) 0 0
\(687\) −9.95276 −0.379722
\(688\) −43.2332 −1.64825
\(689\) 60.6167 2.30931
\(690\) 6.25843 0.238254
\(691\) −7.85702 −0.298895 −0.149447 0.988770i \(-0.547749\pi\)
−0.149447 + 0.988770i \(0.547749\pi\)
\(692\) −29.1710 −1.10892
\(693\) 0 0
\(694\) 0.00492285 0.000186869 0
\(695\) −13.3677 −0.507066
\(696\) 3.88963 0.147436
\(697\) 39.1016 1.48108
\(698\) −4.58881 −0.173689
\(699\) −2.28725 −0.0865119
\(700\) 0 0
\(701\) −0.243911 −0.00921239 −0.00460619 0.999989i \(-0.501466\pi\)
−0.00460619 + 0.999989i \(0.501466\pi\)
\(702\) 1.56036 0.0588922
\(703\) 0.348353 0.0131384
\(704\) 37.5648 1.41578
\(705\) −35.3626 −1.33183
\(706\) 1.21452 0.0457092
\(707\) 0 0
\(708\) −45.3208 −1.70326
\(709\) 27.6428 1.03815 0.519073 0.854730i \(-0.326277\pi\)
0.519073 + 0.854730i \(0.326277\pi\)
\(710\) 7.74915 0.290820
\(711\) 23.5998 0.885062
\(712\) −1.92157 −0.0720140
\(713\) 14.8358 0.555605
\(714\) 0 0
\(715\) −125.509 −4.69379
\(716\) 20.4214 0.763183
\(717\) −20.6991 −0.773023
\(718\) −2.10417 −0.0785269
\(719\) −13.2320 −0.493470 −0.246735 0.969083i \(-0.579358\pi\)
−0.246735 + 0.969083i \(0.579358\pi\)
\(720\) −35.9518 −1.33984
\(721\) 0 0
\(722\) −3.64045 −0.135483
\(723\) 63.9724 2.37916
\(724\) −11.9919 −0.445677
\(725\) −22.8239 −0.847660
\(726\) 7.47105 0.277277
\(727\) 19.0077 0.704958 0.352479 0.935820i \(-0.385339\pi\)
0.352479 + 0.935820i \(0.385339\pi\)
\(728\) 0 0
\(729\) −15.8405 −0.586687
\(730\) −2.53850 −0.0939540
\(731\) −47.1458 −1.74375
\(732\) −1.74681 −0.0645640
\(733\) 49.8815 1.84242 0.921208 0.389071i \(-0.127204\pi\)
0.921208 + 0.389071i \(0.127204\pi\)
\(734\) −4.03676 −0.148999
\(735\) 0 0
\(736\) −8.02204 −0.295696
\(737\) −23.2058 −0.854796
\(738\) 4.40591 0.162184
\(739\) −29.8966 −1.09976 −0.549882 0.835242i \(-0.685327\pi\)
−0.549882 + 0.835242i \(0.685327\pi\)
\(740\) −71.6966 −2.63562
\(741\) 0.529431 0.0194491
\(742\) 0 0
\(743\) 7.33058 0.268933 0.134467 0.990918i \(-0.457068\pi\)
0.134467 + 0.990918i \(0.457068\pi\)
\(744\) 7.33838 0.269038
\(745\) 9.21265 0.337525
\(746\) 2.03174 0.0743871
\(747\) −40.0685 −1.46603
\(748\) 42.6359 1.55892
\(749\) 0 0
\(750\) −9.41419 −0.343758
\(751\) −37.8737 −1.38203 −0.691015 0.722840i \(-0.742836\pi\)
−0.691015 + 0.722840i \(0.742836\pi\)
\(752\) 14.6389 0.533824
\(753\) 17.8377 0.650043
\(754\) 2.56050 0.0932480
\(755\) 13.4473 0.489396
\(756\) 0 0
\(757\) 22.7557 0.827070 0.413535 0.910488i \(-0.364294\pi\)
0.413535 + 0.910488i \(0.364294\pi\)
\(758\) −1.06860 −0.0388135
\(759\) 43.8656 1.59222
\(760\) −0.111409 −0.00404122
\(761\) −7.34081 −0.266104 −0.133052 0.991109i \(-0.542478\pi\)
−0.133052 + 0.991109i \(0.542478\pi\)
\(762\) −0.446291 −0.0161674
\(763\) 0 0
\(764\) −17.0402 −0.616493
\(765\) −39.2053 −1.41747
\(766\) −3.78145 −0.136629
\(767\) −60.2264 −2.17465
\(768\) 30.6108 1.10457
\(769\) 39.6967 1.43150 0.715749 0.698358i \(-0.246085\pi\)
0.715749 + 0.698358i \(0.246085\pi\)
\(770\) 0 0
\(771\) 45.0573 1.62270
\(772\) 8.41145 0.302735
\(773\) 9.92476 0.356969 0.178484 0.983943i \(-0.442881\pi\)
0.178484 + 0.983943i \(0.442881\pi\)
\(774\) −5.31231 −0.190947
\(775\) −43.0609 −1.54679
\(776\) −4.44518 −0.159573
\(777\) 0 0
\(778\) 3.08690 0.110671
\(779\) −0.354753 −0.0127103
\(780\) −108.965 −3.90159
\(781\) 54.3141 1.94351
\(782\) −2.82523 −0.101030
\(783\) 2.94694 0.105315
\(784\) 0 0
\(785\) −78.0193 −2.78463
\(786\) 7.00698 0.249931
\(787\) −17.2831 −0.616077 −0.308038 0.951374i \(-0.599673\pi\)
−0.308038 + 0.951374i \(0.599673\pi\)
\(788\) −40.9816 −1.45991
\(789\) 29.6754 1.05647
\(790\) −7.31410 −0.260224
\(791\) 0 0
\(792\) 9.69814 0.344608
\(793\) −2.32132 −0.0824325
\(794\) 1.30426 0.0462865
\(795\) 91.1139 3.23148
\(796\) 45.7821 1.62270
\(797\) −3.27024 −0.115838 −0.0579190 0.998321i \(-0.518447\pi\)
−0.0579190 + 0.998321i \(0.518447\pi\)
\(798\) 0 0
\(799\) 15.9636 0.564753
\(800\) 23.2839 0.823212
\(801\) 6.13498 0.216769
\(802\) −3.29560 −0.116372
\(803\) −17.7924 −0.627881
\(804\) −20.1469 −0.710526
\(805\) 0 0
\(806\) 4.83078 0.170157
\(807\) −21.0307 −0.740315
\(808\) −1.35491 −0.0476657
\(809\) −45.7392 −1.60810 −0.804052 0.594558i \(-0.797327\pi\)
−0.804052 + 0.594558i \(0.797327\pi\)
\(810\) 7.81132 0.274462
\(811\) −20.1033 −0.705923 −0.352962 0.935638i \(-0.614825\pi\)
−0.352962 + 0.935638i \(0.614825\pi\)
\(812\) 0 0
\(813\) −38.6734 −1.35633
\(814\) 9.39811 0.329403
\(815\) −26.2152 −0.918278
\(816\) 36.3106 1.27113
\(817\) 0.427734 0.0149645
\(818\) −0.599886 −0.0209745
\(819\) 0 0
\(820\) 73.0138 2.54975
\(821\) −19.1738 −0.669170 −0.334585 0.942366i \(-0.608596\pi\)
−0.334585 + 0.942366i \(0.608596\pi\)
\(822\) 3.55879 0.124127
\(823\) 8.70002 0.303264 0.151632 0.988437i \(-0.451547\pi\)
0.151632 + 0.988437i \(0.451547\pi\)
\(824\) −6.20499 −0.216161
\(825\) −127.320 −4.43271
\(826\) 0 0
\(827\) 11.0112 0.382898 0.191449 0.981503i \(-0.438681\pi\)
0.191449 + 0.981503i \(0.438681\pi\)
\(828\) 17.0220 0.591556
\(829\) −40.0764 −1.39191 −0.695955 0.718086i \(-0.745019\pi\)
−0.695955 + 0.718086i \(0.745019\pi\)
\(830\) 12.4181 0.431039
\(831\) −18.1462 −0.629483
\(832\) 43.3393 1.50252
\(833\) 0 0
\(834\) 1.52128 0.0526778
\(835\) 62.8539 2.17515
\(836\) −0.386818 −0.0133784
\(837\) 5.55986 0.192177
\(838\) −3.61077 −0.124732
\(839\) 5.37182 0.185456 0.0927279 0.995691i \(-0.470441\pi\)
0.0927279 + 0.995691i \(0.470441\pi\)
\(840\) 0 0
\(841\) −24.1642 −0.833247
\(842\) −2.52036 −0.0868574
\(843\) −20.8370 −0.717664
\(844\) 33.9192 1.16755
\(845\) −93.8221 −3.22758
\(846\) 1.79876 0.0618425
\(847\) 0 0
\(848\) −37.7179 −1.29524
\(849\) 26.8095 0.920099
\(850\) 8.20021 0.281265
\(851\) 33.2993 1.14149
\(852\) 47.1547 1.61549
\(853\) −37.5087 −1.28427 −0.642137 0.766590i \(-0.721952\pi\)
−0.642137 + 0.766590i \(0.721952\pi\)
\(854\) 0 0
\(855\) 0.355694 0.0121645
\(856\) −2.45111 −0.0837774
\(857\) −17.2234 −0.588339 −0.294169 0.955753i \(-0.595043\pi\)
−0.294169 + 0.955753i \(0.595043\pi\)
\(858\) 14.2834 0.487626
\(859\) 26.0045 0.887262 0.443631 0.896210i \(-0.353690\pi\)
0.443631 + 0.896210i \(0.353690\pi\)
\(860\) −88.0345 −3.00195
\(861\) 0 0
\(862\) −7.38604 −0.251569
\(863\) 32.4210 1.10362 0.551812 0.833969i \(-0.313937\pi\)
0.551812 + 0.833969i \(0.313937\pi\)
\(864\) −3.00634 −0.102278
\(865\) −58.2683 −1.98118
\(866\) −5.28651 −0.179643
\(867\) 0.00225386 7.65450e−5 0
\(868\) 0 0
\(869\) −51.2649 −1.73904
\(870\) 3.84873 0.130484
\(871\) −26.7730 −0.907169
\(872\) −12.8414 −0.434864
\(873\) 14.1921 0.480329
\(874\) 0.0256321 0.000867018 0
\(875\) 0 0
\(876\) −15.4471 −0.521910
\(877\) 31.8805 1.07653 0.538264 0.842776i \(-0.319080\pi\)
0.538264 + 0.842776i \(0.319080\pi\)
\(878\) 3.55667 0.120032
\(879\) 10.2830 0.346838
\(880\) 78.0965 2.63263
\(881\) 10.9692 0.369563 0.184782 0.982780i \(-0.440842\pi\)
0.184782 + 0.982780i \(0.440842\pi\)
\(882\) 0 0
\(883\) −43.5368 −1.46513 −0.732564 0.680698i \(-0.761677\pi\)
−0.732564 + 0.680698i \(0.761677\pi\)
\(884\) 49.1900 1.65444
\(885\) −90.5272 −3.04304
\(886\) 0.770582 0.0258882
\(887\) 12.9767 0.435715 0.217857 0.975981i \(-0.430093\pi\)
0.217857 + 0.975981i \(0.430093\pi\)
\(888\) 16.4712 0.552736
\(889\) 0 0
\(890\) −1.90137 −0.0637339
\(891\) 54.7499 1.83419
\(892\) 52.6647 1.76335
\(893\) −0.144831 −0.00484660
\(894\) −1.04843 −0.0350647
\(895\) 40.7912 1.36350
\(896\) 0 0
\(897\) 50.6087 1.68977
\(898\) −4.79067 −0.159867
\(899\) 9.12353 0.304287
\(900\) −49.4063 −1.64688
\(901\) −41.1313 −1.37028
\(902\) −9.57077 −0.318672
\(903\) 0 0
\(904\) −4.24209 −0.141090
\(905\) −23.9536 −0.796243
\(906\) −1.53034 −0.0508421
\(907\) −2.23113 −0.0740833 −0.0370417 0.999314i \(-0.511793\pi\)
−0.0370417 + 0.999314i \(0.511793\pi\)
\(908\) 35.8926 1.19114
\(909\) 4.32582 0.143478
\(910\) 0 0
\(911\) 29.4118 0.974457 0.487228 0.873275i \(-0.338008\pi\)
0.487228 + 0.873275i \(0.338008\pi\)
\(912\) −0.329431 −0.0109086
\(913\) 87.0391 2.88058
\(914\) −1.96358 −0.0649493
\(915\) −3.48921 −0.115350
\(916\) 8.38961 0.277201
\(917\) 0 0
\(918\) −1.05878 −0.0349450
\(919\) 3.92759 0.129559 0.0647796 0.997900i \(-0.479366\pi\)
0.0647796 + 0.997900i \(0.479366\pi\)
\(920\) −10.6497 −0.351109
\(921\) −11.2474 −0.370613
\(922\) −2.01575 −0.0663851
\(923\) 62.6634 2.06259
\(924\) 0 0
\(925\) −96.6511 −3.17787
\(926\) 4.84199 0.159118
\(927\) 19.8106 0.650665
\(928\) −4.93329 −0.161943
\(929\) −26.5871 −0.872293 −0.436147 0.899876i \(-0.643657\pi\)
−0.436147 + 0.899876i \(0.643657\pi\)
\(930\) 7.26121 0.238105
\(931\) 0 0
\(932\) 1.92802 0.0631546
\(933\) 36.7106 1.20185
\(934\) −0.783646 −0.0256417
\(935\) 85.1641 2.78516
\(936\) 11.1889 0.365722
\(937\) 46.5758 1.52156 0.760782 0.649007i \(-0.224815\pi\)
0.760782 + 0.649007i \(0.224815\pi\)
\(938\) 0 0
\(939\) −30.8774 −1.00765
\(940\) 29.8086 0.972250
\(941\) 3.71923 0.121243 0.0606217 0.998161i \(-0.480692\pi\)
0.0606217 + 0.998161i \(0.480692\pi\)
\(942\) 8.87883 0.289288
\(943\) −33.9111 −1.10430
\(944\) 37.4751 1.21971
\(945\) 0 0
\(946\) 11.5397 0.375188
\(947\) −1.23688 −0.0401934 −0.0200967 0.999798i \(-0.506397\pi\)
−0.0200967 + 0.999798i \(0.506397\pi\)
\(948\) −44.5074 −1.44553
\(949\) −20.5275 −0.666351
\(950\) −0.0743971 −0.00241376
\(951\) 12.0903 0.392055
\(952\) 0 0
\(953\) −52.2025 −1.69101 −0.845503 0.533971i \(-0.820699\pi\)
−0.845503 + 0.533971i \(0.820699\pi\)
\(954\) −4.63461 −0.150051
\(955\) −34.0373 −1.10142
\(956\) 17.4482 0.564314
\(957\) 26.9759 0.872007
\(958\) 7.04394 0.227579
\(959\) 0 0
\(960\) 65.1439 2.10251
\(961\) −13.7871 −0.444744
\(962\) 10.8428 0.349586
\(963\) 7.82564 0.252178
\(964\) −53.9251 −1.73681
\(965\) 16.8017 0.540864
\(966\) 0 0
\(967\) 25.3043 0.813731 0.406866 0.913488i \(-0.366622\pi\)
0.406866 + 0.913488i \(0.366622\pi\)
\(968\) −12.7131 −0.408615
\(969\) −0.359244 −0.0115406
\(970\) −4.39844 −0.141225
\(971\) −4.96055 −0.159192 −0.0795958 0.996827i \(-0.525363\pi\)
−0.0795958 + 0.996827i \(0.525363\pi\)
\(972\) 39.6400 1.27145
\(973\) 0 0
\(974\) −6.46810 −0.207251
\(975\) −146.892 −4.70430
\(976\) 1.44441 0.0462344
\(977\) −3.61365 −0.115611 −0.0578055 0.998328i \(-0.518410\pi\)
−0.0578055 + 0.998328i \(0.518410\pi\)
\(978\) 2.98337 0.0953976
\(979\) −13.3268 −0.425925
\(980\) 0 0
\(981\) 40.9985 1.30898
\(982\) 0.546271 0.0174322
\(983\) 51.8644 1.65422 0.827109 0.562042i \(-0.189984\pi\)
0.827109 + 0.562042i \(0.189984\pi\)
\(984\) −16.7738 −0.534729
\(985\) −81.8597 −2.60827
\(986\) −1.73742 −0.0553308
\(987\) 0 0
\(988\) −0.446280 −0.0141981
\(989\) 40.8874 1.30014
\(990\) 9.59615 0.304986
\(991\) 6.60298 0.209751 0.104875 0.994485i \(-0.466556\pi\)
0.104875 + 0.994485i \(0.466556\pi\)
\(992\) −9.30741 −0.295511
\(993\) −26.0587 −0.826947
\(994\) 0 0
\(995\) 91.4485 2.89911
\(996\) 75.5660 2.39440
\(997\) 0.888839 0.0281498 0.0140749 0.999901i \(-0.495520\pi\)
0.0140749 + 0.999901i \(0.495520\pi\)
\(998\) −2.86582 −0.0907160
\(999\) 12.4792 0.394826
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6223.2.a.k.1.10 16
7.6 odd 2 889.2.a.c.1.10 16
21.20 even 2 8001.2.a.t.1.7 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
889.2.a.c.1.10 16 7.6 odd 2
6223.2.a.k.1.10 16 1.1 even 1 trivial
8001.2.a.t.1.7 16 21.20 even 2