Properties

Label 889.2.a.c.1.10
Level $889$
Weight $2$
Character 889.1
Self dual yes
Analytic conductor $7.099$
Analytic rank $1$
Dimension $16$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [889,2,Mod(1,889)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(889, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("889.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 889 = 7 \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 889.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.09870073969\)
Analytic rank: \(1\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} - 20 x^{14} + 38 x^{13} + 155 x^{12} - 275 x^{11} - 593 x^{10} + 957 x^{9} + 1177 x^{8} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Root \(-0.191617\) of defining polynomial
Character \(\chi\) \(=\) 889.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.191617 q^{2} -2.32908 q^{3} -1.96328 q^{4} +3.92161 q^{5} -0.446291 q^{6} -1.00000 q^{7} -0.759431 q^{8} +2.42462 q^{9} +0.751445 q^{10} -5.26691 q^{11} +4.57265 q^{12} +6.07655 q^{13} -0.191617 q^{14} -9.13374 q^{15} +3.78105 q^{16} -4.12322 q^{17} +0.464598 q^{18} +0.0374083 q^{19} -7.69922 q^{20} +2.32908 q^{21} -1.00923 q^{22} -3.57588 q^{23} +1.76878 q^{24} +10.3790 q^{25} +1.16437 q^{26} +1.34010 q^{27} +1.96328 q^{28} -2.19905 q^{29} -1.75018 q^{30} +4.14885 q^{31} +2.24337 q^{32} +12.2671 q^{33} -0.790078 q^{34} -3.92161 q^{35} -4.76022 q^{36} -9.31219 q^{37} +0.00716804 q^{38} -14.1528 q^{39} -2.97819 q^{40} -9.48327 q^{41} +0.446291 q^{42} -11.4342 q^{43} +10.3404 q^{44} +9.50842 q^{45} -0.685199 q^{46} -3.87164 q^{47} -8.80637 q^{48} +1.00000 q^{49} +1.98879 q^{50} +9.60333 q^{51} -11.9300 q^{52} -9.97552 q^{53} +0.256785 q^{54} -20.6547 q^{55} +0.759431 q^{56} -0.0871269 q^{57} -0.421374 q^{58} -9.91129 q^{59} +17.9321 q^{60} -0.382013 q^{61} +0.794988 q^{62} -2.42462 q^{63} -7.13223 q^{64} +23.8298 q^{65} +2.35057 q^{66} +4.40596 q^{67} +8.09505 q^{68} +8.32853 q^{69} -0.751445 q^{70} -10.3123 q^{71} -1.84133 q^{72} -3.37816 q^{73} -1.78437 q^{74} -24.1735 q^{75} -0.0734430 q^{76} +5.26691 q^{77} -2.71191 q^{78} +9.73339 q^{79} +14.8278 q^{80} -10.3951 q^{81} -1.81715 q^{82} +16.5257 q^{83} -4.57265 q^{84} -16.1697 q^{85} -2.19098 q^{86} +5.12177 q^{87} +3.99985 q^{88} -2.53028 q^{89} +1.82197 q^{90} -6.07655 q^{91} +7.02047 q^{92} -9.66301 q^{93} -0.741870 q^{94} +0.146700 q^{95} -5.22500 q^{96} -5.85331 q^{97} +0.191617 q^{98} -12.7703 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{2} - 4 q^{3} + 12 q^{4} - 9 q^{5} - 12 q^{6} - 16 q^{7} - 6 q^{8} + 14 q^{9} - 2 q^{10} - 22 q^{11} - 10 q^{12} - 4 q^{13} + 2 q^{14} - 14 q^{15} + 12 q^{16} - 18 q^{17} - 5 q^{18} - 15 q^{19}+ \cdots - 73 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.191617 0.135493 0.0677467 0.997703i \(-0.478419\pi\)
0.0677467 + 0.997703i \(0.478419\pi\)
\(3\) −2.32908 −1.34470 −0.672348 0.740235i \(-0.734714\pi\)
−0.672348 + 0.740235i \(0.734714\pi\)
\(4\) −1.96328 −0.981642
\(5\) 3.92161 1.75380 0.876898 0.480677i \(-0.159609\pi\)
0.876898 + 0.480677i \(0.159609\pi\)
\(6\) −0.446291 −0.182197
\(7\) −1.00000 −0.377964
\(8\) −0.759431 −0.268499
\(9\) 2.42462 0.808208
\(10\) 0.751445 0.237628
\(11\) −5.26691 −1.58803 −0.794016 0.607897i \(-0.792014\pi\)
−0.794016 + 0.607897i \(0.792014\pi\)
\(12\) 4.57265 1.32001
\(13\) 6.07655 1.68533 0.842665 0.538438i \(-0.180985\pi\)
0.842665 + 0.538438i \(0.180985\pi\)
\(14\) −0.191617 −0.0512117
\(15\) −9.13374 −2.35832
\(16\) 3.78105 0.945262
\(17\) −4.12322 −1.00003 −0.500014 0.866017i \(-0.666672\pi\)
−0.500014 + 0.866017i \(0.666672\pi\)
\(18\) 0.464598 0.109507
\(19\) 0.0374083 0.00858204 0.00429102 0.999991i \(-0.498634\pi\)
0.00429102 + 0.999991i \(0.498634\pi\)
\(20\) −7.69922 −1.72160
\(21\) 2.32908 0.508247
\(22\) −1.00923 −0.215168
\(23\) −3.57588 −0.745623 −0.372812 0.927907i \(-0.621606\pi\)
−0.372812 + 0.927907i \(0.621606\pi\)
\(24\) 1.76878 0.361050
\(25\) 10.3790 2.07580
\(26\) 1.16437 0.228351
\(27\) 1.34010 0.257902
\(28\) 1.96328 0.371026
\(29\) −2.19905 −0.408353 −0.204177 0.978934i \(-0.565452\pi\)
−0.204177 + 0.978934i \(0.565452\pi\)
\(30\) −1.75018 −0.319537
\(31\) 4.14885 0.745155 0.372577 0.928001i \(-0.378474\pi\)
0.372577 + 0.928001i \(0.378474\pi\)
\(32\) 2.24337 0.396576
\(33\) 12.2671 2.13542
\(34\) −0.790078 −0.135497
\(35\) −3.92161 −0.662872
\(36\) −4.76022 −0.793371
\(37\) −9.31219 −1.53091 −0.765457 0.643487i \(-0.777487\pi\)
−0.765457 + 0.643487i \(0.777487\pi\)
\(38\) 0.00716804 0.00116281
\(39\) −14.1528 −2.26626
\(40\) −2.97819 −0.470893
\(41\) −9.48327 −1.48104 −0.740519 0.672035i \(-0.765420\pi\)
−0.740519 + 0.672035i \(0.765420\pi\)
\(42\) 0.446291 0.0688641
\(43\) −11.4342 −1.74370 −0.871850 0.489774i \(-0.837079\pi\)
−0.871850 + 0.489774i \(0.837079\pi\)
\(44\) 10.3404 1.55888
\(45\) 9.50842 1.41743
\(46\) −0.685199 −0.101027
\(47\) −3.87164 −0.564737 −0.282368 0.959306i \(-0.591120\pi\)
−0.282368 + 0.959306i \(0.591120\pi\)
\(48\) −8.80637 −1.27109
\(49\) 1.00000 0.142857
\(50\) 1.98879 0.281257
\(51\) 9.60333 1.34473
\(52\) −11.9300 −1.65439
\(53\) −9.97552 −1.37024 −0.685122 0.728429i \(-0.740251\pi\)
−0.685122 + 0.728429i \(0.740251\pi\)
\(54\) 0.256785 0.0349440
\(55\) −20.6547 −2.78508
\(56\) 0.759431 0.101483
\(57\) −0.0871269 −0.0115402
\(58\) −0.421374 −0.0553292
\(59\) −9.91129 −1.29034 −0.645170 0.764039i \(-0.723214\pi\)
−0.645170 + 0.764039i \(0.723214\pi\)
\(60\) 17.9321 2.31503
\(61\) −0.382013 −0.0489118 −0.0244559 0.999701i \(-0.507785\pi\)
−0.0244559 + 0.999701i \(0.507785\pi\)
\(62\) 0.794988 0.100964
\(63\) −2.42462 −0.305474
\(64\) −7.13223 −0.891528
\(65\) 23.8298 2.95573
\(66\) 2.35057 0.289335
\(67\) 4.40596 0.538273 0.269137 0.963102i \(-0.413262\pi\)
0.269137 + 0.963102i \(0.413262\pi\)
\(68\) 8.09505 0.981669
\(69\) 8.32853 1.00264
\(70\) −0.751445 −0.0898148
\(71\) −10.3123 −1.22385 −0.611925 0.790916i \(-0.709604\pi\)
−0.611925 + 0.790916i \(0.709604\pi\)
\(72\) −1.84133 −0.217003
\(73\) −3.37816 −0.395383 −0.197692 0.980264i \(-0.563344\pi\)
−0.197692 + 0.980264i \(0.563344\pi\)
\(74\) −1.78437 −0.207429
\(75\) −24.1735 −2.79132
\(76\) −0.0734430 −0.00842449
\(77\) 5.26691 0.600220
\(78\) −2.71191 −0.307063
\(79\) 9.73339 1.09509 0.547546 0.836776i \(-0.315562\pi\)
0.547546 + 0.836776i \(0.315562\pi\)
\(80\) 14.8278 1.65780
\(81\) −10.3951 −1.15501
\(82\) −1.81715 −0.200671
\(83\) 16.5257 1.81393 0.906964 0.421209i \(-0.138394\pi\)
0.906964 + 0.421209i \(0.138394\pi\)
\(84\) −4.57265 −0.498917
\(85\) −16.1697 −1.75385
\(86\) −2.19098 −0.236260
\(87\) 5.12177 0.549111
\(88\) 3.99985 0.426386
\(89\) −2.53028 −0.268209 −0.134105 0.990967i \(-0.542816\pi\)
−0.134105 + 0.990967i \(0.542816\pi\)
\(90\) 1.82197 0.192053
\(91\) −6.07655 −0.636995
\(92\) 7.02047 0.731935
\(93\) −9.66301 −1.00201
\(94\) −0.741870 −0.0765181
\(95\) 0.146700 0.0150512
\(96\) −5.22500 −0.533274
\(97\) −5.85331 −0.594314 −0.297157 0.954829i \(-0.596038\pi\)
−0.297157 + 0.954829i \(0.596038\pi\)
\(98\) 0.191617 0.0193562
\(99\) −12.7703 −1.28346
\(100\) −20.3769 −2.03769
\(101\) −1.78412 −0.177527 −0.0887633 0.996053i \(-0.528291\pi\)
−0.0887633 + 0.996053i \(0.528291\pi\)
\(102\) 1.84016 0.182203
\(103\) −8.17058 −0.805071 −0.402536 0.915404i \(-0.631871\pi\)
−0.402536 + 0.915404i \(0.631871\pi\)
\(104\) −4.61471 −0.452510
\(105\) 9.13374 0.891362
\(106\) −1.91148 −0.185659
\(107\) 3.22757 0.312021 0.156010 0.987755i \(-0.450137\pi\)
0.156010 + 0.987755i \(0.450137\pi\)
\(108\) −2.63099 −0.253167
\(109\) 16.9092 1.61961 0.809805 0.586700i \(-0.199573\pi\)
0.809805 + 0.586700i \(0.199573\pi\)
\(110\) −3.95779 −0.377360
\(111\) 21.6889 2.05861
\(112\) −3.78105 −0.357275
\(113\) 5.58588 0.525476 0.262738 0.964867i \(-0.415375\pi\)
0.262738 + 0.964867i \(0.415375\pi\)
\(114\) −0.0166950 −0.00156363
\(115\) −14.0232 −1.30767
\(116\) 4.31736 0.400857
\(117\) 14.7333 1.36210
\(118\) −1.89917 −0.174833
\(119\) 4.12322 0.377975
\(120\) 6.93644 0.633208
\(121\) 16.7403 1.52185
\(122\) −0.0732001 −0.00662722
\(123\) 22.0873 1.99155
\(124\) −8.14536 −0.731475
\(125\) 21.0943 1.88673
\(126\) −0.464598 −0.0413897
\(127\) −1.00000 −0.0887357
\(128\) −5.85340 −0.517372
\(129\) 26.6312 2.34475
\(130\) 4.56619 0.400481
\(131\) −15.7005 −1.37176 −0.685879 0.727716i \(-0.740582\pi\)
−0.685879 + 0.727716i \(0.740582\pi\)
\(132\) −24.0837 −2.09622
\(133\) −0.0374083 −0.00324371
\(134\) 0.844254 0.0729325
\(135\) 5.25533 0.452307
\(136\) 3.13130 0.268507
\(137\) 7.97414 0.681277 0.340639 0.940194i \(-0.389357\pi\)
0.340639 + 0.940194i \(0.389357\pi\)
\(138\) 1.59588 0.135851
\(139\) −3.40873 −0.289125 −0.144562 0.989496i \(-0.546177\pi\)
−0.144562 + 0.989496i \(0.546177\pi\)
\(140\) 7.69922 0.650703
\(141\) 9.01737 0.759399
\(142\) −1.97601 −0.165823
\(143\) −32.0046 −2.67636
\(144\) 9.16762 0.763968
\(145\) −8.62381 −0.716169
\(146\) −0.647310 −0.0535718
\(147\) −2.32908 −0.192099
\(148\) 18.2825 1.50281
\(149\) −2.34920 −0.192454 −0.0962271 0.995359i \(-0.530678\pi\)
−0.0962271 + 0.995359i \(0.530678\pi\)
\(150\) −4.63205 −0.378205
\(151\) −3.42902 −0.279050 −0.139525 0.990219i \(-0.544558\pi\)
−0.139525 + 0.990219i \(0.544558\pi\)
\(152\) −0.0284090 −0.00230427
\(153\) −9.99727 −0.808231
\(154\) 1.00923 0.0813258
\(155\) 16.2701 1.30685
\(156\) 27.7859 2.22465
\(157\) −19.8947 −1.58777 −0.793886 0.608067i \(-0.791945\pi\)
−0.793886 + 0.608067i \(0.791945\pi\)
\(158\) 1.86508 0.148378
\(159\) 23.2338 1.84256
\(160\) 8.79762 0.695513
\(161\) 3.57588 0.281819
\(162\) −1.99187 −0.156496
\(163\) 6.68481 0.523595 0.261797 0.965123i \(-0.415685\pi\)
0.261797 + 0.965123i \(0.415685\pi\)
\(164\) 18.6183 1.45385
\(165\) 48.1066 3.74509
\(166\) 3.16659 0.245775
\(167\) 16.0276 1.24025 0.620126 0.784502i \(-0.287082\pi\)
0.620126 + 0.784502i \(0.287082\pi\)
\(168\) −1.76878 −0.136464
\(169\) 23.9244 1.84034
\(170\) −3.09837 −0.237634
\(171\) 0.0907010 0.00693608
\(172\) 22.4486 1.71169
\(173\) −14.8583 −1.12965 −0.564827 0.825209i \(-0.691057\pi\)
−0.564827 + 0.825209i \(0.691057\pi\)
\(174\) 0.981416 0.0744009
\(175\) −10.3790 −0.784578
\(176\) −19.9144 −1.50111
\(177\) 23.0842 1.73512
\(178\) −0.484844 −0.0363406
\(179\) −10.4016 −0.777456 −0.388728 0.921353i \(-0.627085\pi\)
−0.388728 + 0.921353i \(0.627085\pi\)
\(180\) −18.6677 −1.39141
\(181\) −6.10810 −0.454011 −0.227006 0.973893i \(-0.572894\pi\)
−0.227006 + 0.973893i \(0.572894\pi\)
\(182\) −1.16437 −0.0863086
\(183\) 0.889740 0.0657715
\(184\) 2.71564 0.200199
\(185\) −36.5187 −2.68491
\(186\) −1.85159 −0.135765
\(187\) 21.7166 1.58808
\(188\) 7.60113 0.554369
\(189\) −1.34010 −0.0974777
\(190\) 0.0281102 0.00203933
\(191\) 8.67944 0.628022 0.314011 0.949419i \(-0.398327\pi\)
0.314011 + 0.949419i \(0.398327\pi\)
\(192\) 16.6115 1.19883
\(193\) −4.28438 −0.308396 −0.154198 0.988040i \(-0.549279\pi\)
−0.154198 + 0.988040i \(0.549279\pi\)
\(194\) −1.12159 −0.0805255
\(195\) −55.5016 −3.97455
\(196\) −1.96328 −0.140235
\(197\) 20.8740 1.48721 0.743606 0.668618i \(-0.233114\pi\)
0.743606 + 0.668618i \(0.233114\pi\)
\(198\) −2.44700 −0.173900
\(199\) 23.3191 1.65305 0.826525 0.562900i \(-0.190314\pi\)
0.826525 + 0.562900i \(0.190314\pi\)
\(200\) −7.88213 −0.557350
\(201\) −10.2618 −0.723814
\(202\) −0.341867 −0.0240537
\(203\) 2.19905 0.154343
\(204\) −18.8540 −1.32005
\(205\) −37.1897 −2.59744
\(206\) −1.56562 −0.109082
\(207\) −8.67018 −0.602619
\(208\) 22.9757 1.59308
\(209\) −0.197026 −0.0136286
\(210\) 1.75018 0.120774
\(211\) −17.2768 −1.18938 −0.594691 0.803954i \(-0.702726\pi\)
−0.594691 + 0.803954i \(0.702726\pi\)
\(212\) 19.5848 1.34509
\(213\) 24.0183 1.64571
\(214\) 0.618456 0.0422768
\(215\) −44.8404 −3.05809
\(216\) −1.01771 −0.0692465
\(217\) −4.14885 −0.281642
\(218\) 3.24009 0.219446
\(219\) 7.86800 0.531670
\(220\) 40.5511 2.73395
\(221\) −25.0550 −1.68538
\(222\) 4.15594 0.278929
\(223\) 26.8248 1.79632 0.898162 0.439665i \(-0.144903\pi\)
0.898162 + 0.439665i \(0.144903\pi\)
\(224\) −2.24337 −0.149892
\(225\) 25.1652 1.67768
\(226\) 1.07035 0.0711985
\(227\) 18.2819 1.21341 0.606707 0.794925i \(-0.292490\pi\)
0.606707 + 0.794925i \(0.292490\pi\)
\(228\) 0.171055 0.0113284
\(229\) 4.27326 0.282385 0.141192 0.989982i \(-0.454906\pi\)
0.141192 + 0.989982i \(0.454906\pi\)
\(230\) −2.68708 −0.177181
\(231\) −12.2671 −0.807113
\(232\) 1.67003 0.109643
\(233\) −0.982041 −0.0643357 −0.0321678 0.999482i \(-0.510241\pi\)
−0.0321678 + 0.999482i \(0.510241\pi\)
\(234\) 2.82315 0.184555
\(235\) −15.1830 −0.990433
\(236\) 19.4587 1.26665
\(237\) −22.6699 −1.47257
\(238\) 0.790078 0.0512131
\(239\) −8.88724 −0.574868 −0.287434 0.957800i \(-0.592802\pi\)
−0.287434 + 0.957800i \(0.592802\pi\)
\(240\) −34.5351 −2.22923
\(241\) −27.4668 −1.76929 −0.884646 0.466264i \(-0.845600\pi\)
−0.884646 + 0.466264i \(0.845600\pi\)
\(242\) 3.20772 0.206200
\(243\) 20.1907 1.29523
\(244\) 0.750000 0.0480138
\(245\) 3.92161 0.250542
\(246\) 4.23230 0.269841
\(247\) 0.227313 0.0144636
\(248\) −3.15076 −0.200074
\(249\) −38.4896 −2.43918
\(250\) 4.04202 0.255640
\(251\) −7.65870 −0.483413 −0.241706 0.970349i \(-0.577707\pi\)
−0.241706 + 0.970349i \(0.577707\pi\)
\(252\) 4.76022 0.299866
\(253\) 18.8339 1.18407
\(254\) −0.191617 −0.0120231
\(255\) 37.6605 2.35839
\(256\) 13.1428 0.821428
\(257\) −19.3455 −1.20674 −0.603369 0.797462i \(-0.706176\pi\)
−0.603369 + 0.797462i \(0.706176\pi\)
\(258\) 5.10298 0.317697
\(259\) 9.31219 0.578631
\(260\) −46.7847 −2.90146
\(261\) −5.33187 −0.330035
\(262\) −3.00847 −0.185864
\(263\) 12.7413 0.785660 0.392830 0.919611i \(-0.371496\pi\)
0.392830 + 0.919611i \(0.371496\pi\)
\(264\) −9.31598 −0.573359
\(265\) −39.1201 −2.40313
\(266\) −0.00716804 −0.000439501 0
\(267\) 5.89323 0.360660
\(268\) −8.65014 −0.528392
\(269\) 9.02960 0.550545 0.275272 0.961366i \(-0.411232\pi\)
0.275272 + 0.961366i \(0.411232\pi\)
\(270\) 1.00701 0.0612846
\(271\) 16.6046 1.00866 0.504328 0.863512i \(-0.331740\pi\)
0.504328 + 0.863512i \(0.331740\pi\)
\(272\) −15.5901 −0.945289
\(273\) 14.1528 0.856565
\(274\) 1.52798 0.0923085
\(275\) −54.6652 −3.29644
\(276\) −16.3513 −0.984230
\(277\) −7.79112 −0.468123 −0.234061 0.972222i \(-0.575202\pi\)
−0.234061 + 0.972222i \(0.575202\pi\)
\(278\) −0.653169 −0.0391745
\(279\) 10.0594 0.602240
\(280\) 2.97819 0.177981
\(281\) −8.94643 −0.533700 −0.266850 0.963738i \(-0.585983\pi\)
−0.266850 + 0.963738i \(0.585983\pi\)
\(282\) 1.72788 0.102894
\(283\) −11.5107 −0.684243 −0.342121 0.939656i \(-0.611145\pi\)
−0.342121 + 0.939656i \(0.611145\pi\)
\(284\) 20.2460 1.20138
\(285\) −0.341678 −0.0202392
\(286\) −6.13261 −0.362629
\(287\) 9.48327 0.559780
\(288\) 5.43933 0.320516
\(289\) 0.000967701 0 5.69236e−5 0
\(290\) −1.65246 −0.0970361
\(291\) 13.6328 0.799171
\(292\) 6.63228 0.388125
\(293\) −4.41505 −0.257930 −0.128965 0.991649i \(-0.541166\pi\)
−0.128965 + 0.991649i \(0.541166\pi\)
\(294\) −0.446291 −0.0260282
\(295\) −38.8682 −2.26299
\(296\) 7.07196 0.411049
\(297\) −7.05817 −0.409557
\(298\) −0.450146 −0.0260763
\(299\) −21.7290 −1.25662
\(300\) 47.4595 2.74007
\(301\) 11.4342 0.659056
\(302\) −0.657057 −0.0378094
\(303\) 4.15536 0.238719
\(304\) 0.141442 0.00811228
\(305\) −1.49811 −0.0857813
\(306\) −1.91564 −0.109510
\(307\) 4.82910 0.275611 0.137806 0.990459i \(-0.455995\pi\)
0.137806 + 0.990459i \(0.455995\pi\)
\(308\) −10.3404 −0.589201
\(309\) 19.0300 1.08258
\(310\) 3.11763 0.177069
\(311\) −15.7618 −0.893772 −0.446886 0.894591i \(-0.647467\pi\)
−0.446886 + 0.894591i \(0.647467\pi\)
\(312\) 10.7480 0.608488
\(313\) 13.2573 0.749349 0.374675 0.927156i \(-0.377754\pi\)
0.374675 + 0.927156i \(0.377754\pi\)
\(314\) −3.81216 −0.215132
\(315\) −9.50842 −0.535739
\(316\) −19.1094 −1.07499
\(317\) 5.19102 0.291557 0.145778 0.989317i \(-0.453431\pi\)
0.145778 + 0.989317i \(0.453431\pi\)
\(318\) 4.45198 0.249655
\(319\) 11.5822 0.648479
\(320\) −27.9698 −1.56356
\(321\) −7.51727 −0.419573
\(322\) 0.685199 0.0381846
\(323\) −0.154243 −0.00858229
\(324\) 20.4085 1.13380
\(325\) 63.0684 3.49841
\(326\) 1.28092 0.0709436
\(327\) −39.3830 −2.17788
\(328\) 7.20189 0.397658
\(329\) 3.87164 0.213450
\(330\) 9.21802 0.507435
\(331\) −11.1884 −0.614969 −0.307485 0.951553i \(-0.599487\pi\)
−0.307485 + 0.951553i \(0.599487\pi\)
\(332\) −32.4446 −1.78063
\(333\) −22.5786 −1.23730
\(334\) 3.07115 0.168046
\(335\) 17.2784 0.944022
\(336\) 8.80637 0.480427
\(337\) 17.1501 0.934223 0.467111 0.884198i \(-0.345295\pi\)
0.467111 + 0.884198i \(0.345295\pi\)
\(338\) 4.58431 0.249354
\(339\) −13.0100 −0.706605
\(340\) 31.7456 1.72165
\(341\) −21.8516 −1.18333
\(342\) 0.0173798 0.000939792 0
\(343\) −1.00000 −0.0539949
\(344\) 8.68348 0.468182
\(345\) 32.6612 1.75842
\(346\) −2.84709 −0.153061
\(347\) 0.0256912 0.00137917 0.000689587 1.00000i \(-0.499780\pi\)
0.000689587 1.00000i \(0.499780\pi\)
\(348\) −10.0555 −0.539031
\(349\) 23.9479 1.28190 0.640950 0.767583i \(-0.278541\pi\)
0.640950 + 0.767583i \(0.278541\pi\)
\(350\) −1.98879 −0.106305
\(351\) 8.14316 0.434650
\(352\) −11.8156 −0.629775
\(353\) −6.33830 −0.337354 −0.168677 0.985671i \(-0.553949\pi\)
−0.168677 + 0.985671i \(0.553949\pi\)
\(354\) 4.42332 0.235097
\(355\) −40.4409 −2.14638
\(356\) 4.96766 0.263285
\(357\) −9.60333 −0.508262
\(358\) −1.99313 −0.105340
\(359\) −10.9811 −0.579563 −0.289781 0.957093i \(-0.593583\pi\)
−0.289781 + 0.957093i \(0.593583\pi\)
\(360\) −7.22099 −0.380579
\(361\) −18.9986 −0.999926
\(362\) −1.17041 −0.0615155
\(363\) −38.9896 −2.04642
\(364\) 11.9300 0.625301
\(365\) −13.2478 −0.693421
\(366\) 0.170489 0.00891160
\(367\) 21.0669 1.09968 0.549840 0.835270i \(-0.314689\pi\)
0.549840 + 0.835270i \(0.314689\pi\)
\(368\) −13.5206 −0.704809
\(369\) −22.9934 −1.19699
\(370\) −6.99759 −0.363787
\(371\) 9.97552 0.517903
\(372\) 18.9712 0.983612
\(373\) 10.6031 0.549009 0.274505 0.961586i \(-0.411486\pi\)
0.274505 + 0.961586i \(0.411486\pi\)
\(374\) 4.16127 0.215174
\(375\) −49.1304 −2.53708
\(376\) 2.94024 0.151631
\(377\) −13.3626 −0.688211
\(378\) −0.256785 −0.0132076
\(379\) −5.57679 −0.286460 −0.143230 0.989689i \(-0.545749\pi\)
−0.143230 + 0.989689i \(0.545749\pi\)
\(380\) −0.288015 −0.0147748
\(381\) 2.32908 0.119322
\(382\) 1.66312 0.0850928
\(383\) 19.7345 1.00838 0.504192 0.863592i \(-0.331791\pi\)
0.504192 + 0.863592i \(0.331791\pi\)
\(384\) 13.6330 0.695708
\(385\) 20.6547 1.05266
\(386\) −0.820958 −0.0417857
\(387\) −27.7236 −1.40927
\(388\) 11.4917 0.583403
\(389\) 16.1098 0.816799 0.408399 0.912803i \(-0.366087\pi\)
0.408399 + 0.912803i \(0.366087\pi\)
\(390\) −10.6350 −0.538525
\(391\) 14.7442 0.745645
\(392\) −0.759431 −0.0383570
\(393\) 36.5677 1.84460
\(394\) 3.99981 0.201507
\(395\) 38.1705 1.92057
\(396\) 25.0717 1.25990
\(397\) −6.80662 −0.341614 −0.170807 0.985304i \(-0.554638\pi\)
−0.170807 + 0.985304i \(0.554638\pi\)
\(398\) 4.46833 0.223977
\(399\) 0.0871269 0.00436180
\(400\) 39.2435 1.96217
\(401\) −17.1989 −0.858873 −0.429437 0.903097i \(-0.641288\pi\)
−0.429437 + 0.903097i \(0.641288\pi\)
\(402\) −1.96634 −0.0980720
\(403\) 25.2107 1.25583
\(404\) 3.50273 0.174267
\(405\) −40.7654 −2.02565
\(406\) 0.421374 0.0209125
\(407\) 49.0464 2.43114
\(408\) −7.29306 −0.361060
\(409\) 3.13066 0.154801 0.0774005 0.997000i \(-0.475338\pi\)
0.0774005 + 0.997000i \(0.475338\pi\)
\(410\) −7.12615 −0.351936
\(411\) −18.5724 −0.916111
\(412\) 16.0412 0.790291
\(413\) 9.91129 0.487703
\(414\) −1.66135 −0.0816509
\(415\) 64.8071 3.18126
\(416\) 13.6320 0.668362
\(417\) 7.93922 0.388785
\(418\) −0.0377534 −0.00184658
\(419\) 18.8437 0.920576 0.460288 0.887770i \(-0.347746\pi\)
0.460288 + 0.887770i \(0.347746\pi\)
\(420\) −17.9321 −0.874998
\(421\) −13.1531 −0.641045 −0.320523 0.947241i \(-0.603859\pi\)
−0.320523 + 0.947241i \(0.603859\pi\)
\(422\) −3.31052 −0.161153
\(423\) −9.38727 −0.456425
\(424\) 7.57572 0.367909
\(425\) −42.7949 −2.07586
\(426\) 4.60230 0.222982
\(427\) 0.382013 0.0184869
\(428\) −6.33663 −0.306293
\(429\) 74.5414 3.59889
\(430\) −8.59217 −0.414351
\(431\) −38.5459 −1.85669 −0.928346 0.371716i \(-0.878769\pi\)
−0.928346 + 0.371716i \(0.878769\pi\)
\(432\) 5.06697 0.243785
\(433\) 27.5890 1.32584 0.662922 0.748689i \(-0.269316\pi\)
0.662922 + 0.748689i \(0.269316\pi\)
\(434\) −0.794988 −0.0381606
\(435\) 20.0856 0.963029
\(436\) −33.1976 −1.58988
\(437\) −0.133768 −0.00639897
\(438\) 1.50764 0.0720378
\(439\) −18.5614 −0.885887 −0.442943 0.896550i \(-0.646066\pi\)
−0.442943 + 0.896550i \(0.646066\pi\)
\(440\) 15.6858 0.747793
\(441\) 2.42462 0.115458
\(442\) −4.80094 −0.228358
\(443\) 4.02148 0.191066 0.0955332 0.995426i \(-0.469544\pi\)
0.0955332 + 0.995426i \(0.469544\pi\)
\(444\) −42.5814 −2.02082
\(445\) −9.92277 −0.470384
\(446\) 5.14008 0.243390
\(447\) 5.47149 0.258793
\(448\) 7.13223 0.336966
\(449\) −25.0013 −1.17989 −0.589943 0.807445i \(-0.700850\pi\)
−0.589943 + 0.807445i \(0.700850\pi\)
\(450\) 4.82206 0.227314
\(451\) 49.9475 2.35194
\(452\) −10.9667 −0.515829
\(453\) 7.98647 0.375237
\(454\) 3.50312 0.164410
\(455\) −23.8298 −1.11716
\(456\) 0.0661669 0.00309855
\(457\) −10.2474 −0.479354 −0.239677 0.970853i \(-0.577042\pi\)
−0.239677 + 0.970853i \(0.577042\pi\)
\(458\) 0.818826 0.0382612
\(459\) −5.52552 −0.257909
\(460\) 27.5315 1.28366
\(461\) 10.5197 0.489951 0.244975 0.969529i \(-0.421220\pi\)
0.244975 + 0.969529i \(0.421220\pi\)
\(462\) −2.35057 −0.109358
\(463\) 25.2692 1.17436 0.587179 0.809457i \(-0.300238\pi\)
0.587179 + 0.809457i \(0.300238\pi\)
\(464\) −8.31471 −0.386001
\(465\) −37.8945 −1.75732
\(466\) −0.188175 −0.00871705
\(467\) 4.08966 0.189247 0.0946234 0.995513i \(-0.469835\pi\)
0.0946234 + 0.995513i \(0.469835\pi\)
\(468\) −28.9257 −1.33709
\(469\) −4.40596 −0.203448
\(470\) −2.90932 −0.134197
\(471\) 46.3364 2.13507
\(472\) 7.52694 0.346455
\(473\) 60.2229 2.76905
\(474\) −4.34392 −0.199523
\(475\) 0.388260 0.0178146
\(476\) −8.09505 −0.371036
\(477\) −24.1869 −1.10744
\(478\) −1.70294 −0.0778908
\(479\) −36.7606 −1.67963 −0.839817 0.542869i \(-0.817338\pi\)
−0.839817 + 0.542869i \(0.817338\pi\)
\(480\) −20.4904 −0.935254
\(481\) −56.5859 −2.58010
\(482\) −5.26309 −0.239727
\(483\) −8.32853 −0.378961
\(484\) −32.8660 −1.49391
\(485\) −22.9544 −1.04230
\(486\) 3.86887 0.175495
\(487\) −33.7554 −1.52960 −0.764802 0.644265i \(-0.777163\pi\)
−0.764802 + 0.644265i \(0.777163\pi\)
\(488\) 0.290113 0.0131328
\(489\) −15.5695 −0.704076
\(490\) 0.751445 0.0339468
\(491\) 2.85086 0.128657 0.0643286 0.997929i \(-0.479509\pi\)
0.0643286 + 0.997929i \(0.479509\pi\)
\(492\) −43.3637 −1.95499
\(493\) 9.06718 0.408365
\(494\) 0.0435569 0.00195972
\(495\) −50.0800 −2.25093
\(496\) 15.6870 0.704366
\(497\) 10.3123 0.462572
\(498\) −7.37525 −0.330493
\(499\) −14.9560 −0.669524 −0.334762 0.942303i \(-0.608656\pi\)
−0.334762 + 0.942303i \(0.608656\pi\)
\(500\) −41.4141 −1.85209
\(501\) −37.3296 −1.66776
\(502\) −1.46753 −0.0654992
\(503\) −8.56487 −0.381889 −0.190944 0.981601i \(-0.561155\pi\)
−0.190944 + 0.981601i \(0.561155\pi\)
\(504\) 1.84133 0.0820195
\(505\) −6.99661 −0.311345
\(506\) 3.60888 0.160434
\(507\) −55.7219 −2.47470
\(508\) 1.96328 0.0871066
\(509\) 24.3428 1.07898 0.539489 0.841993i \(-0.318618\pi\)
0.539489 + 0.841993i \(0.318618\pi\)
\(510\) 7.21637 0.319546
\(511\) 3.37816 0.149441
\(512\) 14.2252 0.628670
\(513\) 0.0501307 0.00221333
\(514\) −3.70692 −0.163505
\(515\) −32.0418 −1.41193
\(516\) −52.2846 −2.30170
\(517\) 20.3916 0.896820
\(518\) 1.78437 0.0784007
\(519\) 34.6061 1.51904
\(520\) −18.0971 −0.793610
\(521\) −33.9526 −1.48749 −0.743745 0.668464i \(-0.766952\pi\)
−0.743745 + 0.668464i \(0.766952\pi\)
\(522\) −1.02167 −0.0447175
\(523\) 33.7243 1.47466 0.737331 0.675532i \(-0.236086\pi\)
0.737331 + 0.675532i \(0.236086\pi\)
\(524\) 30.8245 1.34657
\(525\) 24.1735 1.05502
\(526\) 2.44144 0.106452
\(527\) −17.1066 −0.745176
\(528\) 46.3823 2.01853
\(529\) −10.2131 −0.444046
\(530\) −7.49605 −0.325608
\(531\) −24.0312 −1.04286
\(532\) 0.0734430 0.00318416
\(533\) −57.6255 −2.49604
\(534\) 1.12924 0.0488670
\(535\) 12.6573 0.547221
\(536\) −3.34602 −0.144526
\(537\) 24.2263 1.04544
\(538\) 1.73022 0.0745951
\(539\) −5.26691 −0.226862
\(540\) −10.3177 −0.444004
\(541\) −22.8612 −0.982879 −0.491439 0.870912i \(-0.663529\pi\)
−0.491439 + 0.870912i \(0.663529\pi\)
\(542\) 3.18171 0.136666
\(543\) 14.2263 0.610508
\(544\) −9.24992 −0.396587
\(545\) 66.3113 2.84046
\(546\) 2.71191 0.116059
\(547\) −30.4179 −1.30058 −0.650288 0.759688i \(-0.725352\pi\)
−0.650288 + 0.759688i \(0.725352\pi\)
\(548\) −15.6555 −0.668770
\(549\) −0.926239 −0.0395309
\(550\) −10.4748 −0.446645
\(551\) −0.0822627 −0.00350451
\(552\) −6.32494 −0.269207
\(553\) −9.73339 −0.413906
\(554\) −1.49291 −0.0634275
\(555\) 85.0551 3.61039
\(556\) 6.69230 0.283817
\(557\) 24.3671 1.03247 0.516233 0.856448i \(-0.327334\pi\)
0.516233 + 0.856448i \(0.327334\pi\)
\(558\) 1.92755 0.0815995
\(559\) −69.4804 −2.93871
\(560\) −14.8278 −0.626588
\(561\) −50.5798 −2.13548
\(562\) −1.71428 −0.0723127
\(563\) −39.1345 −1.64932 −0.824661 0.565627i \(-0.808634\pi\)
−0.824661 + 0.565627i \(0.808634\pi\)
\(564\) −17.7036 −0.745458
\(565\) 21.9056 0.921577
\(566\) −2.20565 −0.0927103
\(567\) 10.3951 0.436552
\(568\) 7.83151 0.328603
\(569\) 41.9315 1.75786 0.878930 0.476951i \(-0.158258\pi\)
0.878930 + 0.476951i \(0.158258\pi\)
\(570\) −0.0654711 −0.00274228
\(571\) 1.63409 0.0683845 0.0341923 0.999415i \(-0.489114\pi\)
0.0341923 + 0.999415i \(0.489114\pi\)
\(572\) 62.8341 2.62723
\(573\) −20.2151 −0.844499
\(574\) 1.81715 0.0758464
\(575\) −37.1141 −1.54776
\(576\) −17.2930 −0.720540
\(577\) −3.28569 −0.136785 −0.0683925 0.997658i \(-0.521787\pi\)
−0.0683925 + 0.997658i \(0.521787\pi\)
\(578\) 0.000185428 0 7.71277e−6 0
\(579\) 9.97867 0.414700
\(580\) 16.9310 0.703021
\(581\) −16.5257 −0.685600
\(582\) 2.61228 0.108282
\(583\) 52.5402 2.17599
\(584\) 2.56547 0.106160
\(585\) 57.7784 2.38884
\(586\) −0.845997 −0.0349478
\(587\) −37.3079 −1.53986 −0.769931 0.638127i \(-0.779709\pi\)
−0.769931 + 0.638127i \(0.779709\pi\)
\(588\) 4.57265 0.188573
\(589\) 0.155201 0.00639495
\(590\) −7.44779 −0.306621
\(591\) −48.6173 −1.99985
\(592\) −35.2098 −1.44711
\(593\) −10.6325 −0.436626 −0.218313 0.975879i \(-0.570055\pi\)
−0.218313 + 0.975879i \(0.570055\pi\)
\(594\) −1.35246 −0.0554922
\(595\) 16.1697 0.662891
\(596\) 4.61215 0.188921
\(597\) −54.3122 −2.22285
\(598\) −4.16364 −0.170264
\(599\) 42.0174 1.71678 0.858391 0.512995i \(-0.171464\pi\)
0.858391 + 0.512995i \(0.171464\pi\)
\(600\) 18.3581 0.749467
\(601\) −16.1101 −0.657144 −0.328572 0.944479i \(-0.606567\pi\)
−0.328572 + 0.944479i \(0.606567\pi\)
\(602\) 2.19098 0.0892977
\(603\) 10.6828 0.435037
\(604\) 6.73214 0.273927
\(605\) 65.6489 2.66901
\(606\) 0.796236 0.0323449
\(607\) −14.1660 −0.574979 −0.287489 0.957784i \(-0.592821\pi\)
−0.287489 + 0.957784i \(0.592821\pi\)
\(608\) 0.0839207 0.00340343
\(609\) −5.12177 −0.207545
\(610\) −0.287062 −0.0116228
\(611\) −23.5262 −0.951768
\(612\) 19.6275 0.793393
\(613\) 17.1420 0.692361 0.346180 0.938168i \(-0.387479\pi\)
0.346180 + 0.938168i \(0.387479\pi\)
\(614\) 0.925335 0.0373435
\(615\) 86.6178 3.49277
\(616\) −3.99985 −0.161159
\(617\) 30.3241 1.22080 0.610401 0.792092i \(-0.291008\pi\)
0.610401 + 0.792092i \(0.291008\pi\)
\(618\) 3.64645 0.146682
\(619\) −9.91575 −0.398547 −0.199274 0.979944i \(-0.563858\pi\)
−0.199274 + 0.979944i \(0.563858\pi\)
\(620\) −31.9429 −1.28286
\(621\) −4.79203 −0.192298
\(622\) −3.02023 −0.121100
\(623\) 2.53028 0.101374
\(624\) −53.5123 −2.14221
\(625\) 30.8286 1.23314
\(626\) 2.54033 0.101532
\(627\) 0.458890 0.0183263
\(628\) 39.0590 1.55862
\(629\) 38.3962 1.53096
\(630\) −1.82197 −0.0725890
\(631\) −4.94297 −0.196777 −0.0983884 0.995148i \(-0.531369\pi\)
−0.0983884 + 0.995148i \(0.531369\pi\)
\(632\) −7.39183 −0.294031
\(633\) 40.2390 1.59936
\(634\) 0.994685 0.0395040
\(635\) −3.92161 −0.155624
\(636\) −45.6146 −1.80873
\(637\) 6.07655 0.240762
\(638\) 2.21934 0.0878645
\(639\) −25.0035 −0.989125
\(640\) −22.9547 −0.907365
\(641\) 8.92412 0.352481 0.176241 0.984347i \(-0.443606\pi\)
0.176241 + 0.984347i \(0.443606\pi\)
\(642\) −1.44043 −0.0568494
\(643\) 8.44158 0.332903 0.166452 0.986050i \(-0.446769\pi\)
0.166452 + 0.986050i \(0.446769\pi\)
\(644\) −7.02047 −0.276645
\(645\) 104.437 4.11220
\(646\) −0.0295554 −0.00116284
\(647\) 50.2006 1.97359 0.986795 0.161976i \(-0.0517866\pi\)
0.986795 + 0.161976i \(0.0517866\pi\)
\(648\) 7.89433 0.310119
\(649\) 52.2019 2.04910
\(650\) 12.0850 0.474011
\(651\) 9.66301 0.378723
\(652\) −13.1242 −0.513982
\(653\) 40.5316 1.58612 0.793062 0.609141i \(-0.208486\pi\)
0.793062 + 0.609141i \(0.208486\pi\)
\(654\) −7.54643 −0.295089
\(655\) −61.5711 −2.40578
\(656\) −35.8567 −1.39997
\(657\) −8.19076 −0.319552
\(658\) 0.741870 0.0289211
\(659\) 41.9115 1.63264 0.816320 0.577600i \(-0.196011\pi\)
0.816320 + 0.577600i \(0.196011\pi\)
\(660\) −94.4468 −3.67634
\(661\) 27.5407 1.07121 0.535605 0.844469i \(-0.320084\pi\)
0.535605 + 0.844469i \(0.320084\pi\)
\(662\) −2.14388 −0.0833242
\(663\) 58.3550 2.26632
\(664\) −12.5501 −0.487038
\(665\) −0.146700 −0.00568880
\(666\) −4.32642 −0.167646
\(667\) 7.86355 0.304478
\(668\) −31.4667 −1.21748
\(669\) −62.4772 −2.41551
\(670\) 3.31083 0.127909
\(671\) 2.01203 0.0776735
\(672\) 5.22500 0.201559
\(673\) 6.81901 0.262853 0.131427 0.991326i \(-0.458044\pi\)
0.131427 + 0.991326i \(0.458044\pi\)
\(674\) 3.28623 0.126581
\(675\) 13.9089 0.535352
\(676\) −46.9704 −1.80655
\(677\) −6.66448 −0.256137 −0.128068 0.991765i \(-0.540878\pi\)
−0.128068 + 0.991765i \(0.540878\pi\)
\(678\) −2.49293 −0.0957403
\(679\) 5.85331 0.224629
\(680\) 12.2797 0.470906
\(681\) −42.5801 −1.63167
\(682\) −4.18713 −0.160333
\(683\) 23.2496 0.889623 0.444811 0.895624i \(-0.353271\pi\)
0.444811 + 0.895624i \(0.353271\pi\)
\(684\) −0.178072 −0.00680874
\(685\) 31.2715 1.19482
\(686\) −0.191617 −0.00731595
\(687\) −9.95276 −0.379722
\(688\) −43.2332 −1.64825
\(689\) −60.6167 −2.30931
\(690\) 6.25843 0.238254
\(691\) 7.85702 0.298895 0.149447 0.988770i \(-0.452251\pi\)
0.149447 + 0.988770i \(0.452251\pi\)
\(692\) 29.1710 1.10892
\(693\) 12.7703 0.485103
\(694\) 0.00492285 0.000186869 0
\(695\) −13.3677 −0.507066
\(696\) −3.88963 −0.147436
\(697\) 39.1016 1.48108
\(698\) 4.58881 0.173689
\(699\) 2.28725 0.0865119
\(700\) 20.3769 0.770175
\(701\) −0.243911 −0.00921239 −0.00460619 0.999989i \(-0.501466\pi\)
−0.00460619 + 0.999989i \(0.501466\pi\)
\(702\) 1.56036 0.0588922
\(703\) −0.348353 −0.0131384
\(704\) 37.5648 1.41578
\(705\) 35.3626 1.33183
\(706\) −1.21452 −0.0457092
\(707\) 1.78412 0.0670987
\(708\) −45.3208 −1.70326
\(709\) 27.6428 1.03815 0.519073 0.854730i \(-0.326277\pi\)
0.519073 + 0.854730i \(0.326277\pi\)
\(710\) −7.74915 −0.290820
\(711\) 23.5998 0.885062
\(712\) 1.92157 0.0720140
\(713\) −14.8358 −0.555605
\(714\) −1.84016 −0.0688661
\(715\) −125.509 −4.69379
\(716\) 20.4214 0.763183
\(717\) 20.6991 0.773023
\(718\) −2.10417 −0.0785269
\(719\) 13.2320 0.493470 0.246735 0.969083i \(-0.420642\pi\)
0.246735 + 0.969083i \(0.420642\pi\)
\(720\) 35.9518 1.33984
\(721\) 8.17058 0.304288
\(722\) −3.64045 −0.135483
\(723\) 63.9724 2.37916
\(724\) 11.9919 0.445677
\(725\) −22.8239 −0.847660
\(726\) −7.47105 −0.277277
\(727\) −19.0077 −0.704958 −0.352479 0.935820i \(-0.614661\pi\)
−0.352479 + 0.935820i \(0.614661\pi\)
\(728\) 4.61471 0.171033
\(729\) −15.8405 −0.586687
\(730\) −2.53850 −0.0939540
\(731\) 47.1458 1.74375
\(732\) −1.74681 −0.0645640
\(733\) −49.8815 −1.84242 −0.921208 0.389071i \(-0.872796\pi\)
−0.921208 + 0.389071i \(0.872796\pi\)
\(734\) 4.03676 0.148999
\(735\) −9.13374 −0.336903
\(736\) −8.02204 −0.295696
\(737\) −23.2058 −0.854796
\(738\) −4.40591 −0.162184
\(739\) −29.8966 −1.09976 −0.549882 0.835242i \(-0.685327\pi\)
−0.549882 + 0.835242i \(0.685327\pi\)
\(740\) 71.6966 2.63562
\(741\) −0.529431 −0.0194491
\(742\) 1.91148 0.0701725
\(743\) 7.33058 0.268933 0.134467 0.990918i \(-0.457068\pi\)
0.134467 + 0.990918i \(0.457068\pi\)
\(744\) 7.33838 0.269038
\(745\) −9.21265 −0.337525
\(746\) 2.03174 0.0743871
\(747\) 40.0685 1.46603
\(748\) −42.6359 −1.55892
\(749\) −3.22757 −0.117933
\(750\) −9.41419 −0.343758
\(751\) −37.8737 −1.38203 −0.691015 0.722840i \(-0.742836\pi\)
−0.691015 + 0.722840i \(0.742836\pi\)
\(752\) −14.6389 −0.533824
\(753\) 17.8377 0.650043
\(754\) −2.56050 −0.0932480
\(755\) −13.4473 −0.489396
\(756\) 2.63099 0.0956882
\(757\) 22.7557 0.827070 0.413535 0.910488i \(-0.364294\pi\)
0.413535 + 0.910488i \(0.364294\pi\)
\(758\) −1.06860 −0.0388135
\(759\) −43.8656 −1.59222
\(760\) −0.111409 −0.00404122
\(761\) 7.34081 0.266104 0.133052 0.991109i \(-0.457522\pi\)
0.133052 + 0.991109i \(0.457522\pi\)
\(762\) 0.446291 0.0161674
\(763\) −16.9092 −0.612155
\(764\) −17.0402 −0.616493
\(765\) −39.2053 −1.41747
\(766\) 3.78145 0.136629
\(767\) −60.2264 −2.17465
\(768\) −30.6108 −1.10457
\(769\) −39.6967 −1.43150 −0.715749 0.698358i \(-0.753915\pi\)
−0.715749 + 0.698358i \(0.753915\pi\)
\(770\) 3.95779 0.142629
\(771\) 45.0573 1.62270
\(772\) 8.41145 0.302735
\(773\) −9.92476 −0.356969 −0.178484 0.983943i \(-0.557119\pi\)
−0.178484 + 0.983943i \(0.557119\pi\)
\(774\) −5.31231 −0.190947
\(775\) 43.0609 1.54679
\(776\) 4.44518 0.159573
\(777\) −21.6889 −0.778083
\(778\) 3.08690 0.110671
\(779\) −0.354753 −0.0127103
\(780\) 108.965 3.90159
\(781\) 54.3141 1.94351
\(782\) 2.82523 0.101030
\(783\) −2.94694 −0.105315
\(784\) 3.78105 0.135037
\(785\) −78.0193 −2.78463
\(786\) 7.00698 0.249931
\(787\) 17.2831 0.616077 0.308038 0.951374i \(-0.400327\pi\)
0.308038 + 0.951374i \(0.400327\pi\)
\(788\) −40.9816 −1.45991
\(789\) −29.6754 −1.05647
\(790\) 7.31410 0.260224
\(791\) −5.58588 −0.198611
\(792\) 9.69814 0.344608
\(793\) −2.32132 −0.0824325
\(794\) −1.30426 −0.0462865
\(795\) 91.1139 3.23148
\(796\) −45.7821 −1.62270
\(797\) 3.27024 0.115838 0.0579190 0.998321i \(-0.481553\pi\)
0.0579190 + 0.998321i \(0.481553\pi\)
\(798\) 0.0166950 0.000590995 0
\(799\) 15.9636 0.564753
\(800\) 23.2839 0.823212
\(801\) −6.13498 −0.216769
\(802\) −3.29560 −0.116372
\(803\) 17.7924 0.627881
\(804\) 20.1469 0.710526
\(805\) 14.0232 0.494253
\(806\) 4.83078 0.170157
\(807\) −21.0307 −0.740315
\(808\) 1.35491 0.0476657
\(809\) −45.7392 −1.60810 −0.804052 0.594558i \(-0.797327\pi\)
−0.804052 + 0.594558i \(0.797327\pi\)
\(810\) −7.81132 −0.274462
\(811\) 20.1033 0.705923 0.352962 0.935638i \(-0.385175\pi\)
0.352962 + 0.935638i \(0.385175\pi\)
\(812\) −4.31736 −0.151510
\(813\) −38.6734 −1.35633
\(814\) 9.39811 0.329403
\(815\) 26.2152 0.918278
\(816\) 36.3106 1.27113
\(817\) −0.427734 −0.0149645
\(818\) 0.599886 0.0209745
\(819\) −14.7333 −0.514825
\(820\) 73.0138 2.54975
\(821\) −19.1738 −0.669170 −0.334585 0.942366i \(-0.608596\pi\)
−0.334585 + 0.942366i \(0.608596\pi\)
\(822\) −3.55879 −0.124127
\(823\) 8.70002 0.303264 0.151632 0.988437i \(-0.451547\pi\)
0.151632 + 0.988437i \(0.451547\pi\)
\(824\) 6.20499 0.216161
\(825\) 127.320 4.43271
\(826\) 1.89917 0.0660805
\(827\) 11.0112 0.382898 0.191449 0.981503i \(-0.438681\pi\)
0.191449 + 0.981503i \(0.438681\pi\)
\(828\) 17.0220 0.591556
\(829\) 40.0764 1.39191 0.695955 0.718086i \(-0.254981\pi\)
0.695955 + 0.718086i \(0.254981\pi\)
\(830\) 12.4181 0.431039
\(831\) 18.1462 0.629483
\(832\) −43.3393 −1.50252
\(833\) −4.12322 −0.142861
\(834\) 1.52128 0.0526778
\(835\) 62.8539 2.17515
\(836\) 0.386818 0.0133784
\(837\) 5.55986 0.192177
\(838\) 3.61077 0.124732
\(839\) −5.37182 −0.185456 −0.0927279 0.995691i \(-0.529559\pi\)
−0.0927279 + 0.995691i \(0.529559\pi\)
\(840\) −6.93644 −0.239330
\(841\) −24.1642 −0.833247
\(842\) −2.52036 −0.0868574
\(843\) 20.8370 0.717664
\(844\) 33.9192 1.16755
\(845\) 93.8221 3.22758
\(846\) −1.79876 −0.0618425
\(847\) −16.7403 −0.575204
\(848\) −37.7179 −1.29524
\(849\) 26.8095 0.920099
\(850\) −8.20021 −0.281265
\(851\) 33.2993 1.14149
\(852\) −47.1547 −1.61549
\(853\) 37.5087 1.28427 0.642137 0.766590i \(-0.278048\pi\)
0.642137 + 0.766590i \(0.278048\pi\)
\(854\) 0.0732001 0.00250485
\(855\) 0.355694 0.0121645
\(856\) −2.45111 −0.0837774
\(857\) 17.2234 0.588339 0.294169 0.955753i \(-0.404957\pi\)
0.294169 + 0.955753i \(0.404957\pi\)
\(858\) 14.2834 0.487626
\(859\) −26.0045 −0.887262 −0.443631 0.896210i \(-0.646310\pi\)
−0.443631 + 0.896210i \(0.646310\pi\)
\(860\) 88.0345 3.00195
\(861\) −22.0873 −0.752734
\(862\) −7.38604 −0.251569
\(863\) 32.4210 1.10362 0.551812 0.833969i \(-0.313937\pi\)
0.551812 + 0.833969i \(0.313937\pi\)
\(864\) 3.00634 0.102278
\(865\) −58.2683 −1.98118
\(866\) 5.28651 0.179643
\(867\) −0.00225386 −7.65450e−5 0
\(868\) 8.14536 0.276472
\(869\) −51.2649 −1.73904
\(870\) 3.84873 0.130484
\(871\) 26.7730 0.907169
\(872\) −12.8414 −0.434864
\(873\) −14.1921 −0.480329
\(874\) −0.0256321 −0.000867018 0
\(875\) −21.0943 −0.713117
\(876\) −15.4471 −0.521910
\(877\) 31.8805 1.07653 0.538264 0.842776i \(-0.319080\pi\)
0.538264 + 0.842776i \(0.319080\pi\)
\(878\) −3.55667 −0.120032
\(879\) 10.2830 0.346838
\(880\) −78.0965 −2.63263
\(881\) −10.9692 −0.369563 −0.184782 0.982780i \(-0.559158\pi\)
−0.184782 + 0.982780i \(0.559158\pi\)
\(882\) 0.464598 0.0156438
\(883\) −43.5368 −1.46513 −0.732564 0.680698i \(-0.761677\pi\)
−0.732564 + 0.680698i \(0.761677\pi\)
\(884\) 49.1900 1.65444
\(885\) 90.5272 3.04304
\(886\) 0.770582 0.0258882
\(887\) −12.9767 −0.435715 −0.217857 0.975981i \(-0.569907\pi\)
−0.217857 + 0.975981i \(0.569907\pi\)
\(888\) −16.4712 −0.552736
\(889\) 1.00000 0.0335389
\(890\) −1.90137 −0.0637339
\(891\) 54.7499 1.83419
\(892\) −52.6647 −1.76335
\(893\) −0.144831 −0.00484660
\(894\) 1.04843 0.0350647
\(895\) −40.7912 −1.36350
\(896\) 5.85340 0.195548
\(897\) 50.6087 1.68977
\(898\) −4.79067 −0.159867
\(899\) −9.12353 −0.304287
\(900\) −49.4063 −1.64688
\(901\) 41.1313 1.37028
\(902\) 9.57077 0.318672
\(903\) −26.6312 −0.886231
\(904\) −4.24209 −0.141090
\(905\) −23.9536 −0.796243
\(906\) 1.53034 0.0508421
\(907\) −2.23113 −0.0740833 −0.0370417 0.999314i \(-0.511793\pi\)
−0.0370417 + 0.999314i \(0.511793\pi\)
\(908\) −35.8926 −1.19114
\(909\) −4.32582 −0.143478
\(910\) −4.56619 −0.151368
\(911\) 29.4118 0.974457 0.487228 0.873275i \(-0.338008\pi\)
0.487228 + 0.873275i \(0.338008\pi\)
\(912\) −0.329431 −0.0109086
\(913\) −87.0391 −2.88058
\(914\) −1.96358 −0.0649493
\(915\) 3.48921 0.115350
\(916\) −8.38961 −0.277201
\(917\) 15.7005 0.518476
\(918\) −1.05878 −0.0349450
\(919\) 3.92759 0.129559 0.0647796 0.997900i \(-0.479366\pi\)
0.0647796 + 0.997900i \(0.479366\pi\)
\(920\) 10.6497 0.351109
\(921\) −11.2474 −0.370613
\(922\) 2.01575 0.0663851
\(923\) −62.6634 −2.06259
\(924\) 24.0837 0.792296
\(925\) −96.6511 −3.17787
\(926\) 4.84199 0.159118
\(927\) −19.8106 −0.650665
\(928\) −4.93329 −0.161943
\(929\) 26.5871 0.872293 0.436147 0.899876i \(-0.356343\pi\)
0.436147 + 0.899876i \(0.356343\pi\)
\(930\) −7.26121 −0.238105
\(931\) 0.0374083 0.00122601
\(932\) 1.92802 0.0631546
\(933\) 36.7106 1.20185
\(934\) 0.783646 0.0256417
\(935\) 85.1641 2.78516
\(936\) −11.1889 −0.365722
\(937\) −46.5758 −1.52156 −0.760782 0.649007i \(-0.775185\pi\)
−0.760782 + 0.649007i \(0.775185\pi\)
\(938\) −0.844254 −0.0275659
\(939\) −30.8774 −1.00765
\(940\) 29.8086 0.972250
\(941\) −3.71923 −0.121243 −0.0606217 0.998161i \(-0.519308\pi\)
−0.0606217 + 0.998161i \(0.519308\pi\)
\(942\) 8.87883 0.289288
\(943\) 33.9111 1.10430
\(944\) −37.4751 −1.21971
\(945\) −5.25533 −0.170956
\(946\) 11.5397 0.375188
\(947\) −1.23688 −0.0401934 −0.0200967 0.999798i \(-0.506397\pi\)
−0.0200967 + 0.999798i \(0.506397\pi\)
\(948\) 44.5074 1.44553
\(949\) −20.5275 −0.666351
\(950\) 0.0743971 0.00241376
\(951\) −12.0903 −0.392055
\(952\) −3.13130 −0.101486
\(953\) −52.2025 −1.69101 −0.845503 0.533971i \(-0.820699\pi\)
−0.845503 + 0.533971i \(0.820699\pi\)
\(954\) −4.63461 −0.150051
\(955\) 34.0373 1.10142
\(956\) 17.4482 0.564314
\(957\) −26.9759 −0.872007
\(958\) −7.04394 −0.227579
\(959\) −7.97414 −0.257499
\(960\) 65.1439 2.10251
\(961\) −13.7871 −0.444744
\(962\) −10.8428 −0.349586
\(963\) 7.82564 0.252178
\(964\) 53.9251 1.73681
\(965\) −16.8017 −0.540864
\(966\) −1.59588 −0.0513467
\(967\) 25.3043 0.813731 0.406866 0.913488i \(-0.366622\pi\)
0.406866 + 0.913488i \(0.366622\pi\)
\(968\) −12.7131 −0.408615
\(969\) 0.359244 0.0115406
\(970\) −4.39844 −0.141225
\(971\) 4.96055 0.159192 0.0795958 0.996827i \(-0.474637\pi\)
0.0795958 + 0.996827i \(0.474637\pi\)
\(972\) −39.6400 −1.27145
\(973\) 3.40873 0.109279
\(974\) −6.46810 −0.207251
\(975\) −146.892 −4.70430
\(976\) −1.44441 −0.0462344
\(977\) −3.61365 −0.115611 −0.0578055 0.998328i \(-0.518410\pi\)
−0.0578055 + 0.998328i \(0.518410\pi\)
\(978\) −2.98337 −0.0953976
\(979\) 13.3268 0.425925
\(980\) −7.69922 −0.245943
\(981\) 40.9985 1.30898
\(982\) 0.546271 0.0174322
\(983\) −51.8644 −1.65422 −0.827109 0.562042i \(-0.810016\pi\)
−0.827109 + 0.562042i \(0.810016\pi\)
\(984\) −16.7738 −0.534729
\(985\) 81.8597 2.60827
\(986\) 1.73742 0.0553308
\(987\) −9.01737 −0.287026
\(988\) −0.446280 −0.0141981
\(989\) 40.8874 1.30014
\(990\) −9.59615 −0.304986
\(991\) 6.60298 0.209751 0.104875 0.994485i \(-0.466556\pi\)
0.104875 + 0.994485i \(0.466556\pi\)
\(992\) 9.30741 0.295511
\(993\) 26.0587 0.826947
\(994\) 1.97601 0.0626754
\(995\) 91.4485 2.89911
\(996\) 75.5660 2.39440
\(997\) −0.888839 −0.0281498 −0.0140749 0.999901i \(-0.504480\pi\)
−0.0140749 + 0.999901i \(0.504480\pi\)
\(998\) −2.86582 −0.0907160
\(999\) −12.4792 −0.394826
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 889.2.a.c.1.10 16
3.2 odd 2 8001.2.a.t.1.7 16
7.6 odd 2 6223.2.a.k.1.10 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
889.2.a.c.1.10 16 1.1 even 1 trivial
6223.2.a.k.1.10 16 7.6 odd 2
8001.2.a.t.1.7 16 3.2 odd 2