Properties

Label 8001.2.a.t.1.7
Level $8001$
Weight $2$
Character 8001.1
Self dual yes
Analytic conductor $63.888$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8001,2,Mod(1,8001)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8001, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8001.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8001 = 3^{2} \cdot 7 \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8001.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,2,0,12,9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.8883066572\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} - 20 x^{14} + 38 x^{13} + 155 x^{12} - 275 x^{11} - 593 x^{10} + 957 x^{9} + 1177 x^{8} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 889)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-0.191617\) of defining polynomial
Character \(\chi\) \(=\) 8001.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.191617 q^{2} -1.96328 q^{4} -3.92161 q^{5} -1.00000 q^{7} +0.759431 q^{8} +0.751445 q^{10} +5.26691 q^{11} +6.07655 q^{13} +0.191617 q^{14} +3.78105 q^{16} +4.12322 q^{17} +0.0374083 q^{19} +7.69922 q^{20} -1.00923 q^{22} +3.57588 q^{23} +10.3790 q^{25} -1.16437 q^{26} +1.96328 q^{28} +2.19905 q^{29} +4.14885 q^{31} -2.24337 q^{32} -0.790078 q^{34} +3.92161 q^{35} -9.31219 q^{37} -0.00716804 q^{38} -2.97819 q^{40} +9.48327 q^{41} -11.4342 q^{43} -10.3404 q^{44} -0.685199 q^{46} +3.87164 q^{47} +1.00000 q^{49} -1.98879 q^{50} -11.9300 q^{52} +9.97552 q^{53} -20.6547 q^{55} -0.759431 q^{56} -0.421374 q^{58} +9.91129 q^{59} -0.382013 q^{61} -0.794988 q^{62} -7.13223 q^{64} -23.8298 q^{65} +4.40596 q^{67} -8.09505 q^{68} -0.751445 q^{70} +10.3123 q^{71} -3.37816 q^{73} +1.78437 q^{74} -0.0734430 q^{76} -5.26691 q^{77} +9.73339 q^{79} -14.8278 q^{80} -1.81715 q^{82} -16.5257 q^{83} -16.1697 q^{85} +2.19098 q^{86} +3.99985 q^{88} +2.53028 q^{89} -6.07655 q^{91} -7.02047 q^{92} -0.741870 q^{94} -0.146700 q^{95} -5.85331 q^{97} -0.191617 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 2 q^{2} + 12 q^{4} + 9 q^{5} - 16 q^{7} + 6 q^{8} - 2 q^{10} + 22 q^{11} - 4 q^{13} - 2 q^{14} + 12 q^{16} + 18 q^{17} - 15 q^{19} + 40 q^{20} - 11 q^{22} + 5 q^{23} + 15 q^{25} + 24 q^{26} - 12 q^{28}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.191617 −0.135493 −0.0677467 0.997703i \(-0.521581\pi\)
−0.0677467 + 0.997703i \(0.521581\pi\)
\(3\) 0 0
\(4\) −1.96328 −0.981642
\(5\) −3.92161 −1.75380 −0.876898 0.480677i \(-0.840391\pi\)
−0.876898 + 0.480677i \(0.840391\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0.759431 0.268499
\(9\) 0 0
\(10\) 0.751445 0.237628
\(11\) 5.26691 1.58803 0.794016 0.607897i \(-0.207986\pi\)
0.794016 + 0.607897i \(0.207986\pi\)
\(12\) 0 0
\(13\) 6.07655 1.68533 0.842665 0.538438i \(-0.180985\pi\)
0.842665 + 0.538438i \(0.180985\pi\)
\(14\) 0.191617 0.0512117
\(15\) 0 0
\(16\) 3.78105 0.945262
\(17\) 4.12322 1.00003 0.500014 0.866017i \(-0.333328\pi\)
0.500014 + 0.866017i \(0.333328\pi\)
\(18\) 0 0
\(19\) 0.0374083 0.00858204 0.00429102 0.999991i \(-0.498634\pi\)
0.00429102 + 0.999991i \(0.498634\pi\)
\(20\) 7.69922 1.72160
\(21\) 0 0
\(22\) −1.00923 −0.215168
\(23\) 3.57588 0.745623 0.372812 0.927907i \(-0.378394\pi\)
0.372812 + 0.927907i \(0.378394\pi\)
\(24\) 0 0
\(25\) 10.3790 2.07580
\(26\) −1.16437 −0.228351
\(27\) 0 0
\(28\) 1.96328 0.371026
\(29\) 2.19905 0.408353 0.204177 0.978934i \(-0.434548\pi\)
0.204177 + 0.978934i \(0.434548\pi\)
\(30\) 0 0
\(31\) 4.14885 0.745155 0.372577 0.928001i \(-0.378474\pi\)
0.372577 + 0.928001i \(0.378474\pi\)
\(32\) −2.24337 −0.396576
\(33\) 0 0
\(34\) −0.790078 −0.135497
\(35\) 3.92161 0.662872
\(36\) 0 0
\(37\) −9.31219 −1.53091 −0.765457 0.643487i \(-0.777487\pi\)
−0.765457 + 0.643487i \(0.777487\pi\)
\(38\) −0.00716804 −0.00116281
\(39\) 0 0
\(40\) −2.97819 −0.470893
\(41\) 9.48327 1.48104 0.740519 0.672035i \(-0.234580\pi\)
0.740519 + 0.672035i \(0.234580\pi\)
\(42\) 0 0
\(43\) −11.4342 −1.74370 −0.871850 0.489774i \(-0.837079\pi\)
−0.871850 + 0.489774i \(0.837079\pi\)
\(44\) −10.3404 −1.55888
\(45\) 0 0
\(46\) −0.685199 −0.101027
\(47\) 3.87164 0.564737 0.282368 0.959306i \(-0.408880\pi\)
0.282368 + 0.959306i \(0.408880\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) −1.98879 −0.281257
\(51\) 0 0
\(52\) −11.9300 −1.65439
\(53\) 9.97552 1.37024 0.685122 0.728429i \(-0.259749\pi\)
0.685122 + 0.728429i \(0.259749\pi\)
\(54\) 0 0
\(55\) −20.6547 −2.78508
\(56\) −0.759431 −0.101483
\(57\) 0 0
\(58\) −0.421374 −0.0553292
\(59\) 9.91129 1.29034 0.645170 0.764039i \(-0.276786\pi\)
0.645170 + 0.764039i \(0.276786\pi\)
\(60\) 0 0
\(61\) −0.382013 −0.0489118 −0.0244559 0.999701i \(-0.507785\pi\)
−0.0244559 + 0.999701i \(0.507785\pi\)
\(62\) −0.794988 −0.100964
\(63\) 0 0
\(64\) −7.13223 −0.891528
\(65\) −23.8298 −2.95573
\(66\) 0 0
\(67\) 4.40596 0.538273 0.269137 0.963102i \(-0.413262\pi\)
0.269137 + 0.963102i \(0.413262\pi\)
\(68\) −8.09505 −0.981669
\(69\) 0 0
\(70\) −0.751445 −0.0898148
\(71\) 10.3123 1.22385 0.611925 0.790916i \(-0.290396\pi\)
0.611925 + 0.790916i \(0.290396\pi\)
\(72\) 0 0
\(73\) −3.37816 −0.395383 −0.197692 0.980264i \(-0.563344\pi\)
−0.197692 + 0.980264i \(0.563344\pi\)
\(74\) 1.78437 0.207429
\(75\) 0 0
\(76\) −0.0734430 −0.00842449
\(77\) −5.26691 −0.600220
\(78\) 0 0
\(79\) 9.73339 1.09509 0.547546 0.836776i \(-0.315562\pi\)
0.547546 + 0.836776i \(0.315562\pi\)
\(80\) −14.8278 −1.65780
\(81\) 0 0
\(82\) −1.81715 −0.200671
\(83\) −16.5257 −1.81393 −0.906964 0.421209i \(-0.861606\pi\)
−0.906964 + 0.421209i \(0.861606\pi\)
\(84\) 0 0
\(85\) −16.1697 −1.75385
\(86\) 2.19098 0.236260
\(87\) 0 0
\(88\) 3.99985 0.426386
\(89\) 2.53028 0.268209 0.134105 0.990967i \(-0.457184\pi\)
0.134105 + 0.990967i \(0.457184\pi\)
\(90\) 0 0
\(91\) −6.07655 −0.636995
\(92\) −7.02047 −0.731935
\(93\) 0 0
\(94\) −0.741870 −0.0765181
\(95\) −0.146700 −0.0150512
\(96\) 0 0
\(97\) −5.85331 −0.594314 −0.297157 0.954829i \(-0.596038\pi\)
−0.297157 + 0.954829i \(0.596038\pi\)
\(98\) −0.191617 −0.0193562
\(99\) 0 0
\(100\) −20.3769 −2.03769
\(101\) 1.78412 0.177527 0.0887633 0.996053i \(-0.471709\pi\)
0.0887633 + 0.996053i \(0.471709\pi\)
\(102\) 0 0
\(103\) −8.17058 −0.805071 −0.402536 0.915404i \(-0.631871\pi\)
−0.402536 + 0.915404i \(0.631871\pi\)
\(104\) 4.61471 0.452510
\(105\) 0 0
\(106\) −1.91148 −0.185659
\(107\) −3.22757 −0.312021 −0.156010 0.987755i \(-0.549863\pi\)
−0.156010 + 0.987755i \(0.549863\pi\)
\(108\) 0 0
\(109\) 16.9092 1.61961 0.809805 0.586700i \(-0.199573\pi\)
0.809805 + 0.586700i \(0.199573\pi\)
\(110\) 3.95779 0.377360
\(111\) 0 0
\(112\) −3.78105 −0.357275
\(113\) −5.58588 −0.525476 −0.262738 0.964867i \(-0.584625\pi\)
−0.262738 + 0.964867i \(0.584625\pi\)
\(114\) 0 0
\(115\) −14.0232 −1.30767
\(116\) −4.31736 −0.400857
\(117\) 0 0
\(118\) −1.89917 −0.174833
\(119\) −4.12322 −0.377975
\(120\) 0 0
\(121\) 16.7403 1.52185
\(122\) 0.0732001 0.00662722
\(123\) 0 0
\(124\) −8.14536 −0.731475
\(125\) −21.0943 −1.88673
\(126\) 0 0
\(127\) −1.00000 −0.0887357
\(128\) 5.85340 0.517372
\(129\) 0 0
\(130\) 4.56619 0.400481
\(131\) 15.7005 1.37176 0.685879 0.727716i \(-0.259418\pi\)
0.685879 + 0.727716i \(0.259418\pi\)
\(132\) 0 0
\(133\) −0.0374083 −0.00324371
\(134\) −0.844254 −0.0729325
\(135\) 0 0
\(136\) 3.13130 0.268507
\(137\) −7.97414 −0.681277 −0.340639 0.940194i \(-0.610643\pi\)
−0.340639 + 0.940194i \(0.610643\pi\)
\(138\) 0 0
\(139\) −3.40873 −0.289125 −0.144562 0.989496i \(-0.546177\pi\)
−0.144562 + 0.989496i \(0.546177\pi\)
\(140\) −7.69922 −0.650703
\(141\) 0 0
\(142\) −1.97601 −0.165823
\(143\) 32.0046 2.67636
\(144\) 0 0
\(145\) −8.62381 −0.716169
\(146\) 0.647310 0.0535718
\(147\) 0 0
\(148\) 18.2825 1.50281
\(149\) 2.34920 0.192454 0.0962271 0.995359i \(-0.469322\pi\)
0.0962271 + 0.995359i \(0.469322\pi\)
\(150\) 0 0
\(151\) −3.42902 −0.279050 −0.139525 0.990219i \(-0.544558\pi\)
−0.139525 + 0.990219i \(0.544558\pi\)
\(152\) 0.0284090 0.00230427
\(153\) 0 0
\(154\) 1.00923 0.0813258
\(155\) −16.2701 −1.30685
\(156\) 0 0
\(157\) −19.8947 −1.58777 −0.793886 0.608067i \(-0.791945\pi\)
−0.793886 + 0.608067i \(0.791945\pi\)
\(158\) −1.86508 −0.148378
\(159\) 0 0
\(160\) 8.79762 0.695513
\(161\) −3.57588 −0.281819
\(162\) 0 0
\(163\) 6.68481 0.523595 0.261797 0.965123i \(-0.415685\pi\)
0.261797 + 0.965123i \(0.415685\pi\)
\(164\) −18.6183 −1.45385
\(165\) 0 0
\(166\) 3.16659 0.245775
\(167\) −16.0276 −1.24025 −0.620126 0.784502i \(-0.712918\pi\)
−0.620126 + 0.784502i \(0.712918\pi\)
\(168\) 0 0
\(169\) 23.9244 1.84034
\(170\) 3.09837 0.237634
\(171\) 0 0
\(172\) 22.4486 1.71169
\(173\) 14.8583 1.12965 0.564827 0.825209i \(-0.308943\pi\)
0.564827 + 0.825209i \(0.308943\pi\)
\(174\) 0 0
\(175\) −10.3790 −0.784578
\(176\) 19.9144 1.50111
\(177\) 0 0
\(178\) −0.484844 −0.0363406
\(179\) 10.4016 0.777456 0.388728 0.921353i \(-0.372915\pi\)
0.388728 + 0.921353i \(0.372915\pi\)
\(180\) 0 0
\(181\) −6.10810 −0.454011 −0.227006 0.973893i \(-0.572894\pi\)
−0.227006 + 0.973893i \(0.572894\pi\)
\(182\) 1.16437 0.0863086
\(183\) 0 0
\(184\) 2.71564 0.200199
\(185\) 36.5187 2.68491
\(186\) 0 0
\(187\) 21.7166 1.58808
\(188\) −7.60113 −0.554369
\(189\) 0 0
\(190\) 0.0281102 0.00203933
\(191\) −8.67944 −0.628022 −0.314011 0.949419i \(-0.601673\pi\)
−0.314011 + 0.949419i \(0.601673\pi\)
\(192\) 0 0
\(193\) −4.28438 −0.308396 −0.154198 0.988040i \(-0.549279\pi\)
−0.154198 + 0.988040i \(0.549279\pi\)
\(194\) 1.12159 0.0805255
\(195\) 0 0
\(196\) −1.96328 −0.140235
\(197\) −20.8740 −1.48721 −0.743606 0.668618i \(-0.766886\pi\)
−0.743606 + 0.668618i \(0.766886\pi\)
\(198\) 0 0
\(199\) 23.3191 1.65305 0.826525 0.562900i \(-0.190314\pi\)
0.826525 + 0.562900i \(0.190314\pi\)
\(200\) 7.88213 0.557350
\(201\) 0 0
\(202\) −0.341867 −0.0240537
\(203\) −2.19905 −0.154343
\(204\) 0 0
\(205\) −37.1897 −2.59744
\(206\) 1.56562 0.109082
\(207\) 0 0
\(208\) 22.9757 1.59308
\(209\) 0.197026 0.0136286
\(210\) 0 0
\(211\) −17.2768 −1.18938 −0.594691 0.803954i \(-0.702726\pi\)
−0.594691 + 0.803954i \(0.702726\pi\)
\(212\) −19.5848 −1.34509
\(213\) 0 0
\(214\) 0.618456 0.0422768
\(215\) 44.8404 3.05809
\(216\) 0 0
\(217\) −4.14885 −0.281642
\(218\) −3.24009 −0.219446
\(219\) 0 0
\(220\) 40.5511 2.73395
\(221\) 25.0550 1.68538
\(222\) 0 0
\(223\) 26.8248 1.79632 0.898162 0.439665i \(-0.144903\pi\)
0.898162 + 0.439665i \(0.144903\pi\)
\(224\) 2.24337 0.149892
\(225\) 0 0
\(226\) 1.07035 0.0711985
\(227\) −18.2819 −1.21341 −0.606707 0.794925i \(-0.707510\pi\)
−0.606707 + 0.794925i \(0.707510\pi\)
\(228\) 0 0
\(229\) 4.27326 0.282385 0.141192 0.989982i \(-0.454906\pi\)
0.141192 + 0.989982i \(0.454906\pi\)
\(230\) 2.68708 0.177181
\(231\) 0 0
\(232\) 1.67003 0.109643
\(233\) 0.982041 0.0643357 0.0321678 0.999482i \(-0.489759\pi\)
0.0321678 + 0.999482i \(0.489759\pi\)
\(234\) 0 0
\(235\) −15.1830 −0.990433
\(236\) −19.4587 −1.26665
\(237\) 0 0
\(238\) 0.790078 0.0512131
\(239\) 8.88724 0.574868 0.287434 0.957800i \(-0.407198\pi\)
0.287434 + 0.957800i \(0.407198\pi\)
\(240\) 0 0
\(241\) −27.4668 −1.76929 −0.884646 0.466264i \(-0.845600\pi\)
−0.884646 + 0.466264i \(0.845600\pi\)
\(242\) −3.20772 −0.206200
\(243\) 0 0
\(244\) 0.750000 0.0480138
\(245\) −3.92161 −0.250542
\(246\) 0 0
\(247\) 0.227313 0.0144636
\(248\) 3.15076 0.200074
\(249\) 0 0
\(250\) 4.04202 0.255640
\(251\) 7.65870 0.483413 0.241706 0.970349i \(-0.422293\pi\)
0.241706 + 0.970349i \(0.422293\pi\)
\(252\) 0 0
\(253\) 18.8339 1.18407
\(254\) 0.191617 0.0120231
\(255\) 0 0
\(256\) 13.1428 0.821428
\(257\) 19.3455 1.20674 0.603369 0.797462i \(-0.293824\pi\)
0.603369 + 0.797462i \(0.293824\pi\)
\(258\) 0 0
\(259\) 9.31219 0.578631
\(260\) 46.7847 2.90146
\(261\) 0 0
\(262\) −3.00847 −0.185864
\(263\) −12.7413 −0.785660 −0.392830 0.919611i \(-0.628504\pi\)
−0.392830 + 0.919611i \(0.628504\pi\)
\(264\) 0 0
\(265\) −39.1201 −2.40313
\(266\) 0.00716804 0.000439501 0
\(267\) 0 0
\(268\) −8.65014 −0.528392
\(269\) −9.02960 −0.550545 −0.275272 0.961366i \(-0.588768\pi\)
−0.275272 + 0.961366i \(0.588768\pi\)
\(270\) 0 0
\(271\) 16.6046 1.00866 0.504328 0.863512i \(-0.331740\pi\)
0.504328 + 0.863512i \(0.331740\pi\)
\(272\) 15.5901 0.945289
\(273\) 0 0
\(274\) 1.52798 0.0923085
\(275\) 54.6652 3.29644
\(276\) 0 0
\(277\) −7.79112 −0.468123 −0.234061 0.972222i \(-0.575202\pi\)
−0.234061 + 0.972222i \(0.575202\pi\)
\(278\) 0.653169 0.0391745
\(279\) 0 0
\(280\) 2.97819 0.177981
\(281\) 8.94643 0.533700 0.266850 0.963738i \(-0.414017\pi\)
0.266850 + 0.963738i \(0.414017\pi\)
\(282\) 0 0
\(283\) −11.5107 −0.684243 −0.342121 0.939656i \(-0.611145\pi\)
−0.342121 + 0.939656i \(0.611145\pi\)
\(284\) −20.2460 −1.20138
\(285\) 0 0
\(286\) −6.13261 −0.362629
\(287\) −9.48327 −0.559780
\(288\) 0 0
\(289\) 0.000967701 0 5.69236e−5 0
\(290\) 1.65246 0.0970361
\(291\) 0 0
\(292\) 6.63228 0.388125
\(293\) 4.41505 0.257930 0.128965 0.991649i \(-0.458834\pi\)
0.128965 + 0.991649i \(0.458834\pi\)
\(294\) 0 0
\(295\) −38.8682 −2.26299
\(296\) −7.07196 −0.411049
\(297\) 0 0
\(298\) −0.450146 −0.0260763
\(299\) 21.7290 1.25662
\(300\) 0 0
\(301\) 11.4342 0.659056
\(302\) 0.657057 0.0378094
\(303\) 0 0
\(304\) 0.141442 0.00811228
\(305\) 1.49811 0.0857813
\(306\) 0 0
\(307\) 4.82910 0.275611 0.137806 0.990459i \(-0.455995\pi\)
0.137806 + 0.990459i \(0.455995\pi\)
\(308\) 10.3404 0.589201
\(309\) 0 0
\(310\) 3.11763 0.177069
\(311\) 15.7618 0.893772 0.446886 0.894591i \(-0.352533\pi\)
0.446886 + 0.894591i \(0.352533\pi\)
\(312\) 0 0
\(313\) 13.2573 0.749349 0.374675 0.927156i \(-0.377754\pi\)
0.374675 + 0.927156i \(0.377754\pi\)
\(314\) 3.81216 0.215132
\(315\) 0 0
\(316\) −19.1094 −1.07499
\(317\) −5.19102 −0.291557 −0.145778 0.989317i \(-0.546569\pi\)
−0.145778 + 0.989317i \(0.546569\pi\)
\(318\) 0 0
\(319\) 11.5822 0.648479
\(320\) 27.9698 1.56356
\(321\) 0 0
\(322\) 0.685199 0.0381846
\(323\) 0.154243 0.00858229
\(324\) 0 0
\(325\) 63.0684 3.49841
\(326\) −1.28092 −0.0709436
\(327\) 0 0
\(328\) 7.20189 0.397658
\(329\) −3.87164 −0.213450
\(330\) 0 0
\(331\) −11.1884 −0.614969 −0.307485 0.951553i \(-0.599487\pi\)
−0.307485 + 0.951553i \(0.599487\pi\)
\(332\) 32.4446 1.78063
\(333\) 0 0
\(334\) 3.07115 0.168046
\(335\) −17.2784 −0.944022
\(336\) 0 0
\(337\) 17.1501 0.934223 0.467111 0.884198i \(-0.345295\pi\)
0.467111 + 0.884198i \(0.345295\pi\)
\(338\) −4.58431 −0.249354
\(339\) 0 0
\(340\) 31.7456 1.72165
\(341\) 21.8516 1.18333
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) −8.68348 −0.468182
\(345\) 0 0
\(346\) −2.84709 −0.153061
\(347\) −0.0256912 −0.00137917 −0.000689587 1.00000i \(-0.500220\pi\)
−0.000689587 1.00000i \(0.500220\pi\)
\(348\) 0 0
\(349\) 23.9479 1.28190 0.640950 0.767583i \(-0.278541\pi\)
0.640950 + 0.767583i \(0.278541\pi\)
\(350\) 1.98879 0.106305
\(351\) 0 0
\(352\) −11.8156 −0.629775
\(353\) 6.33830 0.337354 0.168677 0.985671i \(-0.446051\pi\)
0.168677 + 0.985671i \(0.446051\pi\)
\(354\) 0 0
\(355\) −40.4409 −2.14638
\(356\) −4.96766 −0.263285
\(357\) 0 0
\(358\) −1.99313 −0.105340
\(359\) 10.9811 0.579563 0.289781 0.957093i \(-0.406417\pi\)
0.289781 + 0.957093i \(0.406417\pi\)
\(360\) 0 0
\(361\) −18.9986 −0.999926
\(362\) 1.17041 0.0615155
\(363\) 0 0
\(364\) 11.9300 0.625301
\(365\) 13.2478 0.693421
\(366\) 0 0
\(367\) 21.0669 1.09968 0.549840 0.835270i \(-0.314689\pi\)
0.549840 + 0.835270i \(0.314689\pi\)
\(368\) 13.5206 0.704809
\(369\) 0 0
\(370\) −6.99759 −0.363787
\(371\) −9.97552 −0.517903
\(372\) 0 0
\(373\) 10.6031 0.549009 0.274505 0.961586i \(-0.411486\pi\)
0.274505 + 0.961586i \(0.411486\pi\)
\(374\) −4.16127 −0.215174
\(375\) 0 0
\(376\) 2.94024 0.151631
\(377\) 13.3626 0.688211
\(378\) 0 0
\(379\) −5.57679 −0.286460 −0.143230 0.989689i \(-0.545749\pi\)
−0.143230 + 0.989689i \(0.545749\pi\)
\(380\) 0.288015 0.0147748
\(381\) 0 0
\(382\) 1.66312 0.0850928
\(383\) −19.7345 −1.00838 −0.504192 0.863592i \(-0.668209\pi\)
−0.504192 + 0.863592i \(0.668209\pi\)
\(384\) 0 0
\(385\) 20.6547 1.05266
\(386\) 0.820958 0.0417857
\(387\) 0 0
\(388\) 11.4917 0.583403
\(389\) −16.1098 −0.816799 −0.408399 0.912803i \(-0.633913\pi\)
−0.408399 + 0.912803i \(0.633913\pi\)
\(390\) 0 0
\(391\) 14.7442 0.745645
\(392\) 0.759431 0.0383570
\(393\) 0 0
\(394\) 3.99981 0.201507
\(395\) −38.1705 −1.92057
\(396\) 0 0
\(397\) −6.80662 −0.341614 −0.170807 0.985304i \(-0.554638\pi\)
−0.170807 + 0.985304i \(0.554638\pi\)
\(398\) −4.46833 −0.223977
\(399\) 0 0
\(400\) 39.2435 1.96217
\(401\) 17.1989 0.858873 0.429437 0.903097i \(-0.358712\pi\)
0.429437 + 0.903097i \(0.358712\pi\)
\(402\) 0 0
\(403\) 25.2107 1.25583
\(404\) −3.50273 −0.174267
\(405\) 0 0
\(406\) 0.421374 0.0209125
\(407\) −49.0464 −2.43114
\(408\) 0 0
\(409\) 3.13066 0.154801 0.0774005 0.997000i \(-0.475338\pi\)
0.0774005 + 0.997000i \(0.475338\pi\)
\(410\) 7.12615 0.351936
\(411\) 0 0
\(412\) 16.0412 0.790291
\(413\) −9.91129 −0.487703
\(414\) 0 0
\(415\) 64.8071 3.18126
\(416\) −13.6320 −0.668362
\(417\) 0 0
\(418\) −0.0377534 −0.00184658
\(419\) −18.8437 −0.920576 −0.460288 0.887770i \(-0.652254\pi\)
−0.460288 + 0.887770i \(0.652254\pi\)
\(420\) 0 0
\(421\) −13.1531 −0.641045 −0.320523 0.947241i \(-0.603859\pi\)
−0.320523 + 0.947241i \(0.603859\pi\)
\(422\) 3.31052 0.161153
\(423\) 0 0
\(424\) 7.57572 0.367909
\(425\) 42.7949 2.07586
\(426\) 0 0
\(427\) 0.382013 0.0184869
\(428\) 6.33663 0.306293
\(429\) 0 0
\(430\) −8.59217 −0.414351
\(431\) 38.5459 1.85669 0.928346 0.371716i \(-0.121231\pi\)
0.928346 + 0.371716i \(0.121231\pi\)
\(432\) 0 0
\(433\) 27.5890 1.32584 0.662922 0.748689i \(-0.269316\pi\)
0.662922 + 0.748689i \(0.269316\pi\)
\(434\) 0.794988 0.0381606
\(435\) 0 0
\(436\) −33.1976 −1.58988
\(437\) 0.133768 0.00639897
\(438\) 0 0
\(439\) −18.5614 −0.885887 −0.442943 0.896550i \(-0.646066\pi\)
−0.442943 + 0.896550i \(0.646066\pi\)
\(440\) −15.6858 −0.747793
\(441\) 0 0
\(442\) −4.80094 −0.228358
\(443\) −4.02148 −0.191066 −0.0955332 0.995426i \(-0.530456\pi\)
−0.0955332 + 0.995426i \(0.530456\pi\)
\(444\) 0 0
\(445\) −9.92277 −0.470384
\(446\) −5.14008 −0.243390
\(447\) 0 0
\(448\) 7.13223 0.336966
\(449\) 25.0013 1.17989 0.589943 0.807445i \(-0.299150\pi\)
0.589943 + 0.807445i \(0.299150\pi\)
\(450\) 0 0
\(451\) 49.9475 2.35194
\(452\) 10.9667 0.515829
\(453\) 0 0
\(454\) 3.50312 0.164410
\(455\) 23.8298 1.11716
\(456\) 0 0
\(457\) −10.2474 −0.479354 −0.239677 0.970853i \(-0.577042\pi\)
−0.239677 + 0.970853i \(0.577042\pi\)
\(458\) −0.818826 −0.0382612
\(459\) 0 0
\(460\) 27.5315 1.28366
\(461\) −10.5197 −0.489951 −0.244975 0.969529i \(-0.578780\pi\)
−0.244975 + 0.969529i \(0.578780\pi\)
\(462\) 0 0
\(463\) 25.2692 1.17436 0.587179 0.809457i \(-0.300238\pi\)
0.587179 + 0.809457i \(0.300238\pi\)
\(464\) 8.31471 0.386001
\(465\) 0 0
\(466\) −0.188175 −0.00871705
\(467\) −4.08966 −0.189247 −0.0946234 0.995513i \(-0.530165\pi\)
−0.0946234 + 0.995513i \(0.530165\pi\)
\(468\) 0 0
\(469\) −4.40596 −0.203448
\(470\) 2.90932 0.134197
\(471\) 0 0
\(472\) 7.52694 0.346455
\(473\) −60.2229 −2.76905
\(474\) 0 0
\(475\) 0.388260 0.0178146
\(476\) 8.09505 0.371036
\(477\) 0 0
\(478\) −1.70294 −0.0778908
\(479\) 36.7606 1.67963 0.839817 0.542869i \(-0.182662\pi\)
0.839817 + 0.542869i \(0.182662\pi\)
\(480\) 0 0
\(481\) −56.5859 −2.58010
\(482\) 5.26309 0.239727
\(483\) 0 0
\(484\) −32.8660 −1.49391
\(485\) 22.9544 1.04230
\(486\) 0 0
\(487\) −33.7554 −1.52960 −0.764802 0.644265i \(-0.777163\pi\)
−0.764802 + 0.644265i \(0.777163\pi\)
\(488\) −0.290113 −0.0131328
\(489\) 0 0
\(490\) 0.751445 0.0339468
\(491\) −2.85086 −0.128657 −0.0643286 0.997929i \(-0.520491\pi\)
−0.0643286 + 0.997929i \(0.520491\pi\)
\(492\) 0 0
\(493\) 9.06718 0.408365
\(494\) −0.0435569 −0.00195972
\(495\) 0 0
\(496\) 15.6870 0.704366
\(497\) −10.3123 −0.462572
\(498\) 0 0
\(499\) −14.9560 −0.669524 −0.334762 0.942303i \(-0.608656\pi\)
−0.334762 + 0.942303i \(0.608656\pi\)
\(500\) 41.4141 1.85209
\(501\) 0 0
\(502\) −1.46753 −0.0654992
\(503\) 8.56487 0.381889 0.190944 0.981601i \(-0.438845\pi\)
0.190944 + 0.981601i \(0.438845\pi\)
\(504\) 0 0
\(505\) −6.99661 −0.311345
\(506\) −3.60888 −0.160434
\(507\) 0 0
\(508\) 1.96328 0.0871066
\(509\) −24.3428 −1.07898 −0.539489 0.841993i \(-0.681382\pi\)
−0.539489 + 0.841993i \(0.681382\pi\)
\(510\) 0 0
\(511\) 3.37816 0.149441
\(512\) −14.2252 −0.628670
\(513\) 0 0
\(514\) −3.70692 −0.163505
\(515\) 32.0418 1.41193
\(516\) 0 0
\(517\) 20.3916 0.896820
\(518\) −1.78437 −0.0784007
\(519\) 0 0
\(520\) −18.0971 −0.793610
\(521\) 33.9526 1.48749 0.743745 0.668464i \(-0.233048\pi\)
0.743745 + 0.668464i \(0.233048\pi\)
\(522\) 0 0
\(523\) 33.7243 1.47466 0.737331 0.675532i \(-0.236086\pi\)
0.737331 + 0.675532i \(0.236086\pi\)
\(524\) −30.8245 −1.34657
\(525\) 0 0
\(526\) 2.44144 0.106452
\(527\) 17.1066 0.745176
\(528\) 0 0
\(529\) −10.2131 −0.444046
\(530\) 7.49605 0.325608
\(531\) 0 0
\(532\) 0.0734430 0.00318416
\(533\) 57.6255 2.49604
\(534\) 0 0
\(535\) 12.6573 0.547221
\(536\) 3.34602 0.144526
\(537\) 0 0
\(538\) 1.73022 0.0745951
\(539\) 5.26691 0.226862
\(540\) 0 0
\(541\) −22.8612 −0.982879 −0.491439 0.870912i \(-0.663529\pi\)
−0.491439 + 0.870912i \(0.663529\pi\)
\(542\) −3.18171 −0.136666
\(543\) 0 0
\(544\) −9.24992 −0.396587
\(545\) −66.3113 −2.84046
\(546\) 0 0
\(547\) −30.4179 −1.30058 −0.650288 0.759688i \(-0.725352\pi\)
−0.650288 + 0.759688i \(0.725352\pi\)
\(548\) 15.6555 0.668770
\(549\) 0 0
\(550\) −10.4748 −0.446645
\(551\) 0.0822627 0.00350451
\(552\) 0 0
\(553\) −9.73339 −0.413906
\(554\) 1.49291 0.0634275
\(555\) 0 0
\(556\) 6.69230 0.283817
\(557\) −24.3671 −1.03247 −0.516233 0.856448i \(-0.672666\pi\)
−0.516233 + 0.856448i \(0.672666\pi\)
\(558\) 0 0
\(559\) −69.4804 −2.93871
\(560\) 14.8278 0.626588
\(561\) 0 0
\(562\) −1.71428 −0.0723127
\(563\) 39.1345 1.64932 0.824661 0.565627i \(-0.191366\pi\)
0.824661 + 0.565627i \(0.191366\pi\)
\(564\) 0 0
\(565\) 21.9056 0.921577
\(566\) 2.20565 0.0927103
\(567\) 0 0
\(568\) 7.83151 0.328603
\(569\) −41.9315 −1.75786 −0.878930 0.476951i \(-0.841742\pi\)
−0.878930 + 0.476951i \(0.841742\pi\)
\(570\) 0 0
\(571\) 1.63409 0.0683845 0.0341923 0.999415i \(-0.489114\pi\)
0.0341923 + 0.999415i \(0.489114\pi\)
\(572\) −62.8341 −2.62723
\(573\) 0 0
\(574\) 1.81715 0.0758464
\(575\) 37.1141 1.54776
\(576\) 0 0
\(577\) −3.28569 −0.136785 −0.0683925 0.997658i \(-0.521787\pi\)
−0.0683925 + 0.997658i \(0.521787\pi\)
\(578\) −0.000185428 0 −7.71277e−6 0
\(579\) 0 0
\(580\) 16.9310 0.703021
\(581\) 16.5257 0.685600
\(582\) 0 0
\(583\) 52.5402 2.17599
\(584\) −2.56547 −0.106160
\(585\) 0 0
\(586\) −0.845997 −0.0349478
\(587\) 37.3079 1.53986 0.769931 0.638127i \(-0.220291\pi\)
0.769931 + 0.638127i \(0.220291\pi\)
\(588\) 0 0
\(589\) 0.155201 0.00639495
\(590\) 7.44779 0.306621
\(591\) 0 0
\(592\) −35.2098 −1.44711
\(593\) 10.6325 0.436626 0.218313 0.975879i \(-0.429945\pi\)
0.218313 + 0.975879i \(0.429945\pi\)
\(594\) 0 0
\(595\) 16.1697 0.662891
\(596\) −4.61215 −0.188921
\(597\) 0 0
\(598\) −4.16364 −0.170264
\(599\) −42.0174 −1.71678 −0.858391 0.512995i \(-0.828536\pi\)
−0.858391 + 0.512995i \(0.828536\pi\)
\(600\) 0 0
\(601\) −16.1101 −0.657144 −0.328572 0.944479i \(-0.606567\pi\)
−0.328572 + 0.944479i \(0.606567\pi\)
\(602\) −2.19098 −0.0892977
\(603\) 0 0
\(604\) 6.73214 0.273927
\(605\) −65.6489 −2.66901
\(606\) 0 0
\(607\) −14.1660 −0.574979 −0.287489 0.957784i \(-0.592821\pi\)
−0.287489 + 0.957784i \(0.592821\pi\)
\(608\) −0.0839207 −0.00340343
\(609\) 0 0
\(610\) −0.287062 −0.0116228
\(611\) 23.5262 0.951768
\(612\) 0 0
\(613\) 17.1420 0.692361 0.346180 0.938168i \(-0.387479\pi\)
0.346180 + 0.938168i \(0.387479\pi\)
\(614\) −0.925335 −0.0373435
\(615\) 0 0
\(616\) −3.99985 −0.161159
\(617\) −30.3241 −1.22080 −0.610401 0.792092i \(-0.708992\pi\)
−0.610401 + 0.792092i \(0.708992\pi\)
\(618\) 0 0
\(619\) −9.91575 −0.398547 −0.199274 0.979944i \(-0.563858\pi\)
−0.199274 + 0.979944i \(0.563858\pi\)
\(620\) 31.9429 1.28286
\(621\) 0 0
\(622\) −3.02023 −0.121100
\(623\) −2.53028 −0.101374
\(624\) 0 0
\(625\) 30.8286 1.23314
\(626\) −2.54033 −0.101532
\(627\) 0 0
\(628\) 39.0590 1.55862
\(629\) −38.3962 −1.53096
\(630\) 0 0
\(631\) −4.94297 −0.196777 −0.0983884 0.995148i \(-0.531369\pi\)
−0.0983884 + 0.995148i \(0.531369\pi\)
\(632\) 7.39183 0.294031
\(633\) 0 0
\(634\) 0.994685 0.0395040
\(635\) 3.92161 0.155624
\(636\) 0 0
\(637\) 6.07655 0.240762
\(638\) −2.21934 −0.0878645
\(639\) 0 0
\(640\) −22.9547 −0.907365
\(641\) −8.92412 −0.352481 −0.176241 0.984347i \(-0.556394\pi\)
−0.176241 + 0.984347i \(0.556394\pi\)
\(642\) 0 0
\(643\) 8.44158 0.332903 0.166452 0.986050i \(-0.446769\pi\)
0.166452 + 0.986050i \(0.446769\pi\)
\(644\) 7.02047 0.276645
\(645\) 0 0
\(646\) −0.0295554 −0.00116284
\(647\) −50.2006 −1.97359 −0.986795 0.161976i \(-0.948213\pi\)
−0.986795 + 0.161976i \(0.948213\pi\)
\(648\) 0 0
\(649\) 52.2019 2.04910
\(650\) −12.0850 −0.474011
\(651\) 0 0
\(652\) −13.1242 −0.513982
\(653\) −40.5316 −1.58612 −0.793062 0.609141i \(-0.791514\pi\)
−0.793062 + 0.609141i \(0.791514\pi\)
\(654\) 0 0
\(655\) −61.5711 −2.40578
\(656\) 35.8567 1.39997
\(657\) 0 0
\(658\) 0.741870 0.0289211
\(659\) −41.9115 −1.63264 −0.816320 0.577600i \(-0.803989\pi\)
−0.816320 + 0.577600i \(0.803989\pi\)
\(660\) 0 0
\(661\) 27.5407 1.07121 0.535605 0.844469i \(-0.320084\pi\)
0.535605 + 0.844469i \(0.320084\pi\)
\(662\) 2.14388 0.0833242
\(663\) 0 0
\(664\) −12.5501 −0.487038
\(665\) 0.146700 0.00568880
\(666\) 0 0
\(667\) 7.86355 0.304478
\(668\) 31.4667 1.21748
\(669\) 0 0
\(670\) 3.31083 0.127909
\(671\) −2.01203 −0.0776735
\(672\) 0 0
\(673\) 6.81901 0.262853 0.131427 0.991326i \(-0.458044\pi\)
0.131427 + 0.991326i \(0.458044\pi\)
\(674\) −3.28623 −0.126581
\(675\) 0 0
\(676\) −46.9704 −1.80655
\(677\) 6.66448 0.256137 0.128068 0.991765i \(-0.459122\pi\)
0.128068 + 0.991765i \(0.459122\pi\)
\(678\) 0 0
\(679\) 5.85331 0.224629
\(680\) −12.2797 −0.470906
\(681\) 0 0
\(682\) −4.18713 −0.160333
\(683\) −23.2496 −0.889623 −0.444811 0.895624i \(-0.646729\pi\)
−0.444811 + 0.895624i \(0.646729\pi\)
\(684\) 0 0
\(685\) 31.2715 1.19482
\(686\) 0.191617 0.00731595
\(687\) 0 0
\(688\) −43.2332 −1.64825
\(689\) 60.6167 2.30931
\(690\) 0 0
\(691\) 7.85702 0.298895 0.149447 0.988770i \(-0.452251\pi\)
0.149447 + 0.988770i \(0.452251\pi\)
\(692\) −29.1710 −1.10892
\(693\) 0 0
\(694\) 0.00492285 0.000186869 0
\(695\) 13.3677 0.507066
\(696\) 0 0
\(697\) 39.1016 1.48108
\(698\) −4.58881 −0.173689
\(699\) 0 0
\(700\) 20.3769 0.770175
\(701\) 0.243911 0.00921239 0.00460619 0.999989i \(-0.498534\pi\)
0.00460619 + 0.999989i \(0.498534\pi\)
\(702\) 0 0
\(703\) −0.348353 −0.0131384
\(704\) −37.5648 −1.41578
\(705\) 0 0
\(706\) −1.21452 −0.0457092
\(707\) −1.78412 −0.0670987
\(708\) 0 0
\(709\) 27.6428 1.03815 0.519073 0.854730i \(-0.326277\pi\)
0.519073 + 0.854730i \(0.326277\pi\)
\(710\) 7.74915 0.290820
\(711\) 0 0
\(712\) 1.92157 0.0720140
\(713\) 14.8358 0.555605
\(714\) 0 0
\(715\) −125.509 −4.69379
\(716\) −20.4214 −0.763183
\(717\) 0 0
\(718\) −2.10417 −0.0785269
\(719\) −13.2320 −0.493470 −0.246735 0.969083i \(-0.579358\pi\)
−0.246735 + 0.969083i \(0.579358\pi\)
\(720\) 0 0
\(721\) 8.17058 0.304288
\(722\) 3.64045 0.135483
\(723\) 0 0
\(724\) 11.9919 0.445677
\(725\) 22.8239 0.847660
\(726\) 0 0
\(727\) −19.0077 −0.704958 −0.352479 0.935820i \(-0.614661\pi\)
−0.352479 + 0.935820i \(0.614661\pi\)
\(728\) −4.61471 −0.171033
\(729\) 0 0
\(730\) −2.53850 −0.0939540
\(731\) −47.1458 −1.74375
\(732\) 0 0
\(733\) −49.8815 −1.84242 −0.921208 0.389071i \(-0.872796\pi\)
−0.921208 + 0.389071i \(0.872796\pi\)
\(734\) −4.03676 −0.148999
\(735\) 0 0
\(736\) −8.02204 −0.295696
\(737\) 23.2058 0.854796
\(738\) 0 0
\(739\) −29.8966 −1.09976 −0.549882 0.835242i \(-0.685327\pi\)
−0.549882 + 0.835242i \(0.685327\pi\)
\(740\) −71.6966 −2.63562
\(741\) 0 0
\(742\) 1.91148 0.0701725
\(743\) −7.33058 −0.268933 −0.134467 0.990918i \(-0.542932\pi\)
−0.134467 + 0.990918i \(0.542932\pi\)
\(744\) 0 0
\(745\) −9.21265 −0.337525
\(746\) −2.03174 −0.0743871
\(747\) 0 0
\(748\) −42.6359 −1.55892
\(749\) 3.22757 0.117933
\(750\) 0 0
\(751\) −37.8737 −1.38203 −0.691015 0.722840i \(-0.742836\pi\)
−0.691015 + 0.722840i \(0.742836\pi\)
\(752\) 14.6389 0.533824
\(753\) 0 0
\(754\) −2.56050 −0.0932480
\(755\) 13.4473 0.489396
\(756\) 0 0
\(757\) 22.7557 0.827070 0.413535 0.910488i \(-0.364294\pi\)
0.413535 + 0.910488i \(0.364294\pi\)
\(758\) 1.06860 0.0388135
\(759\) 0 0
\(760\) −0.111409 −0.00404122
\(761\) −7.34081 −0.266104 −0.133052 0.991109i \(-0.542478\pi\)
−0.133052 + 0.991109i \(0.542478\pi\)
\(762\) 0 0
\(763\) −16.9092 −0.612155
\(764\) 17.0402 0.616493
\(765\) 0 0
\(766\) 3.78145 0.136629
\(767\) 60.2264 2.17465
\(768\) 0 0
\(769\) −39.6967 −1.43150 −0.715749 0.698358i \(-0.753915\pi\)
−0.715749 + 0.698358i \(0.753915\pi\)
\(770\) −3.95779 −0.142629
\(771\) 0 0
\(772\) 8.41145 0.302735
\(773\) 9.92476 0.356969 0.178484 0.983943i \(-0.442881\pi\)
0.178484 + 0.983943i \(0.442881\pi\)
\(774\) 0 0
\(775\) 43.0609 1.54679
\(776\) −4.44518 −0.159573
\(777\) 0 0
\(778\) 3.08690 0.110671
\(779\) 0.354753 0.0127103
\(780\) 0 0
\(781\) 54.3141 1.94351
\(782\) −2.82523 −0.101030
\(783\) 0 0
\(784\) 3.78105 0.135037
\(785\) 78.0193 2.78463
\(786\) 0 0
\(787\) 17.2831 0.616077 0.308038 0.951374i \(-0.400327\pi\)
0.308038 + 0.951374i \(0.400327\pi\)
\(788\) 40.9816 1.45991
\(789\) 0 0
\(790\) 7.31410 0.260224
\(791\) 5.58588 0.198611
\(792\) 0 0
\(793\) −2.32132 −0.0824325
\(794\) 1.30426 0.0462865
\(795\) 0 0
\(796\) −45.7821 −1.62270
\(797\) −3.27024 −0.115838 −0.0579190 0.998321i \(-0.518447\pi\)
−0.0579190 + 0.998321i \(0.518447\pi\)
\(798\) 0 0
\(799\) 15.9636 0.564753
\(800\) −23.2839 −0.823212
\(801\) 0 0
\(802\) −3.29560 −0.116372
\(803\) −17.7924 −0.627881
\(804\) 0 0
\(805\) 14.0232 0.494253
\(806\) −4.83078 −0.170157
\(807\) 0 0
\(808\) 1.35491 0.0476657
\(809\) 45.7392 1.60810 0.804052 0.594558i \(-0.202673\pi\)
0.804052 + 0.594558i \(0.202673\pi\)
\(810\) 0 0
\(811\) 20.1033 0.705923 0.352962 0.935638i \(-0.385175\pi\)
0.352962 + 0.935638i \(0.385175\pi\)
\(812\) 4.31736 0.151510
\(813\) 0 0
\(814\) 9.39811 0.329403
\(815\) −26.2152 −0.918278
\(816\) 0 0
\(817\) −0.427734 −0.0149645
\(818\) −0.599886 −0.0209745
\(819\) 0 0
\(820\) 73.0138 2.54975
\(821\) 19.1738 0.669170 0.334585 0.942366i \(-0.391404\pi\)
0.334585 + 0.942366i \(0.391404\pi\)
\(822\) 0 0
\(823\) 8.70002 0.303264 0.151632 0.988437i \(-0.451547\pi\)
0.151632 + 0.988437i \(0.451547\pi\)
\(824\) −6.20499 −0.216161
\(825\) 0 0
\(826\) 1.89917 0.0660805
\(827\) −11.0112 −0.382898 −0.191449 0.981503i \(-0.561319\pi\)
−0.191449 + 0.981503i \(0.561319\pi\)
\(828\) 0 0
\(829\) 40.0764 1.39191 0.695955 0.718086i \(-0.254981\pi\)
0.695955 + 0.718086i \(0.254981\pi\)
\(830\) −12.4181 −0.431039
\(831\) 0 0
\(832\) −43.3393 −1.50252
\(833\) 4.12322 0.142861
\(834\) 0 0
\(835\) 62.8539 2.17515
\(836\) −0.386818 −0.0133784
\(837\) 0 0
\(838\) 3.61077 0.124732
\(839\) 5.37182 0.185456 0.0927279 0.995691i \(-0.470441\pi\)
0.0927279 + 0.995691i \(0.470441\pi\)
\(840\) 0 0
\(841\) −24.1642 −0.833247
\(842\) 2.52036 0.0868574
\(843\) 0 0
\(844\) 33.9192 1.16755
\(845\) −93.8221 −3.22758
\(846\) 0 0
\(847\) −16.7403 −0.575204
\(848\) 37.7179 1.29524
\(849\) 0 0
\(850\) −8.20021 −0.281265
\(851\) −33.2993 −1.14149
\(852\) 0 0
\(853\) 37.5087 1.28427 0.642137 0.766590i \(-0.278048\pi\)
0.642137 + 0.766590i \(0.278048\pi\)
\(854\) −0.0732001 −0.00250485
\(855\) 0 0
\(856\) −2.45111 −0.0837774
\(857\) −17.2234 −0.588339 −0.294169 0.955753i \(-0.595043\pi\)
−0.294169 + 0.955753i \(0.595043\pi\)
\(858\) 0 0
\(859\) −26.0045 −0.887262 −0.443631 0.896210i \(-0.646310\pi\)
−0.443631 + 0.896210i \(0.646310\pi\)
\(860\) −88.0345 −3.00195
\(861\) 0 0
\(862\) −7.38604 −0.251569
\(863\) −32.4210 −1.10362 −0.551812 0.833969i \(-0.686063\pi\)
−0.551812 + 0.833969i \(0.686063\pi\)
\(864\) 0 0
\(865\) −58.2683 −1.98118
\(866\) −5.28651 −0.179643
\(867\) 0 0
\(868\) 8.14536 0.276472
\(869\) 51.2649 1.73904
\(870\) 0 0
\(871\) 26.7730 0.907169
\(872\) 12.8414 0.434864
\(873\) 0 0
\(874\) −0.0256321 −0.000867018 0
\(875\) 21.0943 0.713117
\(876\) 0 0
\(877\) 31.8805 1.07653 0.538264 0.842776i \(-0.319080\pi\)
0.538264 + 0.842776i \(0.319080\pi\)
\(878\) 3.55667 0.120032
\(879\) 0 0
\(880\) −78.0965 −2.63263
\(881\) 10.9692 0.369563 0.184782 0.982780i \(-0.440842\pi\)
0.184782 + 0.982780i \(0.440842\pi\)
\(882\) 0 0
\(883\) −43.5368 −1.46513 −0.732564 0.680698i \(-0.761677\pi\)
−0.732564 + 0.680698i \(0.761677\pi\)
\(884\) −49.1900 −1.65444
\(885\) 0 0
\(886\) 0.770582 0.0258882
\(887\) 12.9767 0.435715 0.217857 0.975981i \(-0.430093\pi\)
0.217857 + 0.975981i \(0.430093\pi\)
\(888\) 0 0
\(889\) 1.00000 0.0335389
\(890\) 1.90137 0.0637339
\(891\) 0 0
\(892\) −52.6647 −1.76335
\(893\) 0.144831 0.00484660
\(894\) 0 0
\(895\) −40.7912 −1.36350
\(896\) −5.85340 −0.195548
\(897\) 0 0
\(898\) −4.79067 −0.159867
\(899\) 9.12353 0.304287
\(900\) 0 0
\(901\) 41.1313 1.37028
\(902\) −9.57077 −0.318672
\(903\) 0 0
\(904\) −4.24209 −0.141090
\(905\) 23.9536 0.796243
\(906\) 0 0
\(907\) −2.23113 −0.0740833 −0.0370417 0.999314i \(-0.511793\pi\)
−0.0370417 + 0.999314i \(0.511793\pi\)
\(908\) 35.8926 1.19114
\(909\) 0 0
\(910\) −4.56619 −0.151368
\(911\) −29.4118 −0.974457 −0.487228 0.873275i \(-0.661992\pi\)
−0.487228 + 0.873275i \(0.661992\pi\)
\(912\) 0 0
\(913\) −87.0391 −2.88058
\(914\) 1.96358 0.0649493
\(915\) 0 0
\(916\) −8.38961 −0.277201
\(917\) −15.7005 −0.518476
\(918\) 0 0
\(919\) 3.92759 0.129559 0.0647796 0.997900i \(-0.479366\pi\)
0.0647796 + 0.997900i \(0.479366\pi\)
\(920\) −10.6497 −0.351109
\(921\) 0 0
\(922\) 2.01575 0.0663851
\(923\) 62.6634 2.06259
\(924\) 0 0
\(925\) −96.6511 −3.17787
\(926\) −4.84199 −0.159118
\(927\) 0 0
\(928\) −4.93329 −0.161943
\(929\) −26.5871 −0.872293 −0.436147 0.899876i \(-0.643657\pi\)
−0.436147 + 0.899876i \(0.643657\pi\)
\(930\) 0 0
\(931\) 0.0374083 0.00122601
\(932\) −1.92802 −0.0631546
\(933\) 0 0
\(934\) 0.783646 0.0256417
\(935\) −85.1641 −2.78516
\(936\) 0 0
\(937\) −46.5758 −1.52156 −0.760782 0.649007i \(-0.775185\pi\)
−0.760782 + 0.649007i \(0.775185\pi\)
\(938\) 0.844254 0.0275659
\(939\) 0 0
\(940\) 29.8086 0.972250
\(941\) 3.71923 0.121243 0.0606217 0.998161i \(-0.480692\pi\)
0.0606217 + 0.998161i \(0.480692\pi\)
\(942\) 0 0
\(943\) 33.9111 1.10430
\(944\) 37.4751 1.21971
\(945\) 0 0
\(946\) 11.5397 0.375188
\(947\) 1.23688 0.0401934 0.0200967 0.999798i \(-0.493603\pi\)
0.0200967 + 0.999798i \(0.493603\pi\)
\(948\) 0 0
\(949\) −20.5275 −0.666351
\(950\) −0.0743971 −0.00241376
\(951\) 0 0
\(952\) −3.13130 −0.101486
\(953\) 52.2025 1.69101 0.845503 0.533971i \(-0.179301\pi\)
0.845503 + 0.533971i \(0.179301\pi\)
\(954\) 0 0
\(955\) 34.0373 1.10142
\(956\) −17.4482 −0.564314
\(957\) 0 0
\(958\) −7.04394 −0.227579
\(959\) 7.97414 0.257499
\(960\) 0 0
\(961\) −13.7871 −0.444744
\(962\) 10.8428 0.349586
\(963\) 0 0
\(964\) 53.9251 1.73681
\(965\) 16.8017 0.540864
\(966\) 0 0
\(967\) 25.3043 0.813731 0.406866 0.913488i \(-0.366622\pi\)
0.406866 + 0.913488i \(0.366622\pi\)
\(968\) 12.7131 0.408615
\(969\) 0 0
\(970\) −4.39844 −0.141225
\(971\) −4.96055 −0.159192 −0.0795958 0.996827i \(-0.525363\pi\)
−0.0795958 + 0.996827i \(0.525363\pi\)
\(972\) 0 0
\(973\) 3.40873 0.109279
\(974\) 6.46810 0.207251
\(975\) 0 0
\(976\) −1.44441 −0.0462344
\(977\) 3.61365 0.115611 0.0578055 0.998328i \(-0.481590\pi\)
0.0578055 + 0.998328i \(0.481590\pi\)
\(978\) 0 0
\(979\) 13.3268 0.425925
\(980\) 7.69922 0.245943
\(981\) 0 0
\(982\) 0.546271 0.0174322
\(983\) 51.8644 1.65422 0.827109 0.562042i \(-0.189984\pi\)
0.827109 + 0.562042i \(0.189984\pi\)
\(984\) 0 0
\(985\) 81.8597 2.60827
\(986\) −1.73742 −0.0553308
\(987\) 0 0
\(988\) −0.446280 −0.0141981
\(989\) −40.8874 −1.30014
\(990\) 0 0
\(991\) 6.60298 0.209751 0.104875 0.994485i \(-0.466556\pi\)
0.104875 + 0.994485i \(0.466556\pi\)
\(992\) −9.30741 −0.295511
\(993\) 0 0
\(994\) 1.97601 0.0626754
\(995\) −91.4485 −2.89911
\(996\) 0 0
\(997\) −0.888839 −0.0281498 −0.0140749 0.999901i \(-0.504480\pi\)
−0.0140749 + 0.999901i \(0.504480\pi\)
\(998\) 2.86582 0.0907160
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8001.2.a.t.1.7 16
3.2 odd 2 889.2.a.c.1.10 16
21.20 even 2 6223.2.a.k.1.10 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
889.2.a.c.1.10 16 3.2 odd 2
6223.2.a.k.1.10 16 21.20 even 2
8001.2.a.t.1.7 16 1.1 even 1 trivial