Properties

Label 62.8.a.b
Level $62$
Weight $8$
Character orbit 62.a
Self dual yes
Analytic conductor $19.368$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [62,8,Mod(1,62)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(62, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("62.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 62 = 2 \cdot 31 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 62.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(19.3678715800\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 919x^{2} - 316x + 185892 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 8 q^{2} + (\beta_{3} + \beta_1 - 17) q^{3} + 64 q^{4} + ( - 2 \beta_{3} + 4 \beta_{2} + \cdots - 78) q^{5} + (8 \beta_{3} + 8 \beta_1 - 136) q^{6} + ( - 21 \beta_{3} - 7 \beta_{2} + \cdots - 258) q^{7}+ \cdots + (376886 \beta_{3} + 527157 \beta_{2} + \cdots - 9407257) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 32 q^{2} - 68 q^{3} + 256 q^{4} - 334 q^{5} - 544 q^{6} - 948 q^{7} + 2048 q^{8} + 3016 q^{9} - 2672 q^{10} - 12618 q^{11} - 4352 q^{12} - 19760 q^{13} - 7584 q^{14} - 37338 q^{15} + 16384 q^{16}+ \cdots - 38943670 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 919x^{2} - 316x + 185892 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 24\nu^{2} - 451\nu + 9654 ) / 12 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} - 22\nu^{2} - 453\nu + 8738 ) / 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{3} - 6\beta_{2} + \beta _1 + 458 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 48\beta_{3} - 132\beta_{2} + 475\beta _1 + 1338 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−20.7170
16.1974
−20.5015
27.0211
8.00000 −90.4899 64.0000 149.027 −723.919 673.892 512.000 6001.42 1192.22
1.2 8.00000 −31.2462 64.0000 −62.2536 −249.970 431.967 512.000 −1210.68 −498.029
1.3 8.00000 2.83188 64.0000 91.0828 22.6550 −1506.18 512.000 −2178.98 728.663
1.4 8.00000 50.9042 64.0000 −511.857 407.234 −547.674 512.000 404.237 −4094.85
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(31\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 62.8.a.b 4
3.b odd 2 1 558.8.a.j 4
4.b odd 2 1 496.8.a.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
62.8.a.b 4 1.a even 1 1 trivial
496.8.a.b 4 4.b odd 2 1
558.8.a.j 4 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 68T_{3}^{3} - 3570T_{3}^{2} - 134388T_{3} + 407592 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(62))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 8)^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 68 T^{3} + \cdots + 407592 \) Copy content Toggle raw display
$5$ \( T^{4} + 334 T^{3} + \cdots + 432529620 \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots + 240127196940 \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots - 382278707309352 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots - 10\!\cdots\!00 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 27\!\cdots\!12 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots - 26\!\cdots\!88 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots - 19\!\cdots\!24 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 24\!\cdots\!88 \) Copy content Toggle raw display
$31$ \( (T + 29791)^{4} \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 19\!\cdots\!04 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 13\!\cdots\!48 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots - 34\!\cdots\!28 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 11\!\cdots\!52 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 14\!\cdots\!28 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 29\!\cdots\!56 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 37\!\cdots\!84 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 70\!\cdots\!00 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 94\!\cdots\!04 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 63\!\cdots\!48 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 13\!\cdots\!80 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 38\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 12\!\cdots\!68 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots - 32\!\cdots\!60 \) Copy content Toggle raw display
show more
show less