Properties

Label 2-62-1.1-c7-0-16
Degree $2$
Conductor $62$
Sign $-1$
Analytic cond. $19.3678$
Root an. cond. $4.40089$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·2-s + 2.83·3-s + 64·4-s + 91.0·5-s + 22.6·6-s − 1.50e3·7-s + 512·8-s − 2.17e3·9-s + 728.·10-s − 4.28e3·11-s + 181.·12-s + 5.21e3·13-s − 1.20e4·14-s + 257.·15-s + 4.09e3·16-s + 1.42e4·17-s − 1.74e4·18-s − 3.23e4·19-s + 5.82e3·20-s − 4.26e3·21-s − 3.42e4·22-s − 5.80e4·23-s + 1.44e3·24-s − 6.98e4·25-s + 4.16e4·26-s − 1.23e4·27-s − 9.63e4·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.0605·3-s + 0.5·4-s + 0.325·5-s + 0.0428·6-s − 1.65·7-s + 0.353·8-s − 0.996·9-s + 0.230·10-s − 0.970·11-s + 0.0302·12-s + 0.657·13-s − 1.17·14-s + 0.0197·15-s + 0.250·16-s + 0.702·17-s − 0.704·18-s − 1.08·19-s + 0.162·20-s − 0.100·21-s − 0.686·22-s − 0.994·23-s + 0.0214·24-s − 0.893·25-s + 0.465·26-s − 0.120·27-s − 0.829·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 62 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 62 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(62\)    =    \(2 \cdot 31\)
Sign: $-1$
Analytic conductor: \(19.3678\)
Root analytic conductor: \(4.40089\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 62,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 8T \)
31 \( 1 + 2.97e4T \)
good3 \( 1 - 2.83T + 2.18e3T^{2} \)
5 \( 1 - 91.0T + 7.81e4T^{2} \)
7 \( 1 + 1.50e3T + 8.23e5T^{2} \)
11 \( 1 + 4.28e3T + 1.94e7T^{2} \)
13 \( 1 - 5.21e3T + 6.27e7T^{2} \)
17 \( 1 - 1.42e4T + 4.10e8T^{2} \)
19 \( 1 + 3.23e4T + 8.93e8T^{2} \)
23 \( 1 + 5.80e4T + 3.40e9T^{2} \)
29 \( 1 - 4.78e3T + 1.72e10T^{2} \)
37 \( 1 - 3.73e5T + 9.49e10T^{2} \)
41 \( 1 + 4.91e5T + 1.94e11T^{2} \)
43 \( 1 - 7.13e4T + 2.71e11T^{2} \)
47 \( 1 + 2.01e5T + 5.06e11T^{2} \)
53 \( 1 - 1.15e6T + 1.17e12T^{2} \)
59 \( 1 + 1.67e6T + 2.48e12T^{2} \)
61 \( 1 + 8.77e5T + 3.14e12T^{2} \)
67 \( 1 - 2.94e6T + 6.06e12T^{2} \)
71 \( 1 - 9.83e5T + 9.09e12T^{2} \)
73 \( 1 - 8.21e5T + 1.10e13T^{2} \)
79 \( 1 - 1.64e6T + 1.92e13T^{2} \)
83 \( 1 - 8.62e6T + 2.71e13T^{2} \)
89 \( 1 + 5.79e6T + 4.42e13T^{2} \)
97 \( 1 + 1.44e7T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.13413966196194037997380613300, −12.12976304928495909902689560599, −10.70158768954350124296565156396, −9.641727747429270511364547817972, −8.116226551732932223150186348770, −6.40488445829395452981362573660, −5.65007154123486545401861352316, −3.66957817129584531728743901546, −2.51223780631892716088860619157, 0, 2.51223780631892716088860619157, 3.66957817129584531728743901546, 5.65007154123486545401861352316, 6.40488445829395452981362573660, 8.116226551732932223150186348770, 9.641727747429270511364547817972, 10.70158768954350124296565156396, 12.12976304928495909902689560599, 13.13413966196194037997380613300

Graph of the $Z$-function along the critical line