Newspace parameters
Level: | \( N \) | \(=\) | \( 62 = 2 \cdot 31 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 62.d (of order \(5\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(9.94379682840\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(6\) over \(\Q(\zeta_{5})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{5}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
33.1 | −3.23607 | − | 2.35114i | −20.9547 | + | 15.2245i | 4.94427 | + | 15.2169i | 78.8224 | 103.606 | −0.961853 | − | 2.96028i | 19.7771 | − | 60.8676i | 132.224 | − | 406.944i | −255.075 | − | 185.323i | ||||
33.2 | −3.23607 | − | 2.35114i | −11.7313 | + | 8.52330i | 4.94427 | + | 15.2169i | −25.7786 | 58.0028 | 46.2201 | + | 142.251i | 19.7771 | − | 60.8676i | −10.1139 | + | 31.1275i | 83.4214 | + | 60.6092i | ||||
33.3 | −3.23607 | − | 2.35114i | −10.5221 | + | 7.64478i | 4.94427 | + | 15.2169i | −86.6672 | 52.0243 | −58.6301 | − | 180.445i | 19.7771 | − | 60.8676i | −22.8185 | + | 70.2280i | 280.461 | + | 203.767i | ||||
33.4 | −3.23607 | − | 2.35114i | −1.20326 | + | 0.874217i | 4.94427 | + | 15.2169i | 11.0150 | 5.94923 | −24.5773 | − | 75.6410i | 19.7771 | − | 60.8676i | −74.4076 | + | 229.003i | −35.6452 | − | 25.8978i | ||||
33.5 | −3.23607 | − | 2.35114i | 10.2581 | − | 7.45295i | 4.94427 | + | 15.2169i | 64.6757 | −50.7189 | 40.4673 | + | 124.545i | 19.7771 | − | 60.8676i | −25.4089 | + | 78.2004i | −209.295 | − | 152.062i | ||||
33.6 | −3.23607 | − | 2.35114i | 19.0910 | − | 13.8704i | 4.94427 | + | 15.2169i | −14.3033 | −94.3913 | −43.0460 | − | 132.482i | 19.7771 | − | 60.8676i | 96.9871 | − | 298.496i | 46.2864 | + | 33.6291i | ||||
35.1 | 1.23607 | + | 3.80423i | −6.59038 | + | 20.2831i | −12.9443 | + | 9.40456i | −48.6693 | −85.3076 | 4.11428 | − | 2.98920i | −51.7771 | − | 37.6183i | −171.380 | − | 124.515i | −60.1585 | − | 185.149i | ||||
35.2 | 1.23607 | + | 3.80423i | −4.18804 | + | 12.8895i | −12.9443 | + | 9.40456i | 43.2705 | −54.2112 | −148.915 | + | 108.193i | −51.7771 | − | 37.6183i | 47.9922 | + | 34.8684i | 53.4853 | + | 164.611i | ||||
35.3 | 1.23607 | + | 3.80423i | −0.518674 | + | 1.59632i | −12.9443 | + | 9.40456i | 52.9627 | −6.71386 | 102.405 | − | 74.4014i | −51.7771 | − | 37.6183i | 194.312 | + | 141.176i | 65.4655 | + | 201.482i | ||||
35.4 | 1.23607 | + | 3.80423i | 2.72835 | − | 8.39700i | −12.9443 | + | 9.40456i | −56.0877 | 35.3165 | 116.648 | − | 84.7498i | −51.7771 | − | 37.6183i | 133.525 | + | 97.0119i | −69.3282 | − | 213.370i | ||||
35.5 | 1.23607 | + | 3.80423i | 6.17234 | − | 18.9965i | −12.9443 | + | 9.40456i | −50.2806 | 79.8964 | −60.1640 | + | 43.7117i | −51.7771 | − | 37.6183i | −126.178 | − | 91.6738i | −62.1502 | − | 191.279i | ||||
35.6 | 1.23607 | + | 3.80423i | 7.45871 | − | 22.9556i | −12.9443 | + | 9.40456i | 91.0405 | 96.5476 | −63.5604 | + | 46.1794i | −51.7771 | − | 37.6183i | −274.734 | − | 199.606i | 112.532 | + | 346.339i | ||||
39.1 | 1.23607 | − | 3.80423i | −6.59038 | − | 20.2831i | −12.9443 | − | 9.40456i | −48.6693 | −85.3076 | 4.11428 | + | 2.98920i | −51.7771 | + | 37.6183i | −171.380 | + | 124.515i | −60.1585 | + | 185.149i | ||||
39.2 | 1.23607 | − | 3.80423i | −4.18804 | − | 12.8895i | −12.9443 | − | 9.40456i | 43.2705 | −54.2112 | −148.915 | − | 108.193i | −51.7771 | + | 37.6183i | 47.9922 | − | 34.8684i | 53.4853 | − | 164.611i | ||||
39.3 | 1.23607 | − | 3.80423i | −0.518674 | − | 1.59632i | −12.9443 | − | 9.40456i | 52.9627 | −6.71386 | 102.405 | + | 74.4014i | −51.7771 | + | 37.6183i | 194.312 | − | 141.176i | 65.4655 | − | 201.482i | ||||
39.4 | 1.23607 | − | 3.80423i | 2.72835 | + | 8.39700i | −12.9443 | − | 9.40456i | −56.0877 | 35.3165 | 116.648 | + | 84.7498i | −51.7771 | + | 37.6183i | 133.525 | − | 97.0119i | −69.3282 | + | 213.370i | ||||
39.5 | 1.23607 | − | 3.80423i | 6.17234 | + | 18.9965i | −12.9443 | − | 9.40456i | −50.2806 | 79.8964 | −60.1640 | − | 43.7117i | −51.7771 | + | 37.6183i | −126.178 | + | 91.6738i | −62.1502 | + | 191.279i | ||||
39.6 | 1.23607 | − | 3.80423i | 7.45871 | + | 22.9556i | −12.9443 | − | 9.40456i | 91.0405 | 96.5476 | −63.5604 | − | 46.1794i | −51.7771 | + | 37.6183i | −274.734 | + | 199.606i | 112.532 | − | 346.339i | ||||
47.1 | −3.23607 | + | 2.35114i | −20.9547 | − | 15.2245i | 4.94427 | − | 15.2169i | 78.8224 | 103.606 | −0.961853 | + | 2.96028i | 19.7771 | + | 60.8676i | 132.224 | + | 406.944i | −255.075 | + | 185.323i | ||||
47.2 | −3.23607 | + | 2.35114i | −11.7313 | − | 8.52330i | 4.94427 | − | 15.2169i | −25.7786 | 58.0028 | 46.2201 | − | 142.251i | 19.7771 | + | 60.8676i | −10.1139 | − | 31.1275i | 83.4214 | − | 60.6092i | ||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
31.d | even | 5 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 62.6.d.a | ✓ | 24 |
31.d | even | 5 | 1 | inner | 62.6.d.a | ✓ | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
62.6.d.a | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
62.6.d.a | ✓ | 24 | 31.d | even | 5 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{24} + 20 T_{3}^{23} + 1029 T_{3}^{22} + 22055 T_{3}^{21} + 831184 T_{3}^{20} + \cdots + 20\!\cdots\!61 \)
acting on \(S_{6}^{\mathrm{new}}(62, [\chi])\).