Properties

Label 2-62-31.4-c5-0-0
Degree $2$
Conductor $62$
Sign $-0.992 - 0.120i$
Analytic cond. $9.94379$
Root an. cond. $3.15337$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.23 + 3.80i)2-s + (6.17 − 18.9i)3-s + (−12.9 + 9.40i)4-s − 50.2·5-s + 79.8·6-s + (−60.1 + 43.7i)7-s + (−51.7 − 37.6i)8-s + (−126. − 91.6i)9-s + (−62.1 − 191. i)10-s + (−415. + 301. i)11-s + (98.7 + 303. i)12-s + (−197. + 607. i)13-s + (−240. − 174. i)14-s + (−310. + 955. i)15-s + (79.1 − 243. i)16-s + (−334. − 242. i)17-s + ⋯
L(s)  = 1  + (0.218 + 0.672i)2-s + (0.395 − 1.21i)3-s + (−0.404 + 0.293i)4-s − 0.899·5-s + 0.906·6-s + (−0.464 + 0.337i)7-s + (−0.286 − 0.207i)8-s + (−0.519 − 0.377i)9-s + (−0.196 − 0.604i)10-s + (−1.03 + 0.751i)11-s + (0.197 + 0.609i)12-s + (−0.324 + 0.997i)13-s + (−0.328 − 0.238i)14-s + (−0.356 + 1.09i)15-s + (0.0772 − 0.237i)16-s + (−0.280 − 0.203i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 62 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.992 - 0.120i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 62 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.992 - 0.120i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(62\)    =    \(2 \cdot 31\)
Sign: $-0.992 - 0.120i$
Analytic conductor: \(9.94379\)
Root analytic conductor: \(3.15337\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{62} (35, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 62,\ (\ :5/2),\ -0.992 - 0.120i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.0114837 + 0.189894i\)
\(L(\frac12)\) \(\approx\) \(0.0114837 + 0.189894i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.23 - 3.80i)T \)
31 \( 1 + (2.77e3 + 4.57e3i)T \)
good3 \( 1 + (-6.17 + 18.9i)T + (-196. - 142. i)T^{2} \)
5 \( 1 + 50.2T + 3.12e3T^{2} \)
7 \( 1 + (60.1 - 43.7i)T + (5.19e3 - 1.59e4i)T^{2} \)
11 \( 1 + (415. - 301. i)T + (4.97e4 - 1.53e5i)T^{2} \)
13 \( 1 + (197. - 607. i)T + (-3.00e5 - 2.18e5i)T^{2} \)
17 \( 1 + (334. + 242. i)T + (4.38e5 + 1.35e6i)T^{2} \)
19 \( 1 + (20.2 + 62.4i)T + (-2.00e6 + 1.45e6i)T^{2} \)
23 \( 1 + (2.02e3 + 1.46e3i)T + (1.98e6 + 6.12e6i)T^{2} \)
29 \( 1 + (1.28e3 + 3.94e3i)T + (-1.65e7 + 1.20e7i)T^{2} \)
37 \( 1 - 4.91e3T + 6.93e7T^{2} \)
41 \( 1 + (-6.00e3 - 1.84e4i)T + (-9.37e7 + 6.80e7i)T^{2} \)
43 \( 1 + (-1.86e3 - 5.75e3i)T + (-1.18e8 + 8.64e7i)T^{2} \)
47 \( 1 + (-3.12e3 + 9.62e3i)T + (-1.85e8 - 1.34e8i)T^{2} \)
53 \( 1 + (1.05e4 + 7.63e3i)T + (1.29e8 + 3.97e8i)T^{2} \)
59 \( 1 + (-5.56e3 + 1.71e4i)T + (-5.78e8 - 4.20e8i)T^{2} \)
61 \( 1 + 9.97e3T + 8.44e8T^{2} \)
67 \( 1 - 1.88e3T + 1.35e9T^{2} \)
71 \( 1 + (1.85e4 + 1.34e4i)T + (5.57e8 + 1.71e9i)T^{2} \)
73 \( 1 + (5.63e4 - 4.09e4i)T + (6.40e8 - 1.97e9i)T^{2} \)
79 \( 1 + (-2.42e4 - 1.76e4i)T + (9.50e8 + 2.92e9i)T^{2} \)
83 \( 1 + (-2.11e4 - 6.51e4i)T + (-3.18e9 + 2.31e9i)T^{2} \)
89 \( 1 + (-8.48e4 + 6.16e4i)T + (1.72e9 - 5.31e9i)T^{2} \)
97 \( 1 + (4.23e3 - 3.07e3i)T + (2.65e9 - 8.16e9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.53172889691532432650908710988, −13.32997208759815445668680503357, −12.60851432610380969094448299798, −11.61836155929371576839135604582, −9.610759152392415025750200793054, −8.083709997046615717665508603177, −7.45696214943180349950028580841, −6.31119108088616008075090274094, −4.40532685221393992955636605969, −2.39347964318324893579282226111, 0.07515829177805759200204653426, 3.09421724350862409206478402822, 3.97626464756684034536302832904, 5.40627261407274107777300328259, 7.73459516030039283389648462545, 9.003059848580940322951534093609, 10.29693527399914686012426798715, 10.84550849525937908321223971694, 12.30242385687837461465026098877, 13.42189266686405460752558078952

Graph of the $Z$-function along the critical line