Properties

Label 2-62-31.16-c5-0-7
Degree $2$
Conductor $62$
Sign $-0.749 + 0.661i$
Analytic cond. $9.94379$
Root an. cond. $3.15337$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−3.23 + 2.35i)2-s + (−20.9 − 15.2i)3-s + (4.94 − 15.2i)4-s + 78.8·5-s + 103.·6-s + (−0.961 + 2.96i)7-s + (19.7 + 60.8i)8-s + (132. + 406. i)9-s + (−255. + 185. i)10-s + (178. − 549. i)11-s + (−335. + 243. i)12-s + (−373. − 271. i)13-s + (−3.84 − 11.8i)14-s + (−1.65e3 − 1.20e3i)15-s + (−207. − 150. i)16-s + (−62.9 − 193. i)17-s + ⋯
L(s)  = 1  + (−0.572 + 0.415i)2-s + (−1.34 − 0.976i)3-s + (0.154 − 0.475i)4-s + 1.41·5-s + 1.17·6-s + (−0.00741 + 0.0228i)7-s + (0.109 + 0.336i)8-s + (0.544 + 1.67i)9-s + (−0.806 + 0.586i)10-s + (0.444 − 1.36i)11-s + (−0.672 + 0.488i)12-s + (−0.612 − 0.445i)13-s + (−0.00524 − 0.0161i)14-s + (−1.89 − 1.37i)15-s + (−0.202 − 0.146i)16-s + (−0.0528 − 0.162i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 62 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.749 + 0.661i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 62 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.749 + 0.661i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(62\)    =    \(2 \cdot 31\)
Sign: $-0.749 + 0.661i$
Analytic conductor: \(9.94379\)
Root analytic conductor: \(3.15337\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{62} (47, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 62,\ (\ :5/2),\ -0.749 + 0.661i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.218244 - 0.577256i\)
\(L(\frac12)\) \(\approx\) \(0.218244 - 0.577256i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (3.23 - 2.35i)T \)
31 \( 1 + (2.05e3 + 4.94e3i)T \)
good3 \( 1 + (20.9 + 15.2i)T + (75.0 + 231. i)T^{2} \)
5 \( 1 - 78.8T + 3.12e3T^{2} \)
7 \( 1 + (0.961 - 2.96i)T + (-1.35e4 - 9.87e3i)T^{2} \)
11 \( 1 + (-178. + 549. i)T + (-1.30e5 - 9.46e4i)T^{2} \)
13 \( 1 + (373. + 271. i)T + (1.14e5 + 3.53e5i)T^{2} \)
17 \( 1 + (62.9 + 193. i)T + (-1.14e6 + 8.34e5i)T^{2} \)
19 \( 1 + (997. - 724. i)T + (7.65e5 - 2.35e6i)T^{2} \)
23 \( 1 + (782. + 2.40e3i)T + (-5.20e6 + 3.78e6i)T^{2} \)
29 \( 1 + (6.58e3 - 4.78e3i)T + (6.33e6 - 1.95e7i)T^{2} \)
37 \( 1 + 1.04e4T + 6.93e7T^{2} \)
41 \( 1 + (-7.27e3 + 5.28e3i)T + (3.58e7 - 1.10e8i)T^{2} \)
43 \( 1 + (-1.10e4 + 7.99e3i)T + (4.54e7 - 1.39e8i)T^{2} \)
47 \( 1 + (1.76e4 + 1.28e4i)T + (7.08e7 + 2.18e8i)T^{2} \)
53 \( 1 + (3.55e3 + 1.09e4i)T + (-3.38e8 + 2.45e8i)T^{2} \)
59 \( 1 + (-2.31e4 - 1.68e4i)T + (2.20e8 + 6.79e8i)T^{2} \)
61 \( 1 - 1.29e4T + 8.44e8T^{2} \)
67 \( 1 + 5.78e4T + 1.35e9T^{2} \)
71 \( 1 + (-7.68e3 - 2.36e4i)T + (-1.45e9 + 1.06e9i)T^{2} \)
73 \( 1 + (-1.32e4 + 4.07e4i)T + (-1.67e9 - 1.21e9i)T^{2} \)
79 \( 1 + (3.21e4 + 9.90e4i)T + (-2.48e9 + 1.80e9i)T^{2} \)
83 \( 1 + (8.12e4 - 5.90e4i)T + (1.21e9 - 3.74e9i)T^{2} \)
89 \( 1 + (1.31e4 - 4.05e4i)T + (-4.51e9 - 3.28e9i)T^{2} \)
97 \( 1 + (-3.14e4 + 9.68e4i)T + (-6.94e9 - 5.04e9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.47552479358049939829974033317, −12.48608538180816440588698412217, −11.14996472564416473453969317284, −10.26098710658785470545935243880, −8.809451457607576613245497608564, −7.18293112737287644825708935310, −6.04320183489147958886594590561, −5.53135885852877708383101820331, −1.87467607289005799910306301620, −0.40061140441106649812189289832, 1.84195730931488770662709412057, 4.38145107954036494073094048886, 5.67193701606571549351464440246, 6.93839246038990708557570199586, 9.423663572557875201548799987112, 9.773246653114667098872159038419, 10.81277527615751548993292308851, 11.89749657669204034141116674653, 12.97734739088520850916122301225, 14.60039484672728177462551624793

Graph of the $Z$-function along the critical line