Properties

Label 62.6.a.c.1.1
Level $62$
Weight $6$
Character 62.1
Self dual yes
Analytic conductor $9.944$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [62,6,Mod(1,62)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(62, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("62.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 62 = 2 \cdot 31 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 62.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.94379682840\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 221x^{2} - 140x + 2412 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(15.8744\) of defining polynomial
Character \(\chi\) \(=\) 62.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} -15.2327 q^{3} +16.0000 q^{4} +4.15476 q^{5} +60.9309 q^{6} -174.927 q^{7} -64.0000 q^{8} -10.9643 q^{9} -16.6190 q^{10} -235.351 q^{11} -243.723 q^{12} +1029.68 q^{13} +699.709 q^{14} -63.2883 q^{15} +256.000 q^{16} +1455.25 q^{17} +43.8572 q^{18} +1049.81 q^{19} +66.4761 q^{20} +2664.62 q^{21} +941.406 q^{22} -59.4958 q^{23} +974.894 q^{24} -3107.74 q^{25} -4118.72 q^{26} +3868.57 q^{27} -2798.84 q^{28} +4193.48 q^{29} +253.153 q^{30} +961.000 q^{31} -1024.00 q^{32} +3585.04 q^{33} -5820.99 q^{34} -726.781 q^{35} -175.429 q^{36} +7798.04 q^{37} -4199.25 q^{38} -15684.8 q^{39} -265.905 q^{40} -4010.52 q^{41} -10658.5 q^{42} -1999.94 q^{43} -3765.62 q^{44} -45.5541 q^{45} +237.983 q^{46} +13311.7 q^{47} -3899.58 q^{48} +13792.6 q^{49} +12431.0 q^{50} -22167.4 q^{51} +16474.9 q^{52} -31868.1 q^{53} -15474.3 q^{54} -977.829 q^{55} +11195.3 q^{56} -15991.5 q^{57} -16773.9 q^{58} -35467.1 q^{59} -1012.61 q^{60} +45806.4 q^{61} -3844.00 q^{62} +1917.96 q^{63} +4096.00 q^{64} +4278.07 q^{65} -14340.2 q^{66} +55514.2 q^{67} +23284.0 q^{68} +906.283 q^{69} +2907.12 q^{70} -47049.1 q^{71} +701.716 q^{72} +79212.2 q^{73} -31192.2 q^{74} +47339.3 q^{75} +16797.0 q^{76} +41169.4 q^{77} +62739.2 q^{78} +814.146 q^{79} +1063.62 q^{80} -56264.5 q^{81} +16042.1 q^{82} +47660.7 q^{83} +42633.9 q^{84} +6046.20 q^{85} +7999.76 q^{86} -63878.1 q^{87} +15062.5 q^{88} -46071.5 q^{89} +182.216 q^{90} -180119. q^{91} -951.933 q^{92} -14638.6 q^{93} -53246.8 q^{94} +4361.72 q^{95} +15598.3 q^{96} +54266.6 q^{97} -55170.3 q^{98} +2580.47 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{2} + 10 q^{3} + 64 q^{4} + 2 q^{5} - 40 q^{6} + 146 q^{7} - 256 q^{8} - 36 q^{9} - 8 q^{10} - 270 q^{11} + 160 q^{12} + 1038 q^{13} - 584 q^{14} + 1864 q^{15} + 1024 q^{16} + 2020 q^{17} + 144 q^{18}+ \cdots - 324354 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) −15.2327 −0.977179 −0.488590 0.872514i \(-0.662488\pi\)
−0.488590 + 0.872514i \(0.662488\pi\)
\(4\) 16.0000 0.500000
\(5\) 4.15476 0.0743226 0.0371613 0.999309i \(-0.488168\pi\)
0.0371613 + 0.999309i \(0.488168\pi\)
\(6\) 60.9309 0.690970
\(7\) −174.927 −1.34931 −0.674656 0.738132i \(-0.735708\pi\)
−0.674656 + 0.738132i \(0.735708\pi\)
\(8\) −64.0000 −0.353553
\(9\) −10.9643 −0.0451206
\(10\) −16.6190 −0.0525540
\(11\) −235.351 −0.586456 −0.293228 0.956043i \(-0.594729\pi\)
−0.293228 + 0.956043i \(0.594729\pi\)
\(12\) −243.723 −0.488590
\(13\) 1029.68 1.68983 0.844916 0.534899i \(-0.179650\pi\)
0.844916 + 0.534899i \(0.179650\pi\)
\(14\) 699.709 0.954108
\(15\) −63.2883 −0.0726265
\(16\) 256.000 0.250000
\(17\) 1455.25 1.22128 0.610639 0.791909i \(-0.290913\pi\)
0.610639 + 0.791909i \(0.290913\pi\)
\(18\) 43.8572 0.0319051
\(19\) 1049.81 0.667157 0.333579 0.942722i \(-0.391744\pi\)
0.333579 + 0.942722i \(0.391744\pi\)
\(20\) 66.4761 0.0371613
\(21\) 2664.62 1.31852
\(22\) 941.406 0.414687
\(23\) −59.4958 −0.0234513 −0.0117256 0.999931i \(-0.503732\pi\)
−0.0117256 + 0.999931i \(0.503732\pi\)
\(24\) 974.894 0.345485
\(25\) −3107.74 −0.994476
\(26\) −4118.72 −1.19489
\(27\) 3868.57 1.02127
\(28\) −2798.84 −0.674656
\(29\) 4193.48 0.925933 0.462966 0.886376i \(-0.346785\pi\)
0.462966 + 0.886376i \(0.346785\pi\)
\(30\) 253.153 0.0513547
\(31\) 961.000 0.179605
\(32\) −1024.00 −0.176777
\(33\) 3585.04 0.573072
\(34\) −5820.99 −0.863574
\(35\) −726.781 −0.100284
\(36\) −175.429 −0.0225603
\(37\) 7798.04 0.936443 0.468221 0.883611i \(-0.344895\pi\)
0.468221 + 0.883611i \(0.344895\pi\)
\(38\) −4199.25 −0.471751
\(39\) −15684.8 −1.65127
\(40\) −265.905 −0.0262770
\(41\) −4010.52 −0.372599 −0.186299 0.982493i \(-0.559649\pi\)
−0.186299 + 0.982493i \(0.559649\pi\)
\(42\) −10658.5 −0.932335
\(43\) −1999.94 −0.164947 −0.0824737 0.996593i \(-0.526282\pi\)
−0.0824737 + 0.996593i \(0.526282\pi\)
\(44\) −3765.62 −0.293228
\(45\) −45.5541 −0.00335348
\(46\) 237.983 0.0165826
\(47\) 13311.7 0.879000 0.439500 0.898243i \(-0.355156\pi\)
0.439500 + 0.898243i \(0.355156\pi\)
\(48\) −3899.58 −0.244295
\(49\) 13792.6 0.820645
\(50\) 12431.0 0.703201
\(51\) −22167.4 −1.19341
\(52\) 16474.9 0.844916
\(53\) −31868.1 −1.55835 −0.779177 0.626804i \(-0.784363\pi\)
−0.779177 + 0.626804i \(0.784363\pi\)
\(54\) −15474.3 −0.722147
\(55\) −977.829 −0.0435869
\(56\) 11195.3 0.477054
\(57\) −15991.5 −0.651932
\(58\) −16773.9 −0.654733
\(59\) −35467.1 −1.32646 −0.663231 0.748414i \(-0.730815\pi\)
−0.663231 + 0.748414i \(0.730815\pi\)
\(60\) −1012.61 −0.0363132
\(61\) 45806.4 1.57617 0.788083 0.615569i \(-0.211074\pi\)
0.788083 + 0.615569i \(0.211074\pi\)
\(62\) −3844.00 −0.127000
\(63\) 1917.96 0.0608818
\(64\) 4096.00 0.125000
\(65\) 4278.07 0.125593
\(66\) −14340.2 −0.405223
\(67\) 55514.2 1.51083 0.755417 0.655244i \(-0.227434\pi\)
0.755417 + 0.655244i \(0.227434\pi\)
\(68\) 23284.0 0.610639
\(69\) 906.283 0.0229161
\(70\) 2907.12 0.0709118
\(71\) −47049.1 −1.10766 −0.553829 0.832630i \(-0.686834\pi\)
−0.553829 + 0.832630i \(0.686834\pi\)
\(72\) 701.716 0.0159525
\(73\) 79212.2 1.73974 0.869871 0.493280i \(-0.164202\pi\)
0.869871 + 0.493280i \(0.164202\pi\)
\(74\) −31192.2 −0.662165
\(75\) 47339.3 0.971782
\(76\) 16797.0 0.333579
\(77\) 41169.4 0.791312
\(78\) 62739.2 1.16762
\(79\) 814.146 0.0146769 0.00733845 0.999973i \(-0.497664\pi\)
0.00733845 + 0.999973i \(0.497664\pi\)
\(80\) 1063.62 0.0185806
\(81\) −56264.5 −0.952844
\(82\) 16042.1 0.263467
\(83\) 47660.7 0.759390 0.379695 0.925112i \(-0.376029\pi\)
0.379695 + 0.925112i \(0.376029\pi\)
\(84\) 42633.9 0.659260
\(85\) 6046.20 0.0907686
\(86\) 7999.76 0.116635
\(87\) −63878.1 −0.904802
\(88\) 15062.5 0.207343
\(89\) −46071.5 −0.616535 −0.308267 0.951300i \(-0.599749\pi\)
−0.308267 + 0.951300i \(0.599749\pi\)
\(90\) 182.216 0.00237127
\(91\) −180119. −2.28011
\(92\) −951.933 −0.0117256
\(93\) −14638.6 −0.175507
\(94\) −53246.8 −0.621547
\(95\) 4361.72 0.0495848
\(96\) 15598.3 0.172743
\(97\) 54266.6 0.585603 0.292802 0.956173i \(-0.405412\pi\)
0.292802 + 0.956173i \(0.405412\pi\)
\(98\) −55170.3 −0.580283
\(99\) 2580.47 0.0264612
\(100\) −49723.8 −0.497238
\(101\) 82647.7 0.806171 0.403086 0.915162i \(-0.367938\pi\)
0.403086 + 0.915162i \(0.367938\pi\)
\(102\) 88669.5 0.843867
\(103\) 84118.3 0.781263 0.390631 0.920547i \(-0.372257\pi\)
0.390631 + 0.920547i \(0.372257\pi\)
\(104\) −65899.4 −0.597446
\(105\) 11070.8 0.0979958
\(106\) 127472. 1.10192
\(107\) −108238. −0.913942 −0.456971 0.889482i \(-0.651066\pi\)
−0.456971 + 0.889482i \(0.651066\pi\)
\(108\) 61897.1 0.510635
\(109\) −76250.3 −0.614717 −0.307359 0.951594i \(-0.599445\pi\)
−0.307359 + 0.951594i \(0.599445\pi\)
\(110\) 3911.31 0.0308206
\(111\) −118785. −0.915072
\(112\) −44781.4 −0.337328
\(113\) 113394. 0.835400 0.417700 0.908585i \(-0.362836\pi\)
0.417700 + 0.908585i \(0.362836\pi\)
\(114\) 63966.1 0.460986
\(115\) −247.191 −0.00174296
\(116\) 67095.7 0.462966
\(117\) −11289.7 −0.0762462
\(118\) 141868. 0.937951
\(119\) −254563. −1.64789
\(120\) 4050.45 0.0256773
\(121\) −105661. −0.656070
\(122\) −183226. −1.11452
\(123\) 61091.1 0.364096
\(124\) 15376.0 0.0898027
\(125\) −25895.5 −0.148235
\(126\) −7671.83 −0.0430499
\(127\) 127074. 0.699110 0.349555 0.936916i \(-0.386333\pi\)
0.349555 + 0.936916i \(0.386333\pi\)
\(128\) −16384.0 −0.0883883
\(129\) 30464.5 0.161183
\(130\) −17112.3 −0.0888074
\(131\) 9469.80 0.0482128 0.0241064 0.999709i \(-0.492326\pi\)
0.0241064 + 0.999709i \(0.492326\pi\)
\(132\) 57360.7 0.286536
\(133\) −183641. −0.900204
\(134\) −222057. −1.06832
\(135\) 16073.0 0.0759034
\(136\) −93135.9 −0.431787
\(137\) 66791.2 0.304031 0.152016 0.988378i \(-0.451424\pi\)
0.152016 + 0.988378i \(0.451424\pi\)
\(138\) −3625.13 −0.0162041
\(139\) 264672. 1.16190 0.580952 0.813938i \(-0.302680\pi\)
0.580952 + 0.813938i \(0.302680\pi\)
\(140\) −11628.5 −0.0501422
\(141\) −202773. −0.858941
\(142\) 188197. 0.783233
\(143\) −242336. −0.991011
\(144\) −2806.86 −0.0112802
\(145\) 17422.9 0.0688177
\(146\) −316849. −1.23018
\(147\) −210098. −0.801917
\(148\) 124769. 0.468221
\(149\) 272372. 1.00507 0.502535 0.864557i \(-0.332401\pi\)
0.502535 + 0.864557i \(0.332401\pi\)
\(150\) −189357. −0.687153
\(151\) 223300. 0.796978 0.398489 0.917173i \(-0.369535\pi\)
0.398489 + 0.917173i \(0.369535\pi\)
\(152\) −67188.1 −0.235876
\(153\) −15955.8 −0.0551048
\(154\) −164678. −0.559542
\(155\) 3992.72 0.0133487
\(156\) −250957. −0.825634
\(157\) −7971.22 −0.0258093 −0.0129046 0.999917i \(-0.504108\pi\)
−0.0129046 + 0.999917i \(0.504108\pi\)
\(158\) −3256.58 −0.0103781
\(159\) 485437. 1.52279
\(160\) −4254.47 −0.0131385
\(161\) 10407.4 0.0316431
\(162\) 225058. 0.673762
\(163\) −192360. −0.567083 −0.283541 0.958960i \(-0.591509\pi\)
−0.283541 + 0.958960i \(0.591509\pi\)
\(164\) −64168.3 −0.186299
\(165\) 14895.0 0.0425922
\(166\) −190643. −0.536970
\(167\) 23682.7 0.0657114 0.0328557 0.999460i \(-0.489540\pi\)
0.0328557 + 0.999460i \(0.489540\pi\)
\(168\) −170536. −0.466167
\(169\) 688946. 1.85553
\(170\) −24184.8 −0.0641831
\(171\) −11510.5 −0.0301025
\(172\) −31999.0 −0.0824737
\(173\) 712817. 1.81077 0.905385 0.424593i \(-0.139583\pi\)
0.905385 + 0.424593i \(0.139583\pi\)
\(174\) 255512. 0.639792
\(175\) 543628. 1.34186
\(176\) −60250.0 −0.146614
\(177\) 540260. 1.29619
\(178\) 184286. 0.435956
\(179\) −591690. −1.38026 −0.690131 0.723684i \(-0.742447\pi\)
−0.690131 + 0.723684i \(0.742447\pi\)
\(180\) −728.865 −0.00167674
\(181\) 649491. 1.47359 0.736794 0.676117i \(-0.236339\pi\)
0.736794 + 0.676117i \(0.236339\pi\)
\(182\) 720476. 1.61228
\(183\) −697756. −1.54020
\(184\) 3807.73 0.00829129
\(185\) 32399.0 0.0695988
\(186\) 58554.6 0.124102
\(187\) −342495. −0.716226
\(188\) 212987. 0.439500
\(189\) −676718. −1.37801
\(190\) −17446.9 −0.0350618
\(191\) 662573. 1.31417 0.657083 0.753818i \(-0.271790\pi\)
0.657083 + 0.753818i \(0.271790\pi\)
\(192\) −62393.2 −0.122147
\(193\) 944863. 1.82589 0.912947 0.408078i \(-0.133801\pi\)
0.912947 + 0.408078i \(0.133801\pi\)
\(194\) −217066. −0.414084
\(195\) −65166.6 −0.122727
\(196\) 220681. 0.410322
\(197\) −443922. −0.814969 −0.407485 0.913212i \(-0.633594\pi\)
−0.407485 + 0.913212i \(0.633594\pi\)
\(198\) −10321.9 −0.0187109
\(199\) −24623.0 −0.0440765 −0.0220383 0.999757i \(-0.507016\pi\)
−0.0220383 + 0.999757i \(0.507016\pi\)
\(200\) 198895. 0.351600
\(201\) −845631. −1.47636
\(202\) −330591. −0.570049
\(203\) −733554. −1.24937
\(204\) −354678. −0.596704
\(205\) −16662.7 −0.0276925
\(206\) −336473. −0.552436
\(207\) 652.331 0.00105814
\(208\) 263598. 0.422458
\(209\) −247075. −0.391258
\(210\) −44283.4 −0.0692935
\(211\) −389799. −0.602747 −0.301373 0.953506i \(-0.597445\pi\)
−0.301373 + 0.953506i \(0.597445\pi\)
\(212\) −509889. −0.779177
\(213\) 716686. 1.08238
\(214\) 432950. 0.646255
\(215\) −8309.27 −0.0122593
\(216\) −247588. −0.361074
\(217\) −168105. −0.242344
\(218\) 305001. 0.434671
\(219\) −1.20662e6 −1.70004
\(220\) −15645.3 −0.0217935
\(221\) 1.49844e6 2.06375
\(222\) 475141. 0.647054
\(223\) −467711. −0.629819 −0.314910 0.949122i \(-0.601974\pi\)
−0.314910 + 0.949122i \(0.601974\pi\)
\(224\) 179126. 0.238527
\(225\) 34074.2 0.0448714
\(226\) −453577. −0.590717
\(227\) −898140. −1.15686 −0.578428 0.815733i \(-0.696334\pi\)
−0.578428 + 0.815733i \(0.696334\pi\)
\(228\) −255864. −0.325966
\(229\) −630277. −0.794223 −0.397112 0.917770i \(-0.629987\pi\)
−0.397112 + 0.917770i \(0.629987\pi\)
\(230\) 988.763 0.00123246
\(231\) −627122. −0.773254
\(232\) −268383. −0.327367
\(233\) −473923. −0.571898 −0.285949 0.958245i \(-0.592309\pi\)
−0.285949 + 0.958245i \(0.592309\pi\)
\(234\) 45158.9 0.0539142
\(235\) 55306.9 0.0653296
\(236\) −567473. −0.663231
\(237\) −12401.7 −0.0143420
\(238\) 1.01825e6 1.16523
\(239\) 123418. 0.139761 0.0698803 0.997555i \(-0.477738\pi\)
0.0698803 + 0.997555i \(0.477738\pi\)
\(240\) −16201.8 −0.0181566
\(241\) −1.80023e6 −1.99657 −0.998287 0.0584992i \(-0.981368\pi\)
−0.998287 + 0.0584992i \(0.981368\pi\)
\(242\) 422643. 0.463911
\(243\) −83001.1 −0.0901713
\(244\) 732903. 0.788083
\(245\) 57304.8 0.0609924
\(246\) −244365. −0.257454
\(247\) 1.08097e6 1.12738
\(248\) −61504.0 −0.0635001
\(249\) −726002. −0.742061
\(250\) 103582. 0.104818
\(251\) 885581. 0.887246 0.443623 0.896213i \(-0.353693\pi\)
0.443623 + 0.896213i \(0.353693\pi\)
\(252\) 30687.3 0.0304409
\(253\) 14002.4 0.0137531
\(254\) −508294. −0.494346
\(255\) −92100.1 −0.0886972
\(256\) 65536.0 0.0625000
\(257\) 786523. 0.742812 0.371406 0.928471i \(-0.378876\pi\)
0.371406 + 0.928471i \(0.378876\pi\)
\(258\) −121858. −0.113974
\(259\) −1.36409e6 −1.26355
\(260\) 68449.1 0.0627963
\(261\) −45978.6 −0.0417787
\(262\) −37879.2 −0.0340916
\(263\) 1.48145e6 1.32068 0.660341 0.750966i \(-0.270412\pi\)
0.660341 + 0.750966i \(0.270412\pi\)
\(264\) −229443. −0.202612
\(265\) −132404. −0.115821
\(266\) 734564. 0.636540
\(267\) 701794. 0.602465
\(268\) 888227. 0.755417
\(269\) −1.16750e6 −0.983727 −0.491863 0.870672i \(-0.663684\pi\)
−0.491863 + 0.870672i \(0.663684\pi\)
\(270\) −64291.8 −0.0536718
\(271\) 1.20110e6 0.993477 0.496738 0.867900i \(-0.334531\pi\)
0.496738 + 0.867900i \(0.334531\pi\)
\(272\) 372543. 0.305320
\(273\) 2.74370e6 2.22808
\(274\) −267165. −0.214982
\(275\) 731411. 0.583216
\(276\) 14500.5 0.0114581
\(277\) −1.84842e6 −1.44745 −0.723723 0.690091i \(-0.757571\pi\)
−0.723723 + 0.690091i \(0.757571\pi\)
\(278\) −1.05869e6 −0.821590
\(279\) −10536.7 −0.00810390
\(280\) 46514.0 0.0354559
\(281\) 982107. 0.741981 0.370991 0.928637i \(-0.379018\pi\)
0.370991 + 0.928637i \(0.379018\pi\)
\(282\) 811094. 0.607363
\(283\) −76041.8 −0.0564399 −0.0282200 0.999602i \(-0.508984\pi\)
−0.0282200 + 0.999602i \(0.508984\pi\)
\(284\) −752786. −0.553829
\(285\) −66440.9 −0.0484533
\(286\) 969346. 0.700751
\(287\) 701550. 0.502752
\(288\) 11227.5 0.00797627
\(289\) 697890. 0.491521
\(290\) −69691.6 −0.0486615
\(291\) −826628. −0.572239
\(292\) 1.26739e6 0.869871
\(293\) −2.66036e6 −1.81039 −0.905194 0.424998i \(-0.860275\pi\)
−0.905194 + 0.424998i \(0.860275\pi\)
\(294\) 840393. 0.567041
\(295\) −147357. −0.0985861
\(296\) −499075. −0.331082
\(297\) −910473. −0.598930
\(298\) −1.08949e6 −0.710692
\(299\) −61261.6 −0.0396287
\(300\) 757429. 0.485891
\(301\) 349844. 0.222566
\(302\) −893200. −0.563549
\(303\) −1.25895e6 −0.787774
\(304\) 268752. 0.166789
\(305\) 190315. 0.117145
\(306\) 63823.2 0.0389650
\(307\) 951120. 0.575956 0.287978 0.957637i \(-0.407017\pi\)
0.287978 + 0.957637i \(0.407017\pi\)
\(308\) 658710. 0.395656
\(309\) −1.28135e6 −0.763434
\(310\) −15970.9 −0.00943898
\(311\) 699861. 0.410309 0.205154 0.978730i \(-0.434230\pi\)
0.205154 + 0.978730i \(0.434230\pi\)
\(312\) 1.00383e6 0.583812
\(313\) 3.03373e6 1.75031 0.875156 0.483841i \(-0.160759\pi\)
0.875156 + 0.483841i \(0.160759\pi\)
\(314\) 31884.9 0.0182499
\(315\) 7968.65 0.00452489
\(316\) 13026.3 0.00733845
\(317\) 2.04461e6 1.14278 0.571390 0.820679i \(-0.306404\pi\)
0.571390 + 0.820679i \(0.306404\pi\)
\(318\) −1.94175e6 −1.07678
\(319\) −986941. −0.543019
\(320\) 17017.9 0.00929032
\(321\) 1.64875e6 0.893085
\(322\) −41629.8 −0.0223751
\(323\) 1.52774e6 0.814785
\(324\) −900231. −0.476422
\(325\) −3.19997e6 −1.68050
\(326\) 769441. 0.400988
\(327\) 1.16150e6 0.600689
\(328\) 256673. 0.131733
\(329\) −2.32858e6 −1.18605
\(330\) −59579.9 −0.0301172
\(331\) 3.17478e6 1.59273 0.796367 0.604814i \(-0.206753\pi\)
0.796367 + 0.604814i \(0.206753\pi\)
\(332\) 762571. 0.379695
\(333\) −85500.1 −0.0422529
\(334\) −94730.9 −0.0464649
\(335\) 230648. 0.112289
\(336\) 682142. 0.329630
\(337\) 288974. 0.138607 0.0693033 0.997596i \(-0.477922\pi\)
0.0693033 + 0.997596i \(0.477922\pi\)
\(338\) −2.75578e6 −1.31206
\(339\) −1.72730e6 −0.816336
\(340\) 96739.3 0.0453843
\(341\) −226173. −0.105331
\(342\) 46041.9 0.0212857
\(343\) 527306. 0.242007
\(344\) 127996. 0.0583177
\(345\) 3765.39 0.00170319
\(346\) −2.85127e6 −1.28041
\(347\) 3.73614e6 1.66571 0.832856 0.553490i \(-0.186704\pi\)
0.832856 + 0.553490i \(0.186704\pi\)
\(348\) −1.02205e6 −0.452401
\(349\) −3.49319e6 −1.53518 −0.767588 0.640943i \(-0.778543\pi\)
−0.767588 + 0.640943i \(0.778543\pi\)
\(350\) −2.17451e6 −0.948838
\(351\) 3.98338e6 1.72577
\(352\) 241000. 0.103672
\(353\) −2.86521e6 −1.22383 −0.611914 0.790925i \(-0.709600\pi\)
−0.611914 + 0.790925i \(0.709600\pi\)
\(354\) −2.16104e6 −0.916546
\(355\) −195478. −0.0823240
\(356\) −737144. −0.308267
\(357\) 3.87768e6 1.61028
\(358\) 2.36676e6 0.975993
\(359\) −4.21678e6 −1.72681 −0.863406 0.504510i \(-0.831673\pi\)
−0.863406 + 0.504510i \(0.831673\pi\)
\(360\) 2915.46 0.00118563
\(361\) −1.37399e6 −0.554901
\(362\) −2.59796e6 −1.04198
\(363\) 1.60950e6 0.641098
\(364\) −2.88190e6 −1.14006
\(365\) 329107. 0.129302
\(366\) 2.79102e6 1.08908
\(367\) −2.80326e6 −1.08642 −0.543211 0.839596i \(-0.682792\pi\)
−0.543211 + 0.839596i \(0.682792\pi\)
\(368\) −15230.9 −0.00586282
\(369\) 43972.6 0.0168119
\(370\) −129596. −0.0492138
\(371\) 5.57460e6 2.10271
\(372\) −234218. −0.0877533
\(373\) −3.03545e6 −1.12967 −0.564834 0.825204i \(-0.691060\pi\)
−0.564834 + 0.825204i \(0.691060\pi\)
\(374\) 1.36998e6 0.506448
\(375\) 394459. 0.144852
\(376\) −851949. −0.310774
\(377\) 4.31794e6 1.56467
\(378\) 2.70687e6 0.974402
\(379\) −1.35861e6 −0.485845 −0.242922 0.970046i \(-0.578106\pi\)
−0.242922 + 0.970046i \(0.578106\pi\)
\(380\) 69787.6 0.0247924
\(381\) −1.93567e6 −0.683156
\(382\) −2.65029e6 −0.929256
\(383\) −4.81834e6 −1.67842 −0.839209 0.543809i \(-0.816982\pi\)
−0.839209 + 0.543809i \(0.816982\pi\)
\(384\) 249573. 0.0863713
\(385\) 171049. 0.0588124
\(386\) −3.77945e6 −1.29110
\(387\) 21928.0 0.00744253
\(388\) 868266. 0.292802
\(389\) −2.84397e6 −0.952909 −0.476455 0.879199i \(-0.658078\pi\)
−0.476455 + 0.879199i \(0.658078\pi\)
\(390\) 260666. 0.0867808
\(391\) −86581.2 −0.0286406
\(392\) −882725. −0.290142
\(393\) −144251. −0.0471126
\(394\) 1.77569e6 0.576270
\(395\) 3382.58 0.00109083
\(396\) 41287.5 0.0132306
\(397\) −4.23047e6 −1.34714 −0.673569 0.739124i \(-0.735240\pi\)
−0.673569 + 0.739124i \(0.735240\pi\)
\(398\) 98491.8 0.0311668
\(399\) 2.79735e6 0.879660
\(400\) −795581. −0.248619
\(401\) 938762. 0.291538 0.145769 0.989319i \(-0.453434\pi\)
0.145769 + 0.989319i \(0.453434\pi\)
\(402\) 3.38253e6 1.04394
\(403\) 989521. 0.303503
\(404\) 1.32236e6 0.403086
\(405\) −233765. −0.0708178
\(406\) 2.93422e6 0.883440
\(407\) −1.83528e6 −0.549182
\(408\) 1.41871e6 0.421933
\(409\) 1.18216e6 0.349437 0.174718 0.984618i \(-0.444098\pi\)
0.174718 + 0.984618i \(0.444098\pi\)
\(410\) 66651.0 0.0195815
\(411\) −1.01741e6 −0.297093
\(412\) 1.34589e6 0.390631
\(413\) 6.20416e6 1.78981
\(414\) −2609.32 −0.000748216 0
\(415\) 198019. 0.0564399
\(416\) −1.05439e6 −0.298723
\(417\) −4.03167e6 −1.13539
\(418\) 988301. 0.276661
\(419\) 5.55949e6 1.54703 0.773517 0.633775i \(-0.218495\pi\)
0.773517 + 0.633775i \(0.218495\pi\)
\(420\) 177134. 0.0489979
\(421\) −539989. −0.148484 −0.0742420 0.997240i \(-0.523654\pi\)
−0.0742420 + 0.997240i \(0.523654\pi\)
\(422\) 1.55920e6 0.426206
\(423\) −145954. −0.0396610
\(424\) 2.03956e6 0.550961
\(425\) −4.52253e6 −1.21453
\(426\) −2.86675e6 −0.765359
\(427\) −8.01279e6 −2.12674
\(428\) −1.73180e6 −0.456971
\(429\) 3.69144e6 0.968396
\(430\) 33237.1 0.00866865
\(431\) 4.82032e6 1.24992 0.624961 0.780656i \(-0.285115\pi\)
0.624961 + 0.780656i \(0.285115\pi\)
\(432\) 990353. 0.255318
\(433\) 684866. 0.175544 0.0877720 0.996141i \(-0.472025\pi\)
0.0877720 + 0.996141i \(0.472025\pi\)
\(434\) 672421. 0.171363
\(435\) −265398. −0.0672473
\(436\) −1.22001e6 −0.307359
\(437\) −62459.5 −0.0156457
\(438\) 4.82647e6 1.20211
\(439\) 3.94888e6 0.977940 0.488970 0.872301i \(-0.337373\pi\)
0.488970 + 0.872301i \(0.337373\pi\)
\(440\) 62581.0 0.0154103
\(441\) −151226. −0.0370280
\(442\) −5.99375e6 −1.45930
\(443\) 3.73154e6 0.903397 0.451699 0.892171i \(-0.350818\pi\)
0.451699 + 0.892171i \(0.350818\pi\)
\(444\) −1.90057e6 −0.457536
\(445\) −191416. −0.0458224
\(446\) 1.87085e6 0.445349
\(447\) −4.14896e6 −0.982133
\(448\) −716502. −0.168664
\(449\) −5.80405e6 −1.35867 −0.679337 0.733826i \(-0.737733\pi\)
−0.679337 + 0.733826i \(0.737733\pi\)
\(450\) −136297. −0.0317289
\(451\) 943882. 0.218513
\(452\) 1.81431e6 0.417700
\(453\) −3.40147e6 −0.778790
\(454\) 3.59256e6 0.818021
\(455\) −748351. −0.169464
\(456\) 1.02346e6 0.230493
\(457\) 1.86959e6 0.418750 0.209375 0.977835i \(-0.432857\pi\)
0.209375 + 0.977835i \(0.432857\pi\)
\(458\) 2.52111e6 0.561600
\(459\) 5.62972e6 1.24726
\(460\) −3955.05 −0.000871481 0
\(461\) 3.30270e6 0.723797 0.361898 0.932218i \(-0.382129\pi\)
0.361898 + 0.932218i \(0.382129\pi\)
\(462\) 2.50849e6 0.546773
\(463\) 1.42250e6 0.308389 0.154195 0.988041i \(-0.450722\pi\)
0.154195 + 0.988041i \(0.450722\pi\)
\(464\) 1.07353e6 0.231483
\(465\) −60820.0 −0.0130441
\(466\) 1.89569e6 0.404393
\(467\) −6.32630e6 −1.34232 −0.671162 0.741311i \(-0.734205\pi\)
−0.671162 + 0.741311i \(0.734205\pi\)
\(468\) −180635. −0.0381231
\(469\) −9.71094e6 −2.03859
\(470\) −221228. −0.0461950
\(471\) 121423. 0.0252203
\(472\) 2.26989e6 0.468975
\(473\) 470689. 0.0967344
\(474\) 49606.6 0.0101413
\(475\) −3.26255e6 −0.663472
\(476\) −4.07300e6 −0.823943
\(477\) 349411. 0.0703139
\(478\) −493673. −0.0988257
\(479\) −7.24181e6 −1.44214 −0.721072 0.692860i \(-0.756350\pi\)
−0.721072 + 0.692860i \(0.756350\pi\)
\(480\) 64807.2 0.0128387
\(481\) 8.02948e6 1.58243
\(482\) 7.20092e6 1.41179
\(483\) −158534. −0.0309210
\(484\) −1.69057e6 −0.328035
\(485\) 225465. 0.0435235
\(486\) 332004. 0.0637607
\(487\) 4.99256e6 0.953896 0.476948 0.878931i \(-0.341743\pi\)
0.476948 + 0.878931i \(0.341743\pi\)
\(488\) −2.93161e6 −0.557259
\(489\) 2.93017e6 0.554141
\(490\) −229219. −0.0431282
\(491\) 4.15456e6 0.777716 0.388858 0.921298i \(-0.372870\pi\)
0.388858 + 0.921298i \(0.372870\pi\)
\(492\) 977458. 0.182048
\(493\) 6.10255e6 1.13082
\(494\) −4.32388e6 −0.797180
\(495\) 10721.2 0.00196667
\(496\) 246016. 0.0449013
\(497\) 8.23018e6 1.49458
\(498\) 2.90401e6 0.524716
\(499\) 8.96959e6 1.61258 0.806290 0.591520i \(-0.201472\pi\)
0.806290 + 0.591520i \(0.201472\pi\)
\(500\) −414328. −0.0741173
\(501\) −360752. −0.0642118
\(502\) −3.54233e6 −0.627378
\(503\) 3.70803e6 0.653467 0.326734 0.945116i \(-0.394052\pi\)
0.326734 + 0.945116i \(0.394052\pi\)
\(504\) −122749. −0.0215250
\(505\) 343381. 0.0599167
\(506\) −56009.7 −0.00972494
\(507\) −1.04945e7 −1.81319
\(508\) 2.03318e6 0.349555
\(509\) 5.11101e6 0.874405 0.437202 0.899363i \(-0.355969\pi\)
0.437202 + 0.899363i \(0.355969\pi\)
\(510\) 368401. 0.0627184
\(511\) −1.38564e7 −2.34746
\(512\) −262144. −0.0441942
\(513\) 4.06127e6 0.681348
\(514\) −3.14609e6 −0.525247
\(515\) 349491. 0.0580655
\(516\) 487432. 0.0805916
\(517\) −3.13293e6 −0.515495
\(518\) 5.45636e6 0.893468
\(519\) −1.08581e7 −1.76945
\(520\) −273796. −0.0444037
\(521\) 6.62277e6 1.06892 0.534460 0.845194i \(-0.320515\pi\)
0.534460 + 0.845194i \(0.320515\pi\)
\(522\) 183914. 0.0295420
\(523\) −5.90383e6 −0.943799 −0.471899 0.881652i \(-0.656431\pi\)
−0.471899 + 0.881652i \(0.656431\pi\)
\(524\) 151517. 0.0241064
\(525\) −8.28094e6 −1.31124
\(526\) −5.92580e6 −0.933863
\(527\) 1.39849e6 0.219348
\(528\) 917771. 0.143268
\(529\) −6.43280e6 −0.999450
\(530\) 529617. 0.0818977
\(531\) 388872. 0.0598508
\(532\) −2.93826e6 −0.450102
\(533\) −4.12955e6 −0.629629
\(534\) −2.80718e6 −0.426007
\(535\) −449701. −0.0679265
\(536\) −3.55291e6 −0.534160
\(537\) 9.01304e6 1.34876
\(538\) 4.66998e6 0.695600
\(539\) −3.24610e6 −0.481272
\(540\) 257167. 0.0379517
\(541\) −4.62041e6 −0.678715 −0.339357 0.940658i \(-0.610210\pi\)
−0.339357 + 0.940658i \(0.610210\pi\)
\(542\) −4.80442e6 −0.702494
\(543\) −9.89351e6 −1.43996
\(544\) −1.49017e6 −0.215894
\(545\) −316802. −0.0456874
\(546\) −1.09748e7 −1.57549
\(547\) 7.61421e6 1.08807 0.544035 0.839063i \(-0.316896\pi\)
0.544035 + 0.839063i \(0.316896\pi\)
\(548\) 1.06866e6 0.152016
\(549\) −502236. −0.0711175
\(550\) −2.92564e6 −0.412396
\(551\) 4.40237e6 0.617743
\(552\) −58002.1 −0.00810207
\(553\) −142416. −0.0198037
\(554\) 7.39370e6 1.02350
\(555\) −493525. −0.0680105
\(556\) 4.23474e6 0.580952
\(557\) −8.83369e6 −1.20644 −0.603218 0.797577i \(-0.706115\pi\)
−0.603218 + 0.797577i \(0.706115\pi\)
\(558\) 42146.8 0.00573032
\(559\) −2.05930e6 −0.278733
\(560\) −186056. −0.0250711
\(561\) 5.21713e6 0.699881
\(562\) −3.92843e6 −0.524660
\(563\) 9.26342e6 1.23169 0.615843 0.787869i \(-0.288815\pi\)
0.615843 + 0.787869i \(0.288815\pi\)
\(564\) −3.24437e6 −0.429470
\(565\) 471125. 0.0620891
\(566\) 304167. 0.0399091
\(567\) 9.84219e6 1.28568
\(568\) 3.01115e6 0.391616
\(569\) 1.18171e6 0.153013 0.0765067 0.997069i \(-0.475623\pi\)
0.0765067 + 0.997069i \(0.475623\pi\)
\(570\) 265764. 0.0342616
\(571\) −1.38342e7 −1.77568 −0.887840 0.460151i \(-0.847795\pi\)
−0.887840 + 0.460151i \(0.847795\pi\)
\(572\) −3.87738e6 −0.495506
\(573\) −1.00928e7 −1.28418
\(574\) −2.80620e6 −0.355499
\(575\) 184897. 0.0233218
\(576\) −44909.8 −0.00564008
\(577\) −7.78469e6 −0.973423 −0.486712 0.873563i \(-0.661804\pi\)
−0.486712 + 0.873563i \(0.661804\pi\)
\(578\) −2.79156e6 −0.347558
\(579\) −1.43928e7 −1.78423
\(580\) 278766. 0.0344089
\(581\) −8.33716e6 −1.02466
\(582\) 3.30651e6 0.404634
\(583\) 7.50020e6 0.913906
\(584\) −5.06958e6 −0.615092
\(585\) −46906.1 −0.00566682
\(586\) 1.06414e7 1.28014
\(587\) 691004. 0.0827723 0.0413862 0.999143i \(-0.486823\pi\)
0.0413862 + 0.999143i \(0.486823\pi\)
\(588\) −3.36157e6 −0.400958
\(589\) 1.00887e6 0.119825
\(590\) 589428. 0.0697109
\(591\) 6.76214e6 0.796371
\(592\) 1.99630e6 0.234111
\(593\) 1.66505e7 1.94442 0.972209 0.234115i \(-0.0752191\pi\)
0.972209 + 0.234115i \(0.0752191\pi\)
\(594\) 3.64189e6 0.423507
\(595\) −1.05765e6 −0.122475
\(596\) 4.35795e6 0.502535
\(597\) 375075. 0.0430707
\(598\) 245046. 0.0280218
\(599\) 5.35814e6 0.610165 0.305082 0.952326i \(-0.401316\pi\)
0.305082 + 0.952326i \(0.401316\pi\)
\(600\) −3.02971e6 −0.343577
\(601\) 326874. 0.0369143 0.0184571 0.999830i \(-0.494125\pi\)
0.0184571 + 0.999830i \(0.494125\pi\)
\(602\) −1.39938e6 −0.157378
\(603\) −608674. −0.0681698
\(604\) 3.57280e6 0.398489
\(605\) −438995. −0.0487608
\(606\) 5.03579e6 0.557040
\(607\) 1.72684e7 1.90230 0.951152 0.308724i \(-0.0999018\pi\)
0.951152 + 0.308724i \(0.0999018\pi\)
\(608\) −1.07501e6 −0.117938
\(609\) 1.11740e7 1.22086
\(610\) −761258. −0.0828338
\(611\) 1.37068e7 1.48536
\(612\) −255293. −0.0275524
\(613\) −8.78767e6 −0.944545 −0.472273 0.881453i \(-0.656566\pi\)
−0.472273 + 0.881453i \(0.656566\pi\)
\(614\) −3.80448e6 −0.407263
\(615\) 253819. 0.0270605
\(616\) −2.63484e6 −0.279771
\(617\) 3.55288e6 0.375723 0.187861 0.982196i \(-0.439844\pi\)
0.187861 + 0.982196i \(0.439844\pi\)
\(618\) 5.12540e6 0.539829
\(619\) 1.34718e7 1.41319 0.706595 0.707619i \(-0.250231\pi\)
0.706595 + 0.707619i \(0.250231\pi\)
\(620\) 63883.6 0.00667437
\(621\) −230164. −0.0239501
\(622\) −2.79944e6 −0.290132
\(623\) 8.05917e6 0.831898
\(624\) −4.01531e6 −0.412817
\(625\) 9.60409e6 0.983459
\(626\) −1.21349e7 −1.23766
\(627\) 3.76363e6 0.382329
\(628\) −127540. −0.0129046
\(629\) 1.13481e7 1.14366
\(630\) −31874.6 −0.00319958
\(631\) −1.19893e6 −0.119872 −0.0599362 0.998202i \(-0.519090\pi\)
−0.0599362 + 0.998202i \(0.519090\pi\)
\(632\) −52105.3 −0.00518907
\(633\) 5.93770e6 0.588992
\(634\) −8.17844e6 −0.808067
\(635\) 527960. 0.0519597
\(636\) 7.76700e6 0.761396
\(637\) 1.42019e7 1.38675
\(638\) 3.94777e6 0.383972
\(639\) 515861. 0.0499782
\(640\) −68071.6 −0.00656925
\(641\) −1.61440e6 −0.155191 −0.0775953 0.996985i \(-0.524724\pi\)
−0.0775953 + 0.996985i \(0.524724\pi\)
\(642\) −6.59501e6 −0.631507
\(643\) 5.51394e6 0.525938 0.262969 0.964804i \(-0.415298\pi\)
0.262969 + 0.964804i \(0.415298\pi\)
\(644\) 166519. 0.0158216
\(645\) 126573. 0.0119796
\(646\) −6.11096e6 −0.576140
\(647\) −1.67629e7 −1.57430 −0.787150 0.616761i \(-0.788444\pi\)
−0.787150 + 0.616761i \(0.788444\pi\)
\(648\) 3.60093e6 0.336881
\(649\) 8.34722e6 0.777912
\(650\) 1.27999e7 1.18829
\(651\) 2.56070e6 0.236813
\(652\) −3.07776e6 −0.283541
\(653\) −7.92672e6 −0.727462 −0.363731 0.931504i \(-0.618497\pi\)
−0.363731 + 0.931504i \(0.618497\pi\)
\(654\) −4.64600e6 −0.424751
\(655\) 39344.7 0.00358330
\(656\) −1.02669e6 −0.0931496
\(657\) −868507. −0.0784982
\(658\) 9.31432e6 0.838661
\(659\) −1.79313e7 −1.60841 −0.804206 0.594351i \(-0.797409\pi\)
−0.804206 + 0.594351i \(0.797409\pi\)
\(660\) 238320. 0.0212961
\(661\) 1.63759e6 0.145781 0.0728904 0.997340i \(-0.476778\pi\)
0.0728904 + 0.997340i \(0.476778\pi\)
\(662\) −1.26991e7 −1.12623
\(663\) −2.28253e7 −2.01666
\(664\) −3.05028e6 −0.268485
\(665\) −762984. −0.0669055
\(666\) 342001. 0.0298773
\(667\) −249494. −0.0217143
\(668\) 378924. 0.0328557
\(669\) 7.12452e6 0.615446
\(670\) −922592. −0.0794004
\(671\) −1.07806e7 −0.924351
\(672\) −2.72857e6 −0.233084
\(673\) 6.68369e6 0.568825 0.284413 0.958702i \(-0.408201\pi\)
0.284413 + 0.958702i \(0.408201\pi\)
\(674\) −1.15590e6 −0.0980097
\(675\) −1.20225e7 −1.01563
\(676\) 1.10231e7 0.927765
\(677\) 435721. 0.0365373 0.0182687 0.999833i \(-0.494185\pi\)
0.0182687 + 0.999833i \(0.494185\pi\)
\(678\) 6.90920e6 0.577236
\(679\) −9.49271e6 −0.790162
\(680\) −386957. −0.0320915
\(681\) 1.36811e7 1.13046
\(682\) 904691. 0.0744799
\(683\) −7.88577e6 −0.646834 −0.323417 0.946257i \(-0.604832\pi\)
−0.323417 + 0.946257i \(0.604832\pi\)
\(684\) −184168. −0.0150513
\(685\) 277501. 0.0225964
\(686\) −2.10922e6 −0.171125
\(687\) 9.60083e6 0.776098
\(688\) −511984. −0.0412369
\(689\) −3.28139e7 −2.63336
\(690\) −15061.6 −0.00120433
\(691\) −2.42470e6 −0.193180 −0.0965900 0.995324i \(-0.530794\pi\)
−0.0965900 + 0.995324i \(0.530794\pi\)
\(692\) 1.14051e7 0.905385
\(693\) −451394. −0.0357045
\(694\) −1.49446e7 −1.17784
\(695\) 1.09965e6 0.0863557
\(696\) 4.08820e6 0.319896
\(697\) −5.83630e6 −0.455047
\(698\) 1.39727e7 1.08553
\(699\) 7.21914e6 0.558847
\(700\) 8.69805e6 0.670930
\(701\) −1.34755e7 −1.03574 −0.517871 0.855459i \(-0.673275\pi\)
−0.517871 + 0.855459i \(0.673275\pi\)
\(702\) −1.59335e7 −1.22031
\(703\) 8.18649e6 0.624754
\(704\) −964000. −0.0733070
\(705\) −842475. −0.0638387
\(706\) 1.14608e7 0.865376
\(707\) −1.44573e7 −1.08778
\(708\) 8.64415e6 0.648096
\(709\) 1.62749e7 1.21591 0.607956 0.793971i \(-0.291990\pi\)
0.607956 + 0.793971i \(0.291990\pi\)
\(710\) 781911. 0.0582119
\(711\) −8926.55 −0.000662231 0
\(712\) 2.94858e6 0.217978
\(713\) −57175.5 −0.00421198
\(714\) −1.55107e7 −1.13864
\(715\) −1.00685e6 −0.0736545
\(716\) −9.46704e6 −0.690131
\(717\) −1.88000e6 −0.136571
\(718\) 1.68671e7 1.22104
\(719\) −5.81254e6 −0.419319 −0.209659 0.977775i \(-0.567235\pi\)
−0.209659 + 0.977775i \(0.567235\pi\)
\(720\) −11661.8 −0.000838370 0
\(721\) −1.47146e7 −1.05417
\(722\) 5.49596e6 0.392374
\(723\) 2.74224e7 1.95101
\(724\) 1.03918e7 0.736794
\(725\) −1.30322e7 −0.920818
\(726\) −6.43800e6 −0.453325
\(727\) −6.21696e6 −0.436256 −0.218128 0.975920i \(-0.569995\pi\)
−0.218128 + 0.975920i \(0.569995\pi\)
\(728\) 1.15276e7 0.806141
\(729\) 1.49366e7 1.04096
\(730\) −1.31643e6 −0.0914304
\(731\) −2.91041e6 −0.201447
\(732\) −1.11641e7 −0.770098
\(733\) 1.81331e7 1.24656 0.623279 0.781999i \(-0.285800\pi\)
0.623279 + 0.781999i \(0.285800\pi\)
\(734\) 1.12131e7 0.768217
\(735\) −872908. −0.0596005
\(736\) 60923.7 0.00414564
\(737\) −1.30653e7 −0.886037
\(738\) −175890. −0.0118878
\(739\) −2.73725e7 −1.84375 −0.921876 0.387485i \(-0.873344\pi\)
−0.921876 + 0.387485i \(0.873344\pi\)
\(740\) 518384. 0.0347994
\(741\) −1.64661e7 −1.10166
\(742\) −2.22984e7 −1.48684
\(743\) −2.90995e7 −1.93381 −0.966904 0.255142i \(-0.917878\pi\)
−0.966904 + 0.255142i \(0.917878\pi\)
\(744\) 936873. 0.0620509
\(745\) 1.13164e6 0.0746994
\(746\) 1.21418e7 0.798796
\(747\) −522567. −0.0342642
\(748\) −5.47992e6 −0.358113
\(749\) 1.89337e7 1.23319
\(750\) −1.57784e6 −0.102426
\(751\) 4.40114e6 0.284751 0.142376 0.989813i \(-0.454526\pi\)
0.142376 + 0.989813i \(0.454526\pi\)
\(752\) 3.40780e6 0.219750
\(753\) −1.34898e7 −0.866999
\(754\) −1.72717e7 −1.10639
\(755\) 927758. 0.0592335
\(756\) −1.08275e7 −0.689006
\(757\) 6.88173e6 0.436474 0.218237 0.975896i \(-0.429969\pi\)
0.218237 + 0.975896i \(0.429969\pi\)
\(758\) 5.43445e6 0.343544
\(759\) −213295. −0.0134393
\(760\) −279150. −0.0175309
\(761\) 1.81095e7 1.13356 0.566781 0.823869i \(-0.308189\pi\)
0.566781 + 0.823869i \(0.308189\pi\)
\(762\) 7.74270e6 0.483064
\(763\) 1.33383e7 0.829446
\(764\) 1.06012e7 0.657083
\(765\) −66292.5 −0.00409553
\(766\) 1.92733e7 1.18682
\(767\) −3.65197e7 −2.24150
\(768\) −998291. −0.0610737
\(769\) −1.21359e7 −0.740044 −0.370022 0.929023i \(-0.620650\pi\)
−0.370022 + 0.929023i \(0.620650\pi\)
\(770\) −684196. −0.0415866
\(771\) −1.19809e7 −0.725860
\(772\) 1.51178e7 0.912947
\(773\) −6.85275e6 −0.412493 −0.206246 0.978500i \(-0.566125\pi\)
−0.206246 + 0.978500i \(0.566125\pi\)
\(774\) −87711.8 −0.00526266
\(775\) −2.98654e6 −0.178613
\(776\) −3.47306e6 −0.207042
\(777\) 2.07788e7 1.23472
\(778\) 1.13759e7 0.673808
\(779\) −4.21030e6 −0.248582
\(780\) −1.04267e6 −0.0613633
\(781\) 1.10731e7 0.649593
\(782\) 346325. 0.0202519
\(783\) 1.62228e7 0.945628
\(784\) 3.53090e6 0.205161
\(785\) −33118.5 −0.00191821
\(786\) 577003. 0.0333136
\(787\) −9.20801e6 −0.529943 −0.264971 0.964256i \(-0.585363\pi\)
−0.264971 + 0.964256i \(0.585363\pi\)
\(788\) −7.10275e6 −0.407485
\(789\) −2.25665e7 −1.29054
\(790\) −13530.3 −0.000771330 0
\(791\) −1.98357e7 −1.12722
\(792\) −165150. −0.00935546
\(793\) 4.71659e7 2.66345
\(794\) 1.69219e7 0.952570
\(795\) 2.01688e6 0.113178
\(796\) −393967. −0.0220383
\(797\) −1.24590e7 −0.694762 −0.347381 0.937724i \(-0.612929\pi\)
−0.347381 + 0.937724i \(0.612929\pi\)
\(798\) −1.11894e7 −0.622014
\(799\) 1.93718e7 1.07350
\(800\) 3.18232e6 0.175800
\(801\) 505142. 0.0278184
\(802\) −3.75505e6 −0.206148
\(803\) −1.86427e7 −1.02028
\(804\) −1.35301e7 −0.738178
\(805\) 43240.4 0.00235180
\(806\) −3.95809e6 −0.214609
\(807\) 1.77841e7 0.961277
\(808\) −5.28945e6 −0.285025
\(809\) 1.39177e7 0.747645 0.373823 0.927500i \(-0.378047\pi\)
0.373823 + 0.927500i \(0.378047\pi\)
\(810\) 935061. 0.0500757
\(811\) 2.23695e7 1.19427 0.597137 0.802140i \(-0.296305\pi\)
0.597137 + 0.802140i \(0.296305\pi\)
\(812\) −1.17369e7 −0.624686
\(813\) −1.82961e7 −0.970805
\(814\) 7.34112e6 0.388330
\(815\) −799211. −0.0421471
\(816\) −5.67485e6 −0.298352
\(817\) −2.09956e6 −0.110046
\(818\) −4.72865e6 −0.247089
\(819\) 1.97488e6 0.102880
\(820\) −266604. −0.0138462
\(821\) 5.80930e6 0.300792 0.150396 0.988626i \(-0.451945\pi\)
0.150396 + 0.988626i \(0.451945\pi\)
\(822\) 4.06965e6 0.210076
\(823\) −2.13414e7 −1.09830 −0.549152 0.835722i \(-0.685049\pi\)
−0.549152 + 0.835722i \(0.685049\pi\)
\(824\) −5.38357e6 −0.276218
\(825\) −1.11414e7 −0.569907
\(826\) −2.48166e7 −1.26559
\(827\) 2.57909e7 1.31130 0.655651 0.755064i \(-0.272394\pi\)
0.655651 + 0.755064i \(0.272394\pi\)
\(828\) 10437.3 0.000529069 0
\(829\) −2.36243e7 −1.19391 −0.596956 0.802274i \(-0.703623\pi\)
−0.596956 + 0.802274i \(0.703623\pi\)
\(830\) −792075. −0.0399090
\(831\) 2.81565e7 1.41441
\(832\) 4.21756e6 0.211229
\(833\) 2.00716e7 1.00224
\(834\) 1.61267e7 0.802841
\(835\) 98396.0 0.00488384
\(836\) −3.95320e6 −0.195629
\(837\) 3.71769e6 0.183426
\(838\) −2.22380e7 −1.09392
\(839\) 2.79824e7 1.37240 0.686198 0.727415i \(-0.259278\pi\)
0.686198 + 0.727415i \(0.259278\pi\)
\(840\) −708534. −0.0346468
\(841\) −2.92588e6 −0.142648
\(842\) 2.15996e6 0.104994
\(843\) −1.49602e7 −0.725049
\(844\) −6.23679e6 −0.301373
\(845\) 2.86240e6 0.137908
\(846\) 583815. 0.0280446
\(847\) 1.84829e7 0.885243
\(848\) −8.15823e6 −0.389589
\(849\) 1.15832e6 0.0551519
\(850\) 1.80901e7 0.858804
\(851\) −463951. −0.0219608
\(852\) 1.14670e7 0.541190
\(853\) −2.04470e7 −0.962182 −0.481091 0.876671i \(-0.659759\pi\)
−0.481091 + 0.876671i \(0.659759\pi\)
\(854\) 3.20512e7 1.50383
\(855\) −47823.3 −0.00223730
\(856\) 6.92721e6 0.323127
\(857\) 3.08472e7 1.43471 0.717355 0.696708i \(-0.245352\pi\)
0.717355 + 0.696708i \(0.245352\pi\)
\(858\) −1.47658e7 −0.684759
\(859\) −1.90536e7 −0.881038 −0.440519 0.897743i \(-0.645206\pi\)
−0.440519 + 0.897743i \(0.645206\pi\)
\(860\) −132948. −0.00612966
\(861\) −1.06865e7 −0.491279
\(862\) −1.92813e7 −0.883828
\(863\) −1.60269e7 −0.732525 −0.366263 0.930512i \(-0.619363\pi\)
−0.366263 + 0.930512i \(0.619363\pi\)
\(864\) −3.96141e6 −0.180537
\(865\) 2.96158e6 0.134581
\(866\) −2.73946e6 −0.124128
\(867\) −1.06308e7 −0.480304
\(868\) −2.68968e6 −0.121172
\(869\) −191610. −0.00860736
\(870\) 1.06159e6 0.0475510
\(871\) 5.71618e7 2.55305
\(872\) 4.88002e6 0.217335
\(873\) −594996. −0.0264228
\(874\) 249838. 0.0110632
\(875\) 4.52983e6 0.200015
\(876\) −1.93059e7 −0.850020
\(877\) 6.46053e6 0.283641 0.141821 0.989892i \(-0.454704\pi\)
0.141821 + 0.989892i \(0.454704\pi\)
\(878\) −1.57955e7 −0.691508
\(879\) 4.05245e7 1.76907
\(880\) −250324. −0.0108967
\(881\) 4.43941e7 1.92702 0.963508 0.267679i \(-0.0862567\pi\)
0.963508 + 0.267679i \(0.0862567\pi\)
\(882\) 604904. 0.0261827
\(883\) 3.31650e7 1.43146 0.715729 0.698378i \(-0.246095\pi\)
0.715729 + 0.698378i \(0.246095\pi\)
\(884\) 2.39750e7 1.03188
\(885\) 2.24465e6 0.0963363
\(886\) −1.49262e7 −0.638798
\(887\) −3.31641e7 −1.41533 −0.707667 0.706546i \(-0.750252\pi\)
−0.707667 + 0.706546i \(0.750252\pi\)
\(888\) 7.60226e6 0.323527
\(889\) −2.22286e7 −0.943318
\(890\) 765664. 0.0324014
\(891\) 1.32419e7 0.558800
\(892\) −7.48338e6 −0.314910
\(893\) 1.39748e7 0.586431
\(894\) 1.65958e7 0.694473
\(895\) −2.45833e6 −0.102585
\(896\) 2.86601e6 0.119264
\(897\) 933181. 0.0387244
\(898\) 2.32162e7 0.960728
\(899\) 4.02993e6 0.166302
\(900\) 545187. 0.0224357
\(901\) −4.63759e7 −1.90318
\(902\) −3.77553e6 −0.154512
\(903\) −5.32908e6 −0.217487
\(904\) −7.25723e6 −0.295359
\(905\) 2.69848e6 0.109521
\(906\) 1.36059e7 0.550688
\(907\) 2.70053e7 1.09001 0.545005 0.838433i \(-0.316528\pi\)
0.545005 + 0.838433i \(0.316528\pi\)
\(908\) −1.43702e7 −0.578428
\(909\) −906175. −0.0363749
\(910\) 2.99340e6 0.119829
\(911\) 1.82765e7 0.729621 0.364811 0.931082i \(-0.381134\pi\)
0.364811 + 0.931082i \(0.381134\pi\)
\(912\) −4.09383e6 −0.162983
\(913\) −1.12170e7 −0.445349
\(914\) −7.47835e6 −0.296101
\(915\) −2.89901e6 −0.114471
\(916\) −1.00844e7 −0.397112
\(917\) −1.65653e6 −0.0650542
\(918\) −2.25189e7 −0.881943
\(919\) 2.05975e7 0.804498 0.402249 0.915530i \(-0.368229\pi\)
0.402249 + 0.915530i \(0.368229\pi\)
\(920\) 15820.2 0.000616230 0
\(921\) −1.44881e7 −0.562812
\(922\) −1.32108e7 −0.511801
\(923\) −4.84455e7 −1.87176
\(924\) −1.00340e7 −0.386627
\(925\) −2.42343e7 −0.931270
\(926\) −5.68999e6 −0.218064
\(927\) −922299. −0.0352511
\(928\) −4.29412e6 −0.163683
\(929\) −2.79827e7 −1.06378 −0.531888 0.846815i \(-0.678517\pi\)
−0.531888 + 0.846815i \(0.678517\pi\)
\(930\) 243280. 0.00922357
\(931\) 1.44796e7 0.547499
\(932\) −7.58277e6 −0.285949
\(933\) −1.06608e7 −0.400945
\(934\) 2.53052e7 0.949166
\(935\) −1.42298e6 −0.0532317
\(936\) 722542. 0.0269571
\(937\) −1.18863e7 −0.442281 −0.221141 0.975242i \(-0.570978\pi\)
−0.221141 + 0.975242i \(0.570978\pi\)
\(938\) 3.88438e7 1.44150
\(939\) −4.62119e7 −1.71037
\(940\) 884911. 0.0326648
\(941\) −2.99706e7 −1.10337 −0.551686 0.834052i \(-0.686015\pi\)
−0.551686 + 0.834052i \(0.686015\pi\)
\(942\) −485694. −0.0178334
\(943\) 238609. 0.00873792
\(944\) −9.07957e6 −0.331616
\(945\) −2.81160e6 −0.102417
\(946\) −1.88275e6 −0.0684015
\(947\) 2.88301e6 0.104465 0.0522325 0.998635i \(-0.483366\pi\)
0.0522325 + 0.998635i \(0.483366\pi\)
\(948\) −198427. −0.00717099
\(949\) 8.15631e7 2.93987
\(950\) 1.30502e7 0.469146
\(951\) −3.11450e7 −1.11670
\(952\) 1.62920e7 0.582616
\(953\) −1.21859e7 −0.434637 −0.217319 0.976101i \(-0.569731\pi\)
−0.217319 + 0.976101i \(0.569731\pi\)
\(954\) −1.39765e6 −0.0497194
\(955\) 2.75283e6 0.0976722
\(956\) 1.97469e6 0.0698803
\(957\) 1.50338e7 0.530626
\(958\) 2.89672e7 1.01975
\(959\) −1.16836e7 −0.410233
\(960\) −259229. −0.00907831
\(961\) 923521. 0.0322581
\(962\) −3.21179e7 −1.11895
\(963\) 1.18675e6 0.0412376
\(964\) −2.88037e7 −0.998287
\(965\) 3.92568e6 0.135705
\(966\) 634135. 0.0218645
\(967\) 4.36736e7 1.50194 0.750970 0.660337i \(-0.229586\pi\)
0.750970 + 0.660337i \(0.229586\pi\)
\(968\) 6.76228e6 0.231956
\(969\) −2.32716e7 −0.796191
\(970\) −901859. −0.0307758
\(971\) 2.72990e6 0.0929178 0.0464589 0.998920i \(-0.485206\pi\)
0.0464589 + 0.998920i \(0.485206\pi\)
\(972\) −1.32802e6 −0.0450856
\(973\) −4.62983e7 −1.56777
\(974\) −1.99702e7 −0.674506
\(975\) 4.87443e7 1.64215
\(976\) 1.17264e7 0.394041
\(977\) −5.61565e6 −0.188219 −0.0941096 0.995562i \(-0.530000\pi\)
−0.0941096 + 0.995562i \(0.530000\pi\)
\(978\) −1.17207e7 −0.391837
\(979\) 1.08430e7 0.361570
\(980\) 916877. 0.0304962
\(981\) 836032. 0.0277364
\(982\) −1.66182e7 −0.549928
\(983\) 7.21208e6 0.238055 0.119027 0.992891i \(-0.462022\pi\)
0.119027 + 0.992891i \(0.462022\pi\)
\(984\) −3.90983e6 −0.128727
\(985\) −1.84439e6 −0.0605706
\(986\) −2.44102e7 −0.799612
\(987\) 3.54706e7 1.15898
\(988\) 1.72955e7 0.563692
\(989\) 118988. 0.00386823
\(990\) −42884.9 −0.00139064
\(991\) −2.05082e7 −0.663351 −0.331675 0.943394i \(-0.607614\pi\)
−0.331675 + 0.943394i \(0.607614\pi\)
\(992\) −984064. −0.0317500
\(993\) −4.83605e7 −1.55639
\(994\) −3.29207e7 −1.05683
\(995\) −102302. −0.00327588
\(996\) −1.16160e7 −0.371030
\(997\) −3.56424e7 −1.13561 −0.567805 0.823163i \(-0.692207\pi\)
−0.567805 + 0.823163i \(0.692207\pi\)
\(998\) −3.58784e7 −1.14027
\(999\) 3.01672e7 0.956361
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 62.6.a.c.1.1 4
3.2 odd 2 558.6.a.k.1.3 4
4.3 odd 2 496.6.a.d.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
62.6.a.c.1.1 4 1.1 even 1 trivial
496.6.a.d.1.4 4 4.3 odd 2
558.6.a.k.1.3 4 3.2 odd 2