Properties

Label 558.6.a.k.1.3
Level $558$
Weight $6$
Character 558.1
Self dual yes
Analytic conductor $89.494$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [558,6,Mod(1,558)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(558, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("558.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 558 = 2 \cdot 3^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 558.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,16,0,64,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(89.4941714556\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 221x^{2} - 140x + 2412 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 62)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(15.8744\) of defining polynomial
Character \(\chi\) \(=\) 558.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} +16.0000 q^{4} -4.15476 q^{5} -174.927 q^{7} +64.0000 q^{8} -16.6190 q^{10} +235.351 q^{11} +1029.68 q^{13} -699.709 q^{14} +256.000 q^{16} -1455.25 q^{17} +1049.81 q^{19} -66.4761 q^{20} +941.406 q^{22} +59.4958 q^{23} -3107.74 q^{25} +4118.72 q^{26} -2798.84 q^{28} -4193.48 q^{29} +961.000 q^{31} +1024.00 q^{32} -5820.99 q^{34} +726.781 q^{35} +7798.04 q^{37} +4199.25 q^{38} -265.905 q^{40} +4010.52 q^{41} -1999.94 q^{43} +3765.62 q^{44} +237.983 q^{46} -13311.7 q^{47} +13792.6 q^{49} -12431.0 q^{50} +16474.9 q^{52} +31868.1 q^{53} -977.829 q^{55} -11195.3 q^{56} -16773.9 q^{58} +35467.1 q^{59} +45806.4 q^{61} +3844.00 q^{62} +4096.00 q^{64} -4278.07 q^{65} +55514.2 q^{67} -23284.0 q^{68} +2907.12 q^{70} +47049.1 q^{71} +79212.2 q^{73} +31192.2 q^{74} +16797.0 q^{76} -41169.4 q^{77} +814.146 q^{79} -1063.62 q^{80} +16042.1 q^{82} -47660.7 q^{83} +6046.20 q^{85} -7999.76 q^{86} +15062.5 q^{88} +46071.5 q^{89} -180119. q^{91} +951.933 q^{92} -53246.8 q^{94} -4361.72 q^{95} +54266.6 q^{97} +55170.3 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 16 q^{2} + 64 q^{4} - 2 q^{5} + 146 q^{7} + 256 q^{8} - 8 q^{10} + 270 q^{11} + 1038 q^{13} + 584 q^{14} + 1024 q^{16} - 2020 q^{17} + 6214 q^{19} - 32 q^{20} + 1080 q^{22} - 8292 q^{23} + 9974 q^{25}+ \cdots + 86520 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) 0 0
\(4\) 16.0000 0.500000
\(5\) −4.15476 −0.0743226 −0.0371613 0.999309i \(-0.511832\pi\)
−0.0371613 + 0.999309i \(0.511832\pi\)
\(6\) 0 0
\(7\) −174.927 −1.34931 −0.674656 0.738132i \(-0.735708\pi\)
−0.674656 + 0.738132i \(0.735708\pi\)
\(8\) 64.0000 0.353553
\(9\) 0 0
\(10\) −16.6190 −0.0525540
\(11\) 235.351 0.586456 0.293228 0.956043i \(-0.405271\pi\)
0.293228 + 0.956043i \(0.405271\pi\)
\(12\) 0 0
\(13\) 1029.68 1.68983 0.844916 0.534899i \(-0.179650\pi\)
0.844916 + 0.534899i \(0.179650\pi\)
\(14\) −699.709 −0.954108
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) −1455.25 −1.22128 −0.610639 0.791909i \(-0.709087\pi\)
−0.610639 + 0.791909i \(0.709087\pi\)
\(18\) 0 0
\(19\) 1049.81 0.667157 0.333579 0.942722i \(-0.391744\pi\)
0.333579 + 0.942722i \(0.391744\pi\)
\(20\) −66.4761 −0.0371613
\(21\) 0 0
\(22\) 941.406 0.414687
\(23\) 59.4958 0.0234513 0.0117256 0.999931i \(-0.496268\pi\)
0.0117256 + 0.999931i \(0.496268\pi\)
\(24\) 0 0
\(25\) −3107.74 −0.994476
\(26\) 4118.72 1.19489
\(27\) 0 0
\(28\) −2798.84 −0.674656
\(29\) −4193.48 −0.925933 −0.462966 0.886376i \(-0.653215\pi\)
−0.462966 + 0.886376i \(0.653215\pi\)
\(30\) 0 0
\(31\) 961.000 0.179605
\(32\) 1024.00 0.176777
\(33\) 0 0
\(34\) −5820.99 −0.863574
\(35\) 726.781 0.100284
\(36\) 0 0
\(37\) 7798.04 0.936443 0.468221 0.883611i \(-0.344895\pi\)
0.468221 + 0.883611i \(0.344895\pi\)
\(38\) 4199.25 0.471751
\(39\) 0 0
\(40\) −265.905 −0.0262770
\(41\) 4010.52 0.372599 0.186299 0.982493i \(-0.440351\pi\)
0.186299 + 0.982493i \(0.440351\pi\)
\(42\) 0 0
\(43\) −1999.94 −0.164947 −0.0824737 0.996593i \(-0.526282\pi\)
−0.0824737 + 0.996593i \(0.526282\pi\)
\(44\) 3765.62 0.293228
\(45\) 0 0
\(46\) 237.983 0.0165826
\(47\) −13311.7 −0.879000 −0.439500 0.898243i \(-0.644844\pi\)
−0.439500 + 0.898243i \(0.644844\pi\)
\(48\) 0 0
\(49\) 13792.6 0.820645
\(50\) −12431.0 −0.703201
\(51\) 0 0
\(52\) 16474.9 0.844916
\(53\) 31868.1 1.55835 0.779177 0.626804i \(-0.215637\pi\)
0.779177 + 0.626804i \(0.215637\pi\)
\(54\) 0 0
\(55\) −977.829 −0.0435869
\(56\) −11195.3 −0.477054
\(57\) 0 0
\(58\) −16773.9 −0.654733
\(59\) 35467.1 1.32646 0.663231 0.748414i \(-0.269185\pi\)
0.663231 + 0.748414i \(0.269185\pi\)
\(60\) 0 0
\(61\) 45806.4 1.57617 0.788083 0.615569i \(-0.211074\pi\)
0.788083 + 0.615569i \(0.211074\pi\)
\(62\) 3844.00 0.127000
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) −4278.07 −0.125593
\(66\) 0 0
\(67\) 55514.2 1.51083 0.755417 0.655244i \(-0.227434\pi\)
0.755417 + 0.655244i \(0.227434\pi\)
\(68\) −23284.0 −0.610639
\(69\) 0 0
\(70\) 2907.12 0.0709118
\(71\) 47049.1 1.10766 0.553829 0.832630i \(-0.313166\pi\)
0.553829 + 0.832630i \(0.313166\pi\)
\(72\) 0 0
\(73\) 79212.2 1.73974 0.869871 0.493280i \(-0.164202\pi\)
0.869871 + 0.493280i \(0.164202\pi\)
\(74\) 31192.2 0.662165
\(75\) 0 0
\(76\) 16797.0 0.333579
\(77\) −41169.4 −0.791312
\(78\) 0 0
\(79\) 814.146 0.0146769 0.00733845 0.999973i \(-0.497664\pi\)
0.00733845 + 0.999973i \(0.497664\pi\)
\(80\) −1063.62 −0.0185806
\(81\) 0 0
\(82\) 16042.1 0.263467
\(83\) −47660.7 −0.759390 −0.379695 0.925112i \(-0.623971\pi\)
−0.379695 + 0.925112i \(0.623971\pi\)
\(84\) 0 0
\(85\) 6046.20 0.0907686
\(86\) −7999.76 −0.116635
\(87\) 0 0
\(88\) 15062.5 0.207343
\(89\) 46071.5 0.616535 0.308267 0.951300i \(-0.400251\pi\)
0.308267 + 0.951300i \(0.400251\pi\)
\(90\) 0 0
\(91\) −180119. −2.28011
\(92\) 951.933 0.0117256
\(93\) 0 0
\(94\) −53246.8 −0.621547
\(95\) −4361.72 −0.0495848
\(96\) 0 0
\(97\) 54266.6 0.585603 0.292802 0.956173i \(-0.405412\pi\)
0.292802 + 0.956173i \(0.405412\pi\)
\(98\) 55170.3 0.580283
\(99\) 0 0
\(100\) −49723.8 −0.497238
\(101\) −82647.7 −0.806171 −0.403086 0.915162i \(-0.632062\pi\)
−0.403086 + 0.915162i \(0.632062\pi\)
\(102\) 0 0
\(103\) 84118.3 0.781263 0.390631 0.920547i \(-0.372257\pi\)
0.390631 + 0.920547i \(0.372257\pi\)
\(104\) 65899.4 0.597446
\(105\) 0 0
\(106\) 127472. 1.10192
\(107\) 108238. 0.913942 0.456971 0.889482i \(-0.348934\pi\)
0.456971 + 0.889482i \(0.348934\pi\)
\(108\) 0 0
\(109\) −76250.3 −0.614717 −0.307359 0.951594i \(-0.599445\pi\)
−0.307359 + 0.951594i \(0.599445\pi\)
\(110\) −3911.31 −0.0308206
\(111\) 0 0
\(112\) −44781.4 −0.337328
\(113\) −113394. −0.835400 −0.417700 0.908585i \(-0.637164\pi\)
−0.417700 + 0.908585i \(0.637164\pi\)
\(114\) 0 0
\(115\) −247.191 −0.00174296
\(116\) −67095.7 −0.462966
\(117\) 0 0
\(118\) 141868. 0.937951
\(119\) 254563. 1.64789
\(120\) 0 0
\(121\) −105661. −0.656070
\(122\) 183226. 1.11452
\(123\) 0 0
\(124\) 15376.0 0.0898027
\(125\) 25895.5 0.148235
\(126\) 0 0
\(127\) 127074. 0.699110 0.349555 0.936916i \(-0.386333\pi\)
0.349555 + 0.936916i \(0.386333\pi\)
\(128\) 16384.0 0.0883883
\(129\) 0 0
\(130\) −17112.3 −0.0888074
\(131\) −9469.80 −0.0482128 −0.0241064 0.999709i \(-0.507674\pi\)
−0.0241064 + 0.999709i \(0.507674\pi\)
\(132\) 0 0
\(133\) −183641. −0.900204
\(134\) 222057. 1.06832
\(135\) 0 0
\(136\) −93135.9 −0.431787
\(137\) −66791.2 −0.304031 −0.152016 0.988378i \(-0.548576\pi\)
−0.152016 + 0.988378i \(0.548576\pi\)
\(138\) 0 0
\(139\) 264672. 1.16190 0.580952 0.813938i \(-0.302680\pi\)
0.580952 + 0.813938i \(0.302680\pi\)
\(140\) 11628.5 0.0501422
\(141\) 0 0
\(142\) 188197. 0.783233
\(143\) 242336. 0.991011
\(144\) 0 0
\(145\) 17422.9 0.0688177
\(146\) 316849. 1.23018
\(147\) 0 0
\(148\) 124769. 0.468221
\(149\) −272372. −1.00507 −0.502535 0.864557i \(-0.667599\pi\)
−0.502535 + 0.864557i \(0.667599\pi\)
\(150\) 0 0
\(151\) 223300. 0.796978 0.398489 0.917173i \(-0.369535\pi\)
0.398489 + 0.917173i \(0.369535\pi\)
\(152\) 67188.1 0.235876
\(153\) 0 0
\(154\) −164678. −0.559542
\(155\) −3992.72 −0.0133487
\(156\) 0 0
\(157\) −7971.22 −0.0258093 −0.0129046 0.999917i \(-0.504108\pi\)
−0.0129046 + 0.999917i \(0.504108\pi\)
\(158\) 3256.58 0.0103781
\(159\) 0 0
\(160\) −4254.47 −0.0131385
\(161\) −10407.4 −0.0316431
\(162\) 0 0
\(163\) −192360. −0.567083 −0.283541 0.958960i \(-0.591509\pi\)
−0.283541 + 0.958960i \(0.591509\pi\)
\(164\) 64168.3 0.186299
\(165\) 0 0
\(166\) −190643. −0.536970
\(167\) −23682.7 −0.0657114 −0.0328557 0.999460i \(-0.510460\pi\)
−0.0328557 + 0.999460i \(0.510460\pi\)
\(168\) 0 0
\(169\) 688946. 1.85553
\(170\) 24184.8 0.0641831
\(171\) 0 0
\(172\) −31999.0 −0.0824737
\(173\) −712817. −1.81077 −0.905385 0.424593i \(-0.860417\pi\)
−0.905385 + 0.424593i \(0.860417\pi\)
\(174\) 0 0
\(175\) 543628. 1.34186
\(176\) 60250.0 0.146614
\(177\) 0 0
\(178\) 184286. 0.435956
\(179\) 591690. 1.38026 0.690131 0.723684i \(-0.257553\pi\)
0.690131 + 0.723684i \(0.257553\pi\)
\(180\) 0 0
\(181\) 649491. 1.47359 0.736794 0.676117i \(-0.236339\pi\)
0.736794 + 0.676117i \(0.236339\pi\)
\(182\) −720476. −1.61228
\(183\) 0 0
\(184\) 3807.73 0.00829129
\(185\) −32399.0 −0.0695988
\(186\) 0 0
\(187\) −342495. −0.716226
\(188\) −212987. −0.439500
\(189\) 0 0
\(190\) −17446.9 −0.0350618
\(191\) −662573. −1.31417 −0.657083 0.753818i \(-0.728210\pi\)
−0.657083 + 0.753818i \(0.728210\pi\)
\(192\) 0 0
\(193\) 944863. 1.82589 0.912947 0.408078i \(-0.133801\pi\)
0.912947 + 0.408078i \(0.133801\pi\)
\(194\) 217066. 0.414084
\(195\) 0 0
\(196\) 220681. 0.410322
\(197\) 443922. 0.814969 0.407485 0.913212i \(-0.366406\pi\)
0.407485 + 0.913212i \(0.366406\pi\)
\(198\) 0 0
\(199\) −24623.0 −0.0440765 −0.0220383 0.999757i \(-0.507016\pi\)
−0.0220383 + 0.999757i \(0.507016\pi\)
\(200\) −198895. −0.351600
\(201\) 0 0
\(202\) −330591. −0.570049
\(203\) 733554. 1.24937
\(204\) 0 0
\(205\) −16662.7 −0.0276925
\(206\) 336473. 0.552436
\(207\) 0 0
\(208\) 263598. 0.422458
\(209\) 247075. 0.391258
\(210\) 0 0
\(211\) −389799. −0.602747 −0.301373 0.953506i \(-0.597445\pi\)
−0.301373 + 0.953506i \(0.597445\pi\)
\(212\) 509889. 0.779177
\(213\) 0 0
\(214\) 432950. 0.646255
\(215\) 8309.27 0.0122593
\(216\) 0 0
\(217\) −168105. −0.242344
\(218\) −305001. −0.434671
\(219\) 0 0
\(220\) −15645.3 −0.0217935
\(221\) −1.49844e6 −2.06375
\(222\) 0 0
\(223\) −467711. −0.629819 −0.314910 0.949122i \(-0.601974\pi\)
−0.314910 + 0.949122i \(0.601974\pi\)
\(224\) −179126. −0.238527
\(225\) 0 0
\(226\) −453577. −0.590717
\(227\) 898140. 1.15686 0.578428 0.815733i \(-0.303666\pi\)
0.578428 + 0.815733i \(0.303666\pi\)
\(228\) 0 0
\(229\) −630277. −0.794223 −0.397112 0.917770i \(-0.629987\pi\)
−0.397112 + 0.917770i \(0.629987\pi\)
\(230\) −988.763 −0.00123246
\(231\) 0 0
\(232\) −268383. −0.327367
\(233\) 473923. 0.571898 0.285949 0.958245i \(-0.407691\pi\)
0.285949 + 0.958245i \(0.407691\pi\)
\(234\) 0 0
\(235\) 55306.9 0.0653296
\(236\) 567473. 0.663231
\(237\) 0 0
\(238\) 1.01825e6 1.16523
\(239\) −123418. −0.139761 −0.0698803 0.997555i \(-0.522262\pi\)
−0.0698803 + 0.997555i \(0.522262\pi\)
\(240\) 0 0
\(241\) −1.80023e6 −1.99657 −0.998287 0.0584992i \(-0.981368\pi\)
−0.998287 + 0.0584992i \(0.981368\pi\)
\(242\) −422643. −0.463911
\(243\) 0 0
\(244\) 732903. 0.788083
\(245\) −57304.8 −0.0609924
\(246\) 0 0
\(247\) 1.08097e6 1.12738
\(248\) 61504.0 0.0635001
\(249\) 0 0
\(250\) 103582. 0.104818
\(251\) −885581. −0.887246 −0.443623 0.896213i \(-0.646307\pi\)
−0.443623 + 0.896213i \(0.646307\pi\)
\(252\) 0 0
\(253\) 14002.4 0.0137531
\(254\) 508294. 0.494346
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) −786523. −0.742812 −0.371406 0.928471i \(-0.621124\pi\)
−0.371406 + 0.928471i \(0.621124\pi\)
\(258\) 0 0
\(259\) −1.36409e6 −1.26355
\(260\) −68449.1 −0.0627963
\(261\) 0 0
\(262\) −37879.2 −0.0340916
\(263\) −1.48145e6 −1.32068 −0.660341 0.750966i \(-0.729588\pi\)
−0.660341 + 0.750966i \(0.729588\pi\)
\(264\) 0 0
\(265\) −132404. −0.115821
\(266\) −734564. −0.636540
\(267\) 0 0
\(268\) 888227. 0.755417
\(269\) 1.16750e6 0.983727 0.491863 0.870672i \(-0.336316\pi\)
0.491863 + 0.870672i \(0.336316\pi\)
\(270\) 0 0
\(271\) 1.20110e6 0.993477 0.496738 0.867900i \(-0.334531\pi\)
0.496738 + 0.867900i \(0.334531\pi\)
\(272\) −372543. −0.305320
\(273\) 0 0
\(274\) −267165. −0.214982
\(275\) −731411. −0.583216
\(276\) 0 0
\(277\) −1.84842e6 −1.44745 −0.723723 0.690091i \(-0.757571\pi\)
−0.723723 + 0.690091i \(0.757571\pi\)
\(278\) 1.05869e6 0.821590
\(279\) 0 0
\(280\) 46514.0 0.0354559
\(281\) −982107. −0.741981 −0.370991 0.928637i \(-0.620982\pi\)
−0.370991 + 0.928637i \(0.620982\pi\)
\(282\) 0 0
\(283\) −76041.8 −0.0564399 −0.0282200 0.999602i \(-0.508984\pi\)
−0.0282200 + 0.999602i \(0.508984\pi\)
\(284\) 752786. 0.553829
\(285\) 0 0
\(286\) 969346. 0.700751
\(287\) −701550. −0.502752
\(288\) 0 0
\(289\) 697890. 0.491521
\(290\) 69691.6 0.0486615
\(291\) 0 0
\(292\) 1.26739e6 0.869871
\(293\) 2.66036e6 1.81039 0.905194 0.424998i \(-0.139725\pi\)
0.905194 + 0.424998i \(0.139725\pi\)
\(294\) 0 0
\(295\) −147357. −0.0985861
\(296\) 499075. 0.331082
\(297\) 0 0
\(298\) −1.08949e6 −0.710692
\(299\) 61261.6 0.0396287
\(300\) 0 0
\(301\) 349844. 0.222566
\(302\) 893200. 0.563549
\(303\) 0 0
\(304\) 268752. 0.166789
\(305\) −190315. −0.117145
\(306\) 0 0
\(307\) 951120. 0.575956 0.287978 0.957637i \(-0.407017\pi\)
0.287978 + 0.957637i \(0.407017\pi\)
\(308\) −658710. −0.395656
\(309\) 0 0
\(310\) −15970.9 −0.00943898
\(311\) −699861. −0.410309 −0.205154 0.978730i \(-0.565770\pi\)
−0.205154 + 0.978730i \(0.565770\pi\)
\(312\) 0 0
\(313\) 3.03373e6 1.75031 0.875156 0.483841i \(-0.160759\pi\)
0.875156 + 0.483841i \(0.160759\pi\)
\(314\) −31884.9 −0.0182499
\(315\) 0 0
\(316\) 13026.3 0.00733845
\(317\) −2.04461e6 −1.14278 −0.571390 0.820679i \(-0.693596\pi\)
−0.571390 + 0.820679i \(0.693596\pi\)
\(318\) 0 0
\(319\) −986941. −0.543019
\(320\) −17017.9 −0.00929032
\(321\) 0 0
\(322\) −41629.8 −0.0223751
\(323\) −1.52774e6 −0.814785
\(324\) 0 0
\(325\) −3.19997e6 −1.68050
\(326\) −769441. −0.400988
\(327\) 0 0
\(328\) 256673. 0.131733
\(329\) 2.32858e6 1.18605
\(330\) 0 0
\(331\) 3.17478e6 1.59273 0.796367 0.604814i \(-0.206753\pi\)
0.796367 + 0.604814i \(0.206753\pi\)
\(332\) −762571. −0.379695
\(333\) 0 0
\(334\) −94730.9 −0.0464649
\(335\) −230648. −0.112289
\(336\) 0 0
\(337\) 288974. 0.138607 0.0693033 0.997596i \(-0.477922\pi\)
0.0693033 + 0.997596i \(0.477922\pi\)
\(338\) 2.75578e6 1.31206
\(339\) 0 0
\(340\) 96739.3 0.0453843
\(341\) 226173. 0.105331
\(342\) 0 0
\(343\) 527306. 0.242007
\(344\) −127996. −0.0583177
\(345\) 0 0
\(346\) −2.85127e6 −1.28041
\(347\) −3.73614e6 −1.66571 −0.832856 0.553490i \(-0.813296\pi\)
−0.832856 + 0.553490i \(0.813296\pi\)
\(348\) 0 0
\(349\) −3.49319e6 −1.53518 −0.767588 0.640943i \(-0.778543\pi\)
−0.767588 + 0.640943i \(0.778543\pi\)
\(350\) 2.17451e6 0.948838
\(351\) 0 0
\(352\) 241000. 0.103672
\(353\) 2.86521e6 1.22383 0.611914 0.790925i \(-0.290400\pi\)
0.611914 + 0.790925i \(0.290400\pi\)
\(354\) 0 0
\(355\) −195478. −0.0823240
\(356\) 737144. 0.308267
\(357\) 0 0
\(358\) 2.36676e6 0.975993
\(359\) 4.21678e6 1.72681 0.863406 0.504510i \(-0.168327\pi\)
0.863406 + 0.504510i \(0.168327\pi\)
\(360\) 0 0
\(361\) −1.37399e6 −0.554901
\(362\) 2.59796e6 1.04198
\(363\) 0 0
\(364\) −2.88190e6 −1.14006
\(365\) −329107. −0.129302
\(366\) 0 0
\(367\) −2.80326e6 −1.08642 −0.543211 0.839596i \(-0.682792\pi\)
−0.543211 + 0.839596i \(0.682792\pi\)
\(368\) 15230.9 0.00586282
\(369\) 0 0
\(370\) −129596. −0.0492138
\(371\) −5.57460e6 −2.10271
\(372\) 0 0
\(373\) −3.03545e6 −1.12967 −0.564834 0.825204i \(-0.691060\pi\)
−0.564834 + 0.825204i \(0.691060\pi\)
\(374\) −1.36998e6 −0.506448
\(375\) 0 0
\(376\) −851949. −0.310774
\(377\) −4.31794e6 −1.56467
\(378\) 0 0
\(379\) −1.35861e6 −0.485845 −0.242922 0.970046i \(-0.578106\pi\)
−0.242922 + 0.970046i \(0.578106\pi\)
\(380\) −69787.6 −0.0247924
\(381\) 0 0
\(382\) −2.65029e6 −0.929256
\(383\) 4.81834e6 1.67842 0.839209 0.543809i \(-0.183018\pi\)
0.839209 + 0.543809i \(0.183018\pi\)
\(384\) 0 0
\(385\) 171049. 0.0588124
\(386\) 3.77945e6 1.29110
\(387\) 0 0
\(388\) 868266. 0.292802
\(389\) 2.84397e6 0.952909 0.476455 0.879199i \(-0.341922\pi\)
0.476455 + 0.879199i \(0.341922\pi\)
\(390\) 0 0
\(391\) −86581.2 −0.0286406
\(392\) 882725. 0.290142
\(393\) 0 0
\(394\) 1.77569e6 0.576270
\(395\) −3382.58 −0.00109083
\(396\) 0 0
\(397\) −4.23047e6 −1.34714 −0.673569 0.739124i \(-0.735240\pi\)
−0.673569 + 0.739124i \(0.735240\pi\)
\(398\) −98491.8 −0.0311668
\(399\) 0 0
\(400\) −795581. −0.248619
\(401\) −938762. −0.291538 −0.145769 0.989319i \(-0.546566\pi\)
−0.145769 + 0.989319i \(0.546566\pi\)
\(402\) 0 0
\(403\) 989521. 0.303503
\(404\) −1.32236e6 −0.403086
\(405\) 0 0
\(406\) 2.93422e6 0.883440
\(407\) 1.83528e6 0.549182
\(408\) 0 0
\(409\) 1.18216e6 0.349437 0.174718 0.984618i \(-0.444098\pi\)
0.174718 + 0.984618i \(0.444098\pi\)
\(410\) −66651.0 −0.0195815
\(411\) 0 0
\(412\) 1.34589e6 0.390631
\(413\) −6.20416e6 −1.78981
\(414\) 0 0
\(415\) 198019. 0.0564399
\(416\) 1.05439e6 0.298723
\(417\) 0 0
\(418\) 988301. 0.276661
\(419\) −5.55949e6 −1.54703 −0.773517 0.633775i \(-0.781505\pi\)
−0.773517 + 0.633775i \(0.781505\pi\)
\(420\) 0 0
\(421\) −539989. −0.148484 −0.0742420 0.997240i \(-0.523654\pi\)
−0.0742420 + 0.997240i \(0.523654\pi\)
\(422\) −1.55920e6 −0.426206
\(423\) 0 0
\(424\) 2.03956e6 0.550961
\(425\) 4.52253e6 1.21453
\(426\) 0 0
\(427\) −8.01279e6 −2.12674
\(428\) 1.73180e6 0.456971
\(429\) 0 0
\(430\) 33237.1 0.00866865
\(431\) −4.82032e6 −1.24992 −0.624961 0.780656i \(-0.714885\pi\)
−0.624961 + 0.780656i \(0.714885\pi\)
\(432\) 0 0
\(433\) 684866. 0.175544 0.0877720 0.996141i \(-0.472025\pi\)
0.0877720 + 0.996141i \(0.472025\pi\)
\(434\) −672421. −0.171363
\(435\) 0 0
\(436\) −1.22001e6 −0.307359
\(437\) 62459.5 0.0156457
\(438\) 0 0
\(439\) 3.94888e6 0.977940 0.488970 0.872301i \(-0.337373\pi\)
0.488970 + 0.872301i \(0.337373\pi\)
\(440\) −62581.0 −0.0154103
\(441\) 0 0
\(442\) −5.99375e6 −1.45930
\(443\) −3.73154e6 −0.903397 −0.451699 0.892171i \(-0.649182\pi\)
−0.451699 + 0.892171i \(0.649182\pi\)
\(444\) 0 0
\(445\) −191416. −0.0458224
\(446\) −1.87085e6 −0.445349
\(447\) 0 0
\(448\) −716502. −0.168664
\(449\) 5.80405e6 1.35867 0.679337 0.733826i \(-0.262267\pi\)
0.679337 + 0.733826i \(0.262267\pi\)
\(450\) 0 0
\(451\) 943882. 0.218513
\(452\) −1.81431e6 −0.417700
\(453\) 0 0
\(454\) 3.59256e6 0.818021
\(455\) 748351. 0.169464
\(456\) 0 0
\(457\) 1.86959e6 0.418750 0.209375 0.977835i \(-0.432857\pi\)
0.209375 + 0.977835i \(0.432857\pi\)
\(458\) −2.52111e6 −0.561600
\(459\) 0 0
\(460\) −3955.05 −0.000871481 0
\(461\) −3.30270e6 −0.723797 −0.361898 0.932218i \(-0.617871\pi\)
−0.361898 + 0.932218i \(0.617871\pi\)
\(462\) 0 0
\(463\) 1.42250e6 0.308389 0.154195 0.988041i \(-0.450722\pi\)
0.154195 + 0.988041i \(0.450722\pi\)
\(464\) −1.07353e6 −0.231483
\(465\) 0 0
\(466\) 1.89569e6 0.404393
\(467\) 6.32630e6 1.34232 0.671162 0.741311i \(-0.265795\pi\)
0.671162 + 0.741311i \(0.265795\pi\)
\(468\) 0 0
\(469\) −9.71094e6 −2.03859
\(470\) 221228. 0.0461950
\(471\) 0 0
\(472\) 2.26989e6 0.468975
\(473\) −470689. −0.0967344
\(474\) 0 0
\(475\) −3.26255e6 −0.663472
\(476\) 4.07300e6 0.823943
\(477\) 0 0
\(478\) −493673. −0.0988257
\(479\) 7.24181e6 1.44214 0.721072 0.692860i \(-0.243650\pi\)
0.721072 + 0.692860i \(0.243650\pi\)
\(480\) 0 0
\(481\) 8.02948e6 1.58243
\(482\) −7.20092e6 −1.41179
\(483\) 0 0
\(484\) −1.69057e6 −0.328035
\(485\) −225465. −0.0435235
\(486\) 0 0
\(487\) 4.99256e6 0.953896 0.476948 0.878931i \(-0.341743\pi\)
0.476948 + 0.878931i \(0.341743\pi\)
\(488\) 2.93161e6 0.557259
\(489\) 0 0
\(490\) −229219. −0.0431282
\(491\) −4.15456e6 −0.777716 −0.388858 0.921298i \(-0.627130\pi\)
−0.388858 + 0.921298i \(0.627130\pi\)
\(492\) 0 0
\(493\) 6.10255e6 1.13082
\(494\) 4.32388e6 0.797180
\(495\) 0 0
\(496\) 246016. 0.0449013
\(497\) −8.23018e6 −1.49458
\(498\) 0 0
\(499\) 8.96959e6 1.61258 0.806290 0.591520i \(-0.201472\pi\)
0.806290 + 0.591520i \(0.201472\pi\)
\(500\) 414328. 0.0741173
\(501\) 0 0
\(502\) −3.54233e6 −0.627378
\(503\) −3.70803e6 −0.653467 −0.326734 0.945116i \(-0.605948\pi\)
−0.326734 + 0.945116i \(0.605948\pi\)
\(504\) 0 0
\(505\) 343381. 0.0599167
\(506\) 56009.7 0.00972494
\(507\) 0 0
\(508\) 2.03318e6 0.349555
\(509\) −5.11101e6 −0.874405 −0.437202 0.899363i \(-0.644031\pi\)
−0.437202 + 0.899363i \(0.644031\pi\)
\(510\) 0 0
\(511\) −1.38564e7 −2.34746
\(512\) 262144. 0.0441942
\(513\) 0 0
\(514\) −3.14609e6 −0.525247
\(515\) −349491. −0.0580655
\(516\) 0 0
\(517\) −3.13293e6 −0.515495
\(518\) −5.45636e6 −0.893468
\(519\) 0 0
\(520\) −273796. −0.0444037
\(521\) −6.62277e6 −1.06892 −0.534460 0.845194i \(-0.679485\pi\)
−0.534460 + 0.845194i \(0.679485\pi\)
\(522\) 0 0
\(523\) −5.90383e6 −0.943799 −0.471899 0.881652i \(-0.656431\pi\)
−0.471899 + 0.881652i \(0.656431\pi\)
\(524\) −151517. −0.0241064
\(525\) 0 0
\(526\) −5.92580e6 −0.933863
\(527\) −1.39849e6 −0.219348
\(528\) 0 0
\(529\) −6.43280e6 −0.999450
\(530\) −529617. −0.0818977
\(531\) 0 0
\(532\) −2.93826e6 −0.450102
\(533\) 4.12955e6 0.629629
\(534\) 0 0
\(535\) −449701. −0.0679265
\(536\) 3.55291e6 0.534160
\(537\) 0 0
\(538\) 4.66998e6 0.695600
\(539\) 3.24610e6 0.481272
\(540\) 0 0
\(541\) −4.62041e6 −0.678715 −0.339357 0.940658i \(-0.610210\pi\)
−0.339357 + 0.940658i \(0.610210\pi\)
\(542\) 4.80442e6 0.702494
\(543\) 0 0
\(544\) −1.49017e6 −0.215894
\(545\) 316802. 0.0456874
\(546\) 0 0
\(547\) 7.61421e6 1.08807 0.544035 0.839063i \(-0.316896\pi\)
0.544035 + 0.839063i \(0.316896\pi\)
\(548\) −1.06866e6 −0.152016
\(549\) 0 0
\(550\) −2.92564e6 −0.412396
\(551\) −4.40237e6 −0.617743
\(552\) 0 0
\(553\) −142416. −0.0198037
\(554\) −7.39370e6 −1.02350
\(555\) 0 0
\(556\) 4.23474e6 0.580952
\(557\) 8.83369e6 1.20644 0.603218 0.797577i \(-0.293885\pi\)
0.603218 + 0.797577i \(0.293885\pi\)
\(558\) 0 0
\(559\) −2.05930e6 −0.278733
\(560\) 186056. 0.0250711
\(561\) 0 0
\(562\) −3.92843e6 −0.524660
\(563\) −9.26342e6 −1.23169 −0.615843 0.787869i \(-0.711185\pi\)
−0.615843 + 0.787869i \(0.711185\pi\)
\(564\) 0 0
\(565\) 471125. 0.0620891
\(566\) −304167. −0.0399091
\(567\) 0 0
\(568\) 3.01115e6 0.391616
\(569\) −1.18171e6 −0.153013 −0.0765067 0.997069i \(-0.524377\pi\)
−0.0765067 + 0.997069i \(0.524377\pi\)
\(570\) 0 0
\(571\) −1.38342e7 −1.77568 −0.887840 0.460151i \(-0.847795\pi\)
−0.887840 + 0.460151i \(0.847795\pi\)
\(572\) 3.87738e6 0.495506
\(573\) 0 0
\(574\) −2.80620e6 −0.355499
\(575\) −184897. −0.0233218
\(576\) 0 0
\(577\) −7.78469e6 −0.973423 −0.486712 0.873563i \(-0.661804\pi\)
−0.486712 + 0.873563i \(0.661804\pi\)
\(578\) 2.79156e6 0.347558
\(579\) 0 0
\(580\) 278766. 0.0344089
\(581\) 8.33716e6 1.02466
\(582\) 0 0
\(583\) 7.50020e6 0.913906
\(584\) 5.06958e6 0.615092
\(585\) 0 0
\(586\) 1.06414e7 1.28014
\(587\) −691004. −0.0827723 −0.0413862 0.999143i \(-0.513177\pi\)
−0.0413862 + 0.999143i \(0.513177\pi\)
\(588\) 0 0
\(589\) 1.00887e6 0.119825
\(590\) −589428. −0.0697109
\(591\) 0 0
\(592\) 1.99630e6 0.234111
\(593\) −1.66505e7 −1.94442 −0.972209 0.234115i \(-0.924781\pi\)
−0.972209 + 0.234115i \(0.924781\pi\)
\(594\) 0 0
\(595\) −1.05765e6 −0.122475
\(596\) −4.35795e6 −0.502535
\(597\) 0 0
\(598\) 245046. 0.0280218
\(599\) −5.35814e6 −0.610165 −0.305082 0.952326i \(-0.598684\pi\)
−0.305082 + 0.952326i \(0.598684\pi\)
\(600\) 0 0
\(601\) 326874. 0.0369143 0.0184571 0.999830i \(-0.494125\pi\)
0.0184571 + 0.999830i \(0.494125\pi\)
\(602\) 1.39938e6 0.157378
\(603\) 0 0
\(604\) 3.57280e6 0.398489
\(605\) 438995. 0.0487608
\(606\) 0 0
\(607\) 1.72684e7 1.90230 0.951152 0.308724i \(-0.0999018\pi\)
0.951152 + 0.308724i \(0.0999018\pi\)
\(608\) 1.07501e6 0.117938
\(609\) 0 0
\(610\) −761258. −0.0828338
\(611\) −1.37068e7 −1.48536
\(612\) 0 0
\(613\) −8.78767e6 −0.944545 −0.472273 0.881453i \(-0.656566\pi\)
−0.472273 + 0.881453i \(0.656566\pi\)
\(614\) 3.80448e6 0.407263
\(615\) 0 0
\(616\) −2.63484e6 −0.279771
\(617\) −3.55288e6 −0.375723 −0.187861 0.982196i \(-0.560156\pi\)
−0.187861 + 0.982196i \(0.560156\pi\)
\(618\) 0 0
\(619\) 1.34718e7 1.41319 0.706595 0.707619i \(-0.250231\pi\)
0.706595 + 0.707619i \(0.250231\pi\)
\(620\) −63883.6 −0.00667437
\(621\) 0 0
\(622\) −2.79944e6 −0.290132
\(623\) −8.05917e6 −0.831898
\(624\) 0 0
\(625\) 9.60409e6 0.983459
\(626\) 1.21349e7 1.23766
\(627\) 0 0
\(628\) −127540. −0.0129046
\(629\) −1.13481e7 −1.14366
\(630\) 0 0
\(631\) −1.19893e6 −0.119872 −0.0599362 0.998202i \(-0.519090\pi\)
−0.0599362 + 0.998202i \(0.519090\pi\)
\(632\) 52105.3 0.00518907
\(633\) 0 0
\(634\) −8.17844e6 −0.808067
\(635\) −527960. −0.0519597
\(636\) 0 0
\(637\) 1.42019e7 1.38675
\(638\) −3.94777e6 −0.383972
\(639\) 0 0
\(640\) −68071.6 −0.00656925
\(641\) 1.61440e6 0.155191 0.0775953 0.996985i \(-0.475276\pi\)
0.0775953 + 0.996985i \(0.475276\pi\)
\(642\) 0 0
\(643\) 5.51394e6 0.525938 0.262969 0.964804i \(-0.415298\pi\)
0.262969 + 0.964804i \(0.415298\pi\)
\(644\) −166519. −0.0158216
\(645\) 0 0
\(646\) −6.11096e6 −0.576140
\(647\) 1.67629e7 1.57430 0.787150 0.616761i \(-0.211556\pi\)
0.787150 + 0.616761i \(0.211556\pi\)
\(648\) 0 0
\(649\) 8.34722e6 0.777912
\(650\) −1.27999e7 −1.18829
\(651\) 0 0
\(652\) −3.07776e6 −0.283541
\(653\) 7.92672e6 0.727462 0.363731 0.931504i \(-0.381503\pi\)
0.363731 + 0.931504i \(0.381503\pi\)
\(654\) 0 0
\(655\) 39344.7 0.00358330
\(656\) 1.02669e6 0.0931496
\(657\) 0 0
\(658\) 9.31432e6 0.838661
\(659\) 1.79313e7 1.60841 0.804206 0.594351i \(-0.202591\pi\)
0.804206 + 0.594351i \(0.202591\pi\)
\(660\) 0 0
\(661\) 1.63759e6 0.145781 0.0728904 0.997340i \(-0.476778\pi\)
0.0728904 + 0.997340i \(0.476778\pi\)
\(662\) 1.26991e7 1.12623
\(663\) 0 0
\(664\) −3.05028e6 −0.268485
\(665\) 762984. 0.0669055
\(666\) 0 0
\(667\) −249494. −0.0217143
\(668\) −378924. −0.0328557
\(669\) 0 0
\(670\) −922592. −0.0794004
\(671\) 1.07806e7 0.924351
\(672\) 0 0
\(673\) 6.68369e6 0.568825 0.284413 0.958702i \(-0.408201\pi\)
0.284413 + 0.958702i \(0.408201\pi\)
\(674\) 1.15590e6 0.0980097
\(675\) 0 0
\(676\) 1.10231e7 0.927765
\(677\) −435721. −0.0365373 −0.0182687 0.999833i \(-0.505815\pi\)
−0.0182687 + 0.999833i \(0.505815\pi\)
\(678\) 0 0
\(679\) −9.49271e6 −0.790162
\(680\) 386957. 0.0320915
\(681\) 0 0
\(682\) 904691. 0.0744799
\(683\) 7.88577e6 0.646834 0.323417 0.946257i \(-0.395168\pi\)
0.323417 + 0.946257i \(0.395168\pi\)
\(684\) 0 0
\(685\) 277501. 0.0225964
\(686\) 2.10922e6 0.171125
\(687\) 0 0
\(688\) −511984. −0.0412369
\(689\) 3.28139e7 2.63336
\(690\) 0 0
\(691\) −2.42470e6 −0.193180 −0.0965900 0.995324i \(-0.530794\pi\)
−0.0965900 + 0.995324i \(0.530794\pi\)
\(692\) −1.14051e7 −0.905385
\(693\) 0 0
\(694\) −1.49446e7 −1.17784
\(695\) −1.09965e6 −0.0863557
\(696\) 0 0
\(697\) −5.83630e6 −0.455047
\(698\) −1.39727e7 −1.08553
\(699\) 0 0
\(700\) 8.69805e6 0.670930
\(701\) 1.34755e7 1.03574 0.517871 0.855459i \(-0.326725\pi\)
0.517871 + 0.855459i \(0.326725\pi\)
\(702\) 0 0
\(703\) 8.18649e6 0.624754
\(704\) 964000. 0.0733070
\(705\) 0 0
\(706\) 1.14608e7 0.865376
\(707\) 1.44573e7 1.08778
\(708\) 0 0
\(709\) 1.62749e7 1.21591 0.607956 0.793971i \(-0.291990\pi\)
0.607956 + 0.793971i \(0.291990\pi\)
\(710\) −781911. −0.0582119
\(711\) 0 0
\(712\) 2.94858e6 0.217978
\(713\) 57175.5 0.00421198
\(714\) 0 0
\(715\) −1.00685e6 −0.0736545
\(716\) 9.46704e6 0.690131
\(717\) 0 0
\(718\) 1.68671e7 1.22104
\(719\) 5.81254e6 0.419319 0.209659 0.977775i \(-0.432765\pi\)
0.209659 + 0.977775i \(0.432765\pi\)
\(720\) 0 0
\(721\) −1.47146e7 −1.05417
\(722\) −5.49596e6 −0.392374
\(723\) 0 0
\(724\) 1.03918e7 0.736794
\(725\) 1.30322e7 0.920818
\(726\) 0 0
\(727\) −6.21696e6 −0.436256 −0.218128 0.975920i \(-0.569995\pi\)
−0.218128 + 0.975920i \(0.569995\pi\)
\(728\) −1.15276e7 −0.806141
\(729\) 0 0
\(730\) −1.31643e6 −0.0914304
\(731\) 2.91041e6 0.201447
\(732\) 0 0
\(733\) 1.81331e7 1.24656 0.623279 0.781999i \(-0.285800\pi\)
0.623279 + 0.781999i \(0.285800\pi\)
\(734\) −1.12131e7 −0.768217
\(735\) 0 0
\(736\) 60923.7 0.00414564
\(737\) 1.30653e7 0.886037
\(738\) 0 0
\(739\) −2.73725e7 −1.84375 −0.921876 0.387485i \(-0.873344\pi\)
−0.921876 + 0.387485i \(0.873344\pi\)
\(740\) −518384. −0.0347994
\(741\) 0 0
\(742\) −2.22984e7 −1.48684
\(743\) 2.90995e7 1.93381 0.966904 0.255142i \(-0.0821221\pi\)
0.966904 + 0.255142i \(0.0821221\pi\)
\(744\) 0 0
\(745\) 1.13164e6 0.0746994
\(746\) −1.21418e7 −0.798796
\(747\) 0 0
\(748\) −5.47992e6 −0.358113
\(749\) −1.89337e7 −1.23319
\(750\) 0 0
\(751\) 4.40114e6 0.284751 0.142376 0.989813i \(-0.454526\pi\)
0.142376 + 0.989813i \(0.454526\pi\)
\(752\) −3.40780e6 −0.219750
\(753\) 0 0
\(754\) −1.72717e7 −1.10639
\(755\) −927758. −0.0592335
\(756\) 0 0
\(757\) 6.88173e6 0.436474 0.218237 0.975896i \(-0.429969\pi\)
0.218237 + 0.975896i \(0.429969\pi\)
\(758\) −5.43445e6 −0.343544
\(759\) 0 0
\(760\) −279150. −0.0175309
\(761\) −1.81095e7 −1.13356 −0.566781 0.823869i \(-0.691811\pi\)
−0.566781 + 0.823869i \(0.691811\pi\)
\(762\) 0 0
\(763\) 1.33383e7 0.829446
\(764\) −1.06012e7 −0.657083
\(765\) 0 0
\(766\) 1.92733e7 1.18682
\(767\) 3.65197e7 2.24150
\(768\) 0 0
\(769\) −1.21359e7 −0.740044 −0.370022 0.929023i \(-0.620650\pi\)
−0.370022 + 0.929023i \(0.620650\pi\)
\(770\) 684196. 0.0415866
\(771\) 0 0
\(772\) 1.51178e7 0.912947
\(773\) 6.85275e6 0.412493 0.206246 0.978500i \(-0.433875\pi\)
0.206246 + 0.978500i \(0.433875\pi\)
\(774\) 0 0
\(775\) −2.98654e6 −0.178613
\(776\) 3.47306e6 0.207042
\(777\) 0 0
\(778\) 1.13759e7 0.673808
\(779\) 4.21030e6 0.248582
\(780\) 0 0
\(781\) 1.10731e7 0.649593
\(782\) −346325. −0.0202519
\(783\) 0 0
\(784\) 3.53090e6 0.205161
\(785\) 33118.5 0.00191821
\(786\) 0 0
\(787\) −9.20801e6 −0.529943 −0.264971 0.964256i \(-0.585363\pi\)
−0.264971 + 0.964256i \(0.585363\pi\)
\(788\) 7.10275e6 0.407485
\(789\) 0 0
\(790\) −13530.3 −0.000771330 0
\(791\) 1.98357e7 1.12722
\(792\) 0 0
\(793\) 4.71659e7 2.66345
\(794\) −1.69219e7 −0.952570
\(795\) 0 0
\(796\) −393967. −0.0220383
\(797\) 1.24590e7 0.694762 0.347381 0.937724i \(-0.387071\pi\)
0.347381 + 0.937724i \(0.387071\pi\)
\(798\) 0 0
\(799\) 1.93718e7 1.07350
\(800\) −3.18232e6 −0.175800
\(801\) 0 0
\(802\) −3.75505e6 −0.206148
\(803\) 1.86427e7 1.02028
\(804\) 0 0
\(805\) 43240.4 0.00235180
\(806\) 3.95809e6 0.214609
\(807\) 0 0
\(808\) −5.28945e6 −0.285025
\(809\) −1.39177e7 −0.747645 −0.373823 0.927500i \(-0.621953\pi\)
−0.373823 + 0.927500i \(0.621953\pi\)
\(810\) 0 0
\(811\) 2.23695e7 1.19427 0.597137 0.802140i \(-0.296305\pi\)
0.597137 + 0.802140i \(0.296305\pi\)
\(812\) 1.17369e7 0.624686
\(813\) 0 0
\(814\) 7.34112e6 0.388330
\(815\) 799211. 0.0421471
\(816\) 0 0
\(817\) −2.09956e6 −0.110046
\(818\) 4.72865e6 0.247089
\(819\) 0 0
\(820\) −266604. −0.0138462
\(821\) −5.80930e6 −0.300792 −0.150396 0.988626i \(-0.548055\pi\)
−0.150396 + 0.988626i \(0.548055\pi\)
\(822\) 0 0
\(823\) −2.13414e7 −1.09830 −0.549152 0.835722i \(-0.685049\pi\)
−0.549152 + 0.835722i \(0.685049\pi\)
\(824\) 5.38357e6 0.276218
\(825\) 0 0
\(826\) −2.48166e7 −1.26559
\(827\) −2.57909e7 −1.31130 −0.655651 0.755064i \(-0.727606\pi\)
−0.655651 + 0.755064i \(0.727606\pi\)
\(828\) 0 0
\(829\) −2.36243e7 −1.19391 −0.596956 0.802274i \(-0.703623\pi\)
−0.596956 + 0.802274i \(0.703623\pi\)
\(830\) 792075. 0.0399090
\(831\) 0 0
\(832\) 4.21756e6 0.211229
\(833\) −2.00716e7 −1.00224
\(834\) 0 0
\(835\) 98396.0 0.00488384
\(836\) 3.95320e6 0.195629
\(837\) 0 0
\(838\) −2.22380e7 −1.09392
\(839\) −2.79824e7 −1.37240 −0.686198 0.727415i \(-0.740722\pi\)
−0.686198 + 0.727415i \(0.740722\pi\)
\(840\) 0 0
\(841\) −2.92588e6 −0.142648
\(842\) −2.15996e6 −0.104994
\(843\) 0 0
\(844\) −6.23679e6 −0.301373
\(845\) −2.86240e6 −0.137908
\(846\) 0 0
\(847\) 1.84829e7 0.885243
\(848\) 8.15823e6 0.389589
\(849\) 0 0
\(850\) 1.80901e7 0.858804
\(851\) 463951. 0.0219608
\(852\) 0 0
\(853\) −2.04470e7 −0.962182 −0.481091 0.876671i \(-0.659759\pi\)
−0.481091 + 0.876671i \(0.659759\pi\)
\(854\) −3.20512e7 −1.50383
\(855\) 0 0
\(856\) 6.92721e6 0.323127
\(857\) −3.08472e7 −1.43471 −0.717355 0.696708i \(-0.754648\pi\)
−0.717355 + 0.696708i \(0.754648\pi\)
\(858\) 0 0
\(859\) −1.90536e7 −0.881038 −0.440519 0.897743i \(-0.645206\pi\)
−0.440519 + 0.897743i \(0.645206\pi\)
\(860\) 132948. 0.00612966
\(861\) 0 0
\(862\) −1.92813e7 −0.883828
\(863\) 1.60269e7 0.732525 0.366263 0.930512i \(-0.380637\pi\)
0.366263 + 0.930512i \(0.380637\pi\)
\(864\) 0 0
\(865\) 2.96158e6 0.134581
\(866\) 2.73946e6 0.124128
\(867\) 0 0
\(868\) −2.68968e6 −0.121172
\(869\) 191610. 0.00860736
\(870\) 0 0
\(871\) 5.71618e7 2.55305
\(872\) −4.88002e6 −0.217335
\(873\) 0 0
\(874\) 249838. 0.0110632
\(875\) −4.52983e6 −0.200015
\(876\) 0 0
\(877\) 6.46053e6 0.283641 0.141821 0.989892i \(-0.454704\pi\)
0.141821 + 0.989892i \(0.454704\pi\)
\(878\) 1.57955e7 0.691508
\(879\) 0 0
\(880\) −250324. −0.0108967
\(881\) −4.43941e7 −1.92702 −0.963508 0.267679i \(-0.913743\pi\)
−0.963508 + 0.267679i \(0.913743\pi\)
\(882\) 0 0
\(883\) 3.31650e7 1.43146 0.715729 0.698378i \(-0.246095\pi\)
0.715729 + 0.698378i \(0.246095\pi\)
\(884\) −2.39750e7 −1.03188
\(885\) 0 0
\(886\) −1.49262e7 −0.638798
\(887\) 3.31641e7 1.41533 0.707667 0.706546i \(-0.249748\pi\)
0.707667 + 0.706546i \(0.249748\pi\)
\(888\) 0 0
\(889\) −2.22286e7 −0.943318
\(890\) −765664. −0.0324014
\(891\) 0 0
\(892\) −7.48338e6 −0.314910
\(893\) −1.39748e7 −0.586431
\(894\) 0 0
\(895\) −2.45833e6 −0.102585
\(896\) −2.86601e6 −0.119264
\(897\) 0 0
\(898\) 2.32162e7 0.960728
\(899\) −4.02993e6 −0.166302
\(900\) 0 0
\(901\) −4.63759e7 −1.90318
\(902\) 3.77553e6 0.154512
\(903\) 0 0
\(904\) −7.25723e6 −0.295359
\(905\) −2.69848e6 −0.109521
\(906\) 0 0
\(907\) 2.70053e7 1.09001 0.545005 0.838433i \(-0.316528\pi\)
0.545005 + 0.838433i \(0.316528\pi\)
\(908\) 1.43702e7 0.578428
\(909\) 0 0
\(910\) 2.99340e6 0.119829
\(911\) −1.82765e7 −0.729621 −0.364811 0.931082i \(-0.618866\pi\)
−0.364811 + 0.931082i \(0.618866\pi\)
\(912\) 0 0
\(913\) −1.12170e7 −0.445349
\(914\) 7.47835e6 0.296101
\(915\) 0 0
\(916\) −1.00844e7 −0.397112
\(917\) 1.65653e6 0.0650542
\(918\) 0 0
\(919\) 2.05975e7 0.804498 0.402249 0.915530i \(-0.368229\pi\)
0.402249 + 0.915530i \(0.368229\pi\)
\(920\) −15820.2 −0.000616230 0
\(921\) 0 0
\(922\) −1.32108e7 −0.511801
\(923\) 4.84455e7 1.87176
\(924\) 0 0
\(925\) −2.42343e7 −0.931270
\(926\) 5.68999e6 0.218064
\(927\) 0 0
\(928\) −4.29412e6 −0.163683
\(929\) 2.79827e7 1.06378 0.531888 0.846815i \(-0.321483\pi\)
0.531888 + 0.846815i \(0.321483\pi\)
\(930\) 0 0
\(931\) 1.44796e7 0.547499
\(932\) 7.58277e6 0.285949
\(933\) 0 0
\(934\) 2.53052e7 0.949166
\(935\) 1.42298e6 0.0532317
\(936\) 0 0
\(937\) −1.18863e7 −0.442281 −0.221141 0.975242i \(-0.570978\pi\)
−0.221141 + 0.975242i \(0.570978\pi\)
\(938\) −3.88438e7 −1.44150
\(939\) 0 0
\(940\) 884911. 0.0326648
\(941\) 2.99706e7 1.10337 0.551686 0.834052i \(-0.313985\pi\)
0.551686 + 0.834052i \(0.313985\pi\)
\(942\) 0 0
\(943\) 238609. 0.00873792
\(944\) 9.07957e6 0.331616
\(945\) 0 0
\(946\) −1.88275e6 −0.0684015
\(947\) −2.88301e6 −0.104465 −0.0522325 0.998635i \(-0.516634\pi\)
−0.0522325 + 0.998635i \(0.516634\pi\)
\(948\) 0 0
\(949\) 8.15631e7 2.93987
\(950\) −1.30502e7 −0.469146
\(951\) 0 0
\(952\) 1.62920e7 0.582616
\(953\) 1.21859e7 0.434637 0.217319 0.976101i \(-0.430269\pi\)
0.217319 + 0.976101i \(0.430269\pi\)
\(954\) 0 0
\(955\) 2.75283e6 0.0976722
\(956\) −1.97469e6 −0.0698803
\(957\) 0 0
\(958\) 2.89672e7 1.01975
\(959\) 1.16836e7 0.410233
\(960\) 0 0
\(961\) 923521. 0.0322581
\(962\) 3.21179e7 1.11895
\(963\) 0 0
\(964\) −2.88037e7 −0.998287
\(965\) −3.92568e6 −0.135705
\(966\) 0 0
\(967\) 4.36736e7 1.50194 0.750970 0.660337i \(-0.229586\pi\)
0.750970 + 0.660337i \(0.229586\pi\)
\(968\) −6.76228e6 −0.231956
\(969\) 0 0
\(970\) −901859. −0.0307758
\(971\) −2.72990e6 −0.0929178 −0.0464589 0.998920i \(-0.514794\pi\)
−0.0464589 + 0.998920i \(0.514794\pi\)
\(972\) 0 0
\(973\) −4.62983e7 −1.56777
\(974\) 1.99702e7 0.674506
\(975\) 0 0
\(976\) 1.17264e7 0.394041
\(977\) 5.61565e6 0.188219 0.0941096 0.995562i \(-0.470000\pi\)
0.0941096 + 0.995562i \(0.470000\pi\)
\(978\) 0 0
\(979\) 1.08430e7 0.361570
\(980\) −916877. −0.0304962
\(981\) 0 0
\(982\) −1.66182e7 −0.549928
\(983\) −7.21208e6 −0.238055 −0.119027 0.992891i \(-0.537978\pi\)
−0.119027 + 0.992891i \(0.537978\pi\)
\(984\) 0 0
\(985\) −1.84439e6 −0.0605706
\(986\) 2.44102e7 0.799612
\(987\) 0 0
\(988\) 1.72955e7 0.563692
\(989\) −118988. −0.00386823
\(990\) 0 0
\(991\) −2.05082e7 −0.663351 −0.331675 0.943394i \(-0.607614\pi\)
−0.331675 + 0.943394i \(0.607614\pi\)
\(992\) 984064. 0.0317500
\(993\) 0 0
\(994\) −3.29207e7 −1.05683
\(995\) 102302. 0.00327588
\(996\) 0 0
\(997\) −3.56424e7 −1.13561 −0.567805 0.823163i \(-0.692207\pi\)
−0.567805 + 0.823163i \(0.692207\pi\)
\(998\) 3.58784e7 1.14027
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 558.6.a.k.1.3 4
3.2 odd 2 62.6.a.c.1.1 4
12.11 even 2 496.6.a.d.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
62.6.a.c.1.1 4 3.2 odd 2
496.6.a.d.1.4 4 12.11 even 2
558.6.a.k.1.3 4 1.1 even 1 trivial