Properties

Label 2-558-1.1-c5-0-16
Degree $2$
Conductor $558$
Sign $1$
Analytic cond. $89.4941$
Root an. cond. $9.46013$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s + 16·4-s − 4.15·5-s − 174.·7-s + 64·8-s − 16.6·10-s + 235.·11-s + 1.02e3·13-s − 699.·14-s + 256·16-s − 1.45e3·17-s + 1.04e3·19-s − 66.4·20-s + 941.·22-s + 59.4·23-s − 3.10e3·25-s + 4.11e3·26-s − 2.79e3·28-s − 4.19e3·29-s + 961·31-s + 1.02e3·32-s − 5.82e3·34-s + 726.·35-s + 7.79e3·37-s + 4.19e3·38-s − 265.·40-s + 4.01e3·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s − 0.0743·5-s − 1.34·7-s + 0.353·8-s − 0.0525·10-s + 0.586·11-s + 1.68·13-s − 0.954·14-s + 0.250·16-s − 1.22·17-s + 0.667·19-s − 0.0371·20-s + 0.414·22-s + 0.0234·23-s − 0.994·25-s + 1.19·26-s − 0.674·28-s − 0.925·29-s + 0.179·31-s + 0.176·32-s − 0.863·34-s + 0.100·35-s + 0.936·37-s + 0.471·38-s − 0.0262·40-s + 0.372·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 558 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 558 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(558\)    =    \(2 \cdot 3^{2} \cdot 31\)
Sign: $1$
Analytic conductor: \(89.4941\)
Root analytic conductor: \(9.46013\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 558,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(3.072177516\)
\(L(\frac12)\) \(\approx\) \(3.072177516\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 4T \)
3 \( 1 \)
31 \( 1 - 961T \)
good5 \( 1 + 4.15T + 3.12e3T^{2} \)
7 \( 1 + 174.T + 1.68e4T^{2} \)
11 \( 1 - 235.T + 1.61e5T^{2} \)
13 \( 1 - 1.02e3T + 3.71e5T^{2} \)
17 \( 1 + 1.45e3T + 1.41e6T^{2} \)
19 \( 1 - 1.04e3T + 2.47e6T^{2} \)
23 \( 1 - 59.4T + 6.43e6T^{2} \)
29 \( 1 + 4.19e3T + 2.05e7T^{2} \)
37 \( 1 - 7.79e3T + 6.93e7T^{2} \)
41 \( 1 - 4.01e3T + 1.15e8T^{2} \)
43 \( 1 + 1.99e3T + 1.47e8T^{2} \)
47 \( 1 + 1.33e4T + 2.29e8T^{2} \)
53 \( 1 - 3.18e4T + 4.18e8T^{2} \)
59 \( 1 - 3.54e4T + 7.14e8T^{2} \)
61 \( 1 - 4.58e4T + 8.44e8T^{2} \)
67 \( 1 - 5.55e4T + 1.35e9T^{2} \)
71 \( 1 - 4.70e4T + 1.80e9T^{2} \)
73 \( 1 - 7.92e4T + 2.07e9T^{2} \)
79 \( 1 - 814.T + 3.07e9T^{2} \)
83 \( 1 + 4.76e4T + 3.93e9T^{2} \)
89 \( 1 - 4.60e4T + 5.58e9T^{2} \)
97 \( 1 - 5.42e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.952422203527908242539780642614, −9.208419805629896295642314695887, −8.211440817056644894688558393153, −6.88858756405555017954231642933, −6.35360982806407237004521214339, −5.50868593010594948028450599155, −3.97736103170545923293736087580, −3.56064198531007901750649619636, −2.23234634629462648781433688589, −0.77411588563590381436030876095, 0.77411588563590381436030876095, 2.23234634629462648781433688589, 3.56064198531007901750649619636, 3.97736103170545923293736087580, 5.50868593010594948028450599155, 6.35360982806407237004521214339, 6.88858756405555017954231642933, 8.211440817056644894688558393153, 9.208419805629896295642314695887, 9.952422203527908242539780642614

Graph of the $Z$-function along the critical line