Properties

Label 608.3.e.b.417.16
Level $608$
Weight $3$
Character 608.417
Analytic conductor $16.567$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [608,3,Mod(417,608)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("608.417"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(608, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 608 = 2^{5} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 608.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,0,0,0,0,0,-52,0,0,0,0,0,0,0,56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.5668000731\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 8 x^{19} - 196 x^{18} + 1676 x^{17} + 16346 x^{16} - 161824 x^{15} - 667200 x^{14} + \cdots + 1135285065792 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{27} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 417.16
Root \(4.75152 - 1.97398i\) of defining polynomial
Character \(\chi\) \(=\) 608.417
Dual form 608.3.e.b.417.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.94796i q^{3} -7.51133 q^{5} +11.4311 q^{7} -6.58642 q^{9} +14.4687 q^{11} -23.9902i q^{13} -29.6545i q^{15} +26.8400 q^{17} +(-13.2008 - 13.6652i) q^{19} +45.1296i q^{21} -0.456250 q^{23} +31.4201 q^{25} +9.52875i q^{27} +7.85645i q^{29} -16.0928i q^{31} +57.1220i q^{33} -85.8628 q^{35} +12.5477i q^{37} +94.7126 q^{39} +48.5303i q^{41} +30.5237 q^{43} +49.4728 q^{45} +44.3643 q^{47} +81.6702 q^{49} +105.963i q^{51} -48.7157i q^{53} -108.679 q^{55} +(53.9497 - 52.1164i) q^{57} -43.7553i q^{59} +3.64259 q^{61} -75.2900 q^{63} +180.199i q^{65} +75.4361i q^{67} -1.80126i q^{69} -19.4733i q^{71} -83.0871 q^{73} +124.045i q^{75} +165.394 q^{77} +73.9522i q^{79} -96.8969 q^{81} -4.27148 q^{83} -201.604 q^{85} -31.0170 q^{87} +105.422i q^{89} -274.235i q^{91} +63.5337 q^{93} +(99.1559 + 102.644i) q^{95} -177.628i q^{97} -95.2971 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 52 q^{9} + 56 q^{17} + 36 q^{25} + 64 q^{45} + 332 q^{49} + 88 q^{57} - 32 q^{61} - 152 q^{73} + 360 q^{77} - 476 q^{81} - 552 q^{85} + 336 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/608\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(191\) \(229\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.94796i 1.31599i 0.753023 + 0.657994i \(0.228595\pi\)
−0.753023 + 0.657994i \(0.771405\pi\)
\(4\) 0 0
\(5\) −7.51133 −1.50227 −0.751133 0.660151i \(-0.770492\pi\)
−0.751133 + 0.660151i \(0.770492\pi\)
\(6\) 0 0
\(7\) 11.4311 1.63301 0.816507 0.577335i \(-0.195907\pi\)
0.816507 + 0.577335i \(0.195907\pi\)
\(8\) 0 0
\(9\) −6.58642 −0.731824
\(10\) 0 0
\(11\) 14.4687 1.31534 0.657670 0.753307i \(-0.271542\pi\)
0.657670 + 0.753307i \(0.271542\pi\)
\(12\) 0 0
\(13\) 23.9902i 1.84540i −0.385516 0.922701i \(-0.625976\pi\)
0.385516 0.922701i \(-0.374024\pi\)
\(14\) 0 0
\(15\) 29.6545i 1.97696i
\(16\) 0 0
\(17\) 26.8400 1.57882 0.789412 0.613864i \(-0.210386\pi\)
0.789412 + 0.613864i \(0.210386\pi\)
\(18\) 0 0
\(19\) −13.2008 13.6652i −0.694781 0.719221i
\(20\) 0 0
\(21\) 45.1296i 2.14903i
\(22\) 0 0
\(23\) −0.456250 −0.0198369 −0.00991847 0.999951i \(-0.503157\pi\)
−0.00991847 + 0.999951i \(0.503157\pi\)
\(24\) 0 0
\(25\) 31.4201 1.25680
\(26\) 0 0
\(27\) 9.52875i 0.352916i
\(28\) 0 0
\(29\) 7.85645i 0.270912i 0.990783 + 0.135456i \(0.0432500\pi\)
−0.990783 + 0.135456i \(0.956750\pi\)
\(30\) 0 0
\(31\) 16.0928i 0.519122i −0.965727 0.259561i \(-0.916422\pi\)
0.965727 0.259561i \(-0.0835778\pi\)
\(32\) 0 0
\(33\) 57.1220i 1.73097i
\(34\) 0 0
\(35\) −85.8628 −2.45322
\(36\) 0 0
\(37\) 12.5477i 0.339126i 0.985519 + 0.169563i \(0.0542356\pi\)
−0.985519 + 0.169563i \(0.945764\pi\)
\(38\) 0 0
\(39\) 94.7126 2.42853
\(40\) 0 0
\(41\) 48.5303i 1.18367i 0.806061 + 0.591833i \(0.201596\pi\)
−0.806061 + 0.591833i \(0.798404\pi\)
\(42\) 0 0
\(43\) 30.5237 0.709853 0.354927 0.934894i \(-0.384506\pi\)
0.354927 + 0.934894i \(0.384506\pi\)
\(44\) 0 0
\(45\) 49.4728 1.09939
\(46\) 0 0
\(47\) 44.3643 0.943921 0.471961 0.881620i \(-0.343546\pi\)
0.471961 + 0.881620i \(0.343546\pi\)
\(48\) 0 0
\(49\) 81.6702 1.66674
\(50\) 0 0
\(51\) 105.963i 2.07771i
\(52\) 0 0
\(53\) 48.7157i 0.919164i −0.888135 0.459582i \(-0.847999\pi\)
0.888135 0.459582i \(-0.152001\pi\)
\(54\) 0 0
\(55\) −108.679 −1.97599
\(56\) 0 0
\(57\) 53.9497 52.1164i 0.946486 0.914324i
\(58\) 0 0
\(59\) 43.7553i 0.741615i −0.928710 0.370807i \(-0.879081\pi\)
0.928710 0.370807i \(-0.120919\pi\)
\(60\) 0 0
\(61\) 3.64259 0.0597146 0.0298573 0.999554i \(-0.490495\pi\)
0.0298573 + 0.999554i \(0.490495\pi\)
\(62\) 0 0
\(63\) −75.2900 −1.19508
\(64\) 0 0
\(65\) 180.199i 2.77229i
\(66\) 0 0
\(67\) 75.4361i 1.12591i 0.826487 + 0.562956i \(0.190336\pi\)
−0.826487 + 0.562956i \(0.809664\pi\)
\(68\) 0 0
\(69\) 1.80126i 0.0261052i
\(70\) 0 0
\(71\) 19.4733i 0.274272i −0.990552 0.137136i \(-0.956210\pi\)
0.990552 0.137136i \(-0.0437897\pi\)
\(72\) 0 0
\(73\) −83.0871 −1.13818 −0.569090 0.822275i \(-0.692704\pi\)
−0.569090 + 0.822275i \(0.692704\pi\)
\(74\) 0 0
\(75\) 124.045i 1.65394i
\(76\) 0 0
\(77\) 165.394 2.14797
\(78\) 0 0
\(79\) 73.9522i 0.936104i 0.883701 + 0.468052i \(0.155044\pi\)
−0.883701 + 0.468052i \(0.844956\pi\)
\(80\) 0 0
\(81\) −96.8969 −1.19626
\(82\) 0 0
\(83\) −4.27148 −0.0514637 −0.0257318 0.999669i \(-0.508192\pi\)
−0.0257318 + 0.999669i \(0.508192\pi\)
\(84\) 0 0
\(85\) −201.604 −2.37181
\(86\) 0 0
\(87\) −31.0170 −0.356517
\(88\) 0 0
\(89\) 105.422i 1.18452i 0.805747 + 0.592260i \(0.201764\pi\)
−0.805747 + 0.592260i \(0.798236\pi\)
\(90\) 0 0
\(91\) 274.235i 3.01357i
\(92\) 0 0
\(93\) 63.5337 0.683158
\(94\) 0 0
\(95\) 99.1559 + 102.644i 1.04375 + 1.08046i
\(96\) 0 0
\(97\) 177.628i 1.83122i −0.402067 0.915610i \(-0.631708\pi\)
0.402067 0.915610i \(-0.368292\pi\)
\(98\) 0 0
\(99\) −95.2971 −0.962597
\(100\) 0 0
\(101\) 91.6325 0.907253 0.453626 0.891192i \(-0.350130\pi\)
0.453626 + 0.891192i \(0.350130\pi\)
\(102\) 0 0
\(103\) 193.589i 1.87951i −0.341852 0.939754i \(-0.611054\pi\)
0.341852 0.939754i \(-0.388946\pi\)
\(104\) 0 0
\(105\) 338.983i 3.22841i
\(106\) 0 0
\(107\) 47.9868i 0.448475i 0.974535 + 0.224238i \(0.0719892\pi\)
−0.974535 + 0.224238i \(0.928011\pi\)
\(108\) 0 0
\(109\) 186.636i 1.71225i 0.516766 + 0.856127i \(0.327136\pi\)
−0.516766 + 0.856127i \(0.672864\pi\)
\(110\) 0 0
\(111\) −49.5377 −0.446285
\(112\) 0 0
\(113\) 10.9318i 0.0967415i −0.998829 0.0483708i \(-0.984597\pi\)
0.998829 0.0483708i \(-0.0154029\pi\)
\(114\) 0 0
\(115\) 3.42704 0.0298004
\(116\) 0 0
\(117\) 158.010i 1.35051i
\(118\) 0 0
\(119\) 306.811 2.57824
\(120\) 0 0
\(121\) 88.3441 0.730117
\(122\) 0 0
\(123\) −191.596 −1.55769
\(124\) 0 0
\(125\) −48.2236 −0.385789
\(126\) 0 0
\(127\) 44.8528i 0.353171i −0.984285 0.176586i \(-0.943495\pi\)
0.984285 0.176586i \(-0.0565053\pi\)
\(128\) 0 0
\(129\) 120.506i 0.934158i
\(130\) 0 0
\(131\) 101.922 0.778030 0.389015 0.921231i \(-0.372815\pi\)
0.389015 + 0.921231i \(0.372815\pi\)
\(132\) 0 0
\(133\) −150.900 156.208i −1.13459 1.17450i
\(134\) 0 0
\(135\) 71.5736i 0.530175i
\(136\) 0 0
\(137\) 141.158 1.03035 0.515174 0.857086i \(-0.327727\pi\)
0.515174 + 0.857086i \(0.327727\pi\)
\(138\) 0 0
\(139\) 14.0165 0.100838 0.0504192 0.998728i \(-0.483944\pi\)
0.0504192 + 0.998728i \(0.483944\pi\)
\(140\) 0 0
\(141\) 175.149i 1.24219i
\(142\) 0 0
\(143\) 347.108i 2.42733i
\(144\) 0 0
\(145\) 59.0124i 0.406982i
\(146\) 0 0
\(147\) 322.431i 2.19341i
\(148\) 0 0
\(149\) 202.051 1.35605 0.678025 0.735039i \(-0.262836\pi\)
0.678025 + 0.735039i \(0.262836\pi\)
\(150\) 0 0
\(151\) 8.83096i 0.0584831i −0.999572 0.0292416i \(-0.990691\pi\)
0.999572 0.0292416i \(-0.00930921\pi\)
\(152\) 0 0
\(153\) −176.779 −1.15542
\(154\) 0 0
\(155\) 120.878i 0.779859i
\(156\) 0 0
\(157\) −115.182 −0.733644 −0.366822 0.930291i \(-0.619554\pi\)
−0.366822 + 0.930291i \(0.619554\pi\)
\(158\) 0 0
\(159\) 192.328 1.20961
\(160\) 0 0
\(161\) −5.21544 −0.0323940
\(162\) 0 0
\(163\) −22.2426 −0.136458 −0.0682289 0.997670i \(-0.521735\pi\)
−0.0682289 + 0.997670i \(0.521735\pi\)
\(164\) 0 0
\(165\) 429.062i 2.60038i
\(166\) 0 0
\(167\) 59.2364i 0.354709i −0.984147 0.177355i \(-0.943246\pi\)
0.984147 0.177355i \(-0.0567539\pi\)
\(168\) 0 0
\(169\) −406.531 −2.40551
\(170\) 0 0
\(171\) 86.9462 + 90.0047i 0.508457 + 0.526343i
\(172\) 0 0
\(173\) 219.813i 1.27059i 0.772268 + 0.635296i \(0.219122\pi\)
−0.772268 + 0.635296i \(0.780878\pi\)
\(174\) 0 0
\(175\) 359.167 2.05238
\(176\) 0 0
\(177\) 172.744 0.975956
\(178\) 0 0
\(179\) 155.441i 0.868384i −0.900820 0.434192i \(-0.857034\pi\)
0.900820 0.434192i \(-0.142966\pi\)
\(180\) 0 0
\(181\) 63.4574i 0.350593i −0.984516 0.175297i \(-0.943912\pi\)
0.984516 0.175297i \(-0.0560885\pi\)
\(182\) 0 0
\(183\) 14.3808i 0.0785836i
\(184\) 0 0
\(185\) 94.2496i 0.509457i
\(186\) 0 0
\(187\) 388.341 2.07669
\(188\) 0 0
\(189\) 108.924i 0.576318i
\(190\) 0 0
\(191\) −212.981 −1.11509 −0.557543 0.830148i \(-0.688256\pi\)
−0.557543 + 0.830148i \(0.688256\pi\)
\(192\) 0 0
\(193\) 94.4626i 0.489443i 0.969593 + 0.244722i \(0.0786966\pi\)
−0.969593 + 0.244722i \(0.921303\pi\)
\(194\) 0 0
\(195\) −711.417 −3.64829
\(196\) 0 0
\(197\) 0.440257 0.00223481 0.00111740 0.999999i \(-0.499644\pi\)
0.00111740 + 0.999999i \(0.499644\pi\)
\(198\) 0 0
\(199\) −79.7631 −0.400820 −0.200410 0.979712i \(-0.564227\pi\)
−0.200410 + 0.979712i \(0.564227\pi\)
\(200\) 0 0
\(201\) −297.819 −1.48169
\(202\) 0 0
\(203\) 89.8079i 0.442404i
\(204\) 0 0
\(205\) 364.527i 1.77818i
\(206\) 0 0
\(207\) 3.00505 0.0145171
\(208\) 0 0
\(209\) −190.999 197.718i −0.913873 0.946020i
\(210\) 0 0
\(211\) 180.350i 0.854737i 0.904077 + 0.427369i \(0.140559\pi\)
−0.904077 + 0.427369i \(0.859441\pi\)
\(212\) 0 0
\(213\) 76.8799 0.360939
\(214\) 0 0
\(215\) −229.274 −1.06639
\(216\) 0 0
\(217\) 183.958i 0.847733i
\(218\) 0 0
\(219\) 328.025i 1.49783i
\(220\) 0 0
\(221\) 643.898i 2.91356i
\(222\) 0 0
\(223\) 12.4050i 0.0556276i 0.999613 + 0.0278138i \(0.00885456\pi\)
−0.999613 + 0.0278138i \(0.991145\pi\)
\(224\) 0 0
\(225\) −206.946 −0.919759
\(226\) 0 0
\(227\) 63.0473i 0.277742i 0.990311 + 0.138871i \(0.0443473\pi\)
−0.990311 + 0.138871i \(0.955653\pi\)
\(228\) 0 0
\(229\) 118.956 0.519457 0.259728 0.965682i \(-0.416367\pi\)
0.259728 + 0.965682i \(0.416367\pi\)
\(230\) 0 0
\(231\) 652.968i 2.82670i
\(232\) 0 0
\(233\) −133.263 −0.571943 −0.285971 0.958238i \(-0.592316\pi\)
−0.285971 + 0.958238i \(0.592316\pi\)
\(234\) 0 0
\(235\) −333.235 −1.41802
\(236\) 0 0
\(237\) −291.961 −1.23190
\(238\) 0 0
\(239\) −155.773 −0.651768 −0.325884 0.945410i \(-0.605662\pi\)
−0.325884 + 0.945410i \(0.605662\pi\)
\(240\) 0 0
\(241\) 206.792i 0.858059i −0.903290 0.429030i \(-0.858856\pi\)
0.903290 0.429030i \(-0.141144\pi\)
\(242\) 0 0
\(243\) 296.787i 1.22134i
\(244\) 0 0
\(245\) −613.452 −2.50388
\(246\) 0 0
\(247\) −327.831 + 316.691i −1.32725 + 1.28215i
\(248\) 0 0
\(249\) 16.8637i 0.0677255i
\(250\) 0 0
\(251\) 61.1735 0.243719 0.121860 0.992547i \(-0.461114\pi\)
0.121860 + 0.992547i \(0.461114\pi\)
\(252\) 0 0
\(253\) −6.60135 −0.0260923
\(254\) 0 0
\(255\) 795.926i 3.12128i
\(256\) 0 0
\(257\) 350.224i 1.36274i 0.731939 + 0.681370i \(0.238615\pi\)
−0.731939 + 0.681370i \(0.761385\pi\)
\(258\) 0 0
\(259\) 143.434i 0.553797i
\(260\) 0 0
\(261\) 51.7459i 0.198260i
\(262\) 0 0
\(263\) −94.5466 −0.359493 −0.179746 0.983713i \(-0.557528\pi\)
−0.179746 + 0.983713i \(0.557528\pi\)
\(264\) 0 0
\(265\) 365.920i 1.38083i
\(266\) 0 0
\(267\) −416.203 −1.55881
\(268\) 0 0
\(269\) 69.4288i 0.258100i 0.991638 + 0.129050i \(0.0411927\pi\)
−0.991638 + 0.129050i \(0.958807\pi\)
\(270\) 0 0
\(271\) 170.473 0.629053 0.314527 0.949249i \(-0.398154\pi\)
0.314527 + 0.949249i \(0.398154\pi\)
\(272\) 0 0
\(273\) 1082.67 3.96582
\(274\) 0 0
\(275\) 454.609 1.65312
\(276\) 0 0
\(277\) −350.498 −1.26534 −0.632668 0.774423i \(-0.718040\pi\)
−0.632668 + 0.774423i \(0.718040\pi\)
\(278\) 0 0
\(279\) 105.994i 0.379906i
\(280\) 0 0
\(281\) 5.69102i 0.0202527i 0.999949 + 0.0101264i \(0.00322338\pi\)
−0.999949 + 0.0101264i \(0.996777\pi\)
\(282\) 0 0
\(283\) 496.812 1.75552 0.877759 0.479102i \(-0.159038\pi\)
0.877759 + 0.479102i \(0.159038\pi\)
\(284\) 0 0
\(285\) −405.234 + 391.464i −1.42187 + 1.37356i
\(286\) 0 0
\(287\) 554.755i 1.93294i
\(288\) 0 0
\(289\) 431.386 1.49268
\(290\) 0 0
\(291\) 701.270 2.40986
\(292\) 0 0
\(293\) 169.911i 0.579901i 0.957042 + 0.289950i \(0.0936388\pi\)
−0.957042 + 0.289950i \(0.906361\pi\)
\(294\) 0 0
\(295\) 328.660i 1.11410i
\(296\) 0 0
\(297\) 137.869i 0.464205i
\(298\) 0 0
\(299\) 10.9455i 0.0366071i
\(300\) 0 0
\(301\) 348.919 1.15920
\(302\) 0 0
\(303\) 361.762i 1.19393i
\(304\) 0 0
\(305\) −27.3607 −0.0897072
\(306\) 0 0
\(307\) 17.6615i 0.0575293i −0.999586 0.0287647i \(-0.990843\pi\)
0.999586 0.0287647i \(-0.00915734\pi\)
\(308\) 0 0
\(309\) 764.283 2.47341
\(310\) 0 0
\(311\) −11.4249 −0.0367359 −0.0183680 0.999831i \(-0.505847\pi\)
−0.0183680 + 0.999831i \(0.505847\pi\)
\(312\) 0 0
\(313\) 150.411 0.480545 0.240273 0.970705i \(-0.422763\pi\)
0.240273 + 0.970705i \(0.422763\pi\)
\(314\) 0 0
\(315\) 565.528 1.79533
\(316\) 0 0
\(317\) 472.665i 1.49106i 0.666474 + 0.745528i \(0.267803\pi\)
−0.666474 + 0.745528i \(0.732197\pi\)
\(318\) 0 0
\(319\) 113.673i 0.356341i
\(320\) 0 0
\(321\) −189.450 −0.590188
\(322\) 0 0
\(323\) −354.311 366.774i −1.09694 1.13552i
\(324\) 0 0
\(325\) 753.776i 2.31931i
\(326\) 0 0
\(327\) −736.831 −2.25330
\(328\) 0 0
\(329\) 507.133 1.54144
\(330\) 0 0
\(331\) 461.495i 1.39424i −0.716953 0.697122i \(-0.754464\pi\)
0.716953 0.697122i \(-0.245536\pi\)
\(332\) 0 0
\(333\) 82.6440i 0.248180i
\(334\) 0 0
\(335\) 566.626i 1.69142i
\(336\) 0 0
\(337\) 212.915i 0.631795i −0.948793 0.315898i \(-0.897694\pi\)
0.948793 0.315898i \(-0.102306\pi\)
\(338\) 0 0
\(339\) 43.1583 0.127311
\(340\) 0 0
\(341\) 232.842i 0.682821i
\(342\) 0 0
\(343\) 373.456 1.08879
\(344\) 0 0
\(345\) 13.5298i 0.0392169i
\(346\) 0 0
\(347\) 4.69058 0.0135175 0.00675876 0.999977i \(-0.497849\pi\)
0.00675876 + 0.999977i \(0.497849\pi\)
\(348\) 0 0
\(349\) −425.832 −1.22015 −0.610074 0.792345i \(-0.708860\pi\)
−0.610074 + 0.792345i \(0.708860\pi\)
\(350\) 0 0
\(351\) 228.597 0.651273
\(352\) 0 0
\(353\) −203.358 −0.576084 −0.288042 0.957618i \(-0.593004\pi\)
−0.288042 + 0.957618i \(0.593004\pi\)
\(354\) 0 0
\(355\) 146.270i 0.412030i
\(356\) 0 0
\(357\) 1211.28i 3.39294i
\(358\) 0 0
\(359\) −420.539 −1.17142 −0.585708 0.810522i \(-0.699184\pi\)
−0.585708 + 0.810522i \(0.699184\pi\)
\(360\) 0 0
\(361\) −12.4755 + 360.784i −0.0345582 + 0.999403i
\(362\) 0 0
\(363\) 348.779i 0.960825i
\(364\) 0 0
\(365\) 624.095 1.70985
\(366\) 0 0
\(367\) 105.125 0.286445 0.143223 0.989691i \(-0.454254\pi\)
0.143223 + 0.989691i \(0.454254\pi\)
\(368\) 0 0
\(369\) 319.641i 0.866235i
\(370\) 0 0
\(371\) 556.874i 1.50101i
\(372\) 0 0
\(373\) 301.800i 0.809115i 0.914512 + 0.404558i \(0.132575\pi\)
−0.914512 + 0.404558i \(0.867425\pi\)
\(374\) 0 0
\(375\) 190.385i 0.507693i
\(376\) 0 0
\(377\) 188.478 0.499942
\(378\) 0 0
\(379\) 541.837i 1.42965i −0.699303 0.714825i \(-0.746506\pi\)
0.699303 0.714825i \(-0.253494\pi\)
\(380\) 0 0
\(381\) 177.077 0.464769
\(382\) 0 0
\(383\) 547.453i 1.42938i −0.699440 0.714691i \(-0.746567\pi\)
0.699440 0.714691i \(-0.253433\pi\)
\(384\) 0 0
\(385\) −1242.33 −3.22682
\(386\) 0 0
\(387\) −201.042 −0.519487
\(388\) 0 0
\(389\) −727.065 −1.86906 −0.934531 0.355881i \(-0.884181\pi\)
−0.934531 + 0.355881i \(0.884181\pi\)
\(390\) 0 0
\(391\) −12.2457 −0.0313190
\(392\) 0 0
\(393\) 402.384i 1.02388i
\(394\) 0 0
\(395\) 555.479i 1.40628i
\(396\) 0 0
\(397\) −30.7449 −0.0774431 −0.0387215 0.999250i \(-0.512329\pi\)
−0.0387215 + 0.999250i \(0.512329\pi\)
\(398\) 0 0
\(399\) 616.705 595.749i 1.54563 1.49310i
\(400\) 0 0
\(401\) 424.410i 1.05838i 0.848504 + 0.529189i \(0.177504\pi\)
−0.848504 + 0.529189i \(0.822496\pi\)
\(402\) 0 0
\(403\) −386.069 −0.957988
\(404\) 0 0
\(405\) 727.825 1.79710
\(406\) 0 0
\(407\) 181.549i 0.446065i
\(408\) 0 0
\(409\) 221.456i 0.541458i −0.962656 0.270729i \(-0.912735\pi\)
0.962656 0.270729i \(-0.0872648\pi\)
\(410\) 0 0
\(411\) 557.285i 1.35592i
\(412\) 0 0
\(413\) 500.171i 1.21107i
\(414\) 0 0
\(415\) 32.0845 0.0773121
\(416\) 0 0
\(417\) 55.3368i 0.132702i
\(418\) 0 0
\(419\) 292.225 0.697433 0.348717 0.937228i \(-0.386618\pi\)
0.348717 + 0.937228i \(0.386618\pi\)
\(420\) 0 0
\(421\) 427.036i 1.01434i −0.861847 0.507169i \(-0.830692\pi\)
0.861847 0.507169i \(-0.169308\pi\)
\(422\) 0 0
\(423\) −292.202 −0.690784
\(424\) 0 0
\(425\) 843.316 1.98427
\(426\) 0 0
\(427\) 41.6388 0.0975148
\(428\) 0 0
\(429\) 1370.37 3.19434
\(430\) 0 0
\(431\) 173.465i 0.402472i 0.979543 + 0.201236i \(0.0644958\pi\)
−0.979543 + 0.201236i \(0.935504\pi\)
\(432\) 0 0
\(433\) 6.22957i 0.0143870i 0.999974 + 0.00719350i \(0.00228978\pi\)
−0.999974 + 0.00719350i \(0.997710\pi\)
\(434\) 0 0
\(435\) 232.979 0.535584
\(436\) 0 0
\(437\) 6.02288 + 6.23474i 0.0137823 + 0.0142671i
\(438\) 0 0
\(439\) 312.023i 0.710758i −0.934722 0.355379i \(-0.884352\pi\)
0.934722 0.355379i \(-0.115648\pi\)
\(440\) 0 0
\(441\) −537.914 −1.21976
\(442\) 0 0
\(443\) 779.260 1.75905 0.879526 0.475850i \(-0.157860\pi\)
0.879526 + 0.475850i \(0.157860\pi\)
\(444\) 0 0
\(445\) 791.861i 1.77946i
\(446\) 0 0
\(447\) 797.691i 1.78454i
\(448\) 0 0
\(449\) 257.015i 0.572416i 0.958167 + 0.286208i \(0.0923949\pi\)
−0.958167 + 0.286208i \(0.907605\pi\)
\(450\) 0 0
\(451\) 702.172i 1.55692i
\(452\) 0 0
\(453\) 34.8643 0.0769631
\(454\) 0 0
\(455\) 2059.87i 4.52718i
\(456\) 0 0
\(457\) 536.202 1.17331 0.586654 0.809838i \(-0.300445\pi\)
0.586654 + 0.809838i \(0.300445\pi\)
\(458\) 0 0
\(459\) 255.752i 0.557193i
\(460\) 0 0
\(461\) −549.116 −1.19114 −0.595570 0.803303i \(-0.703074\pi\)
−0.595570 + 0.803303i \(0.703074\pi\)
\(462\) 0 0
\(463\) −531.777 −1.14855 −0.574273 0.818664i \(-0.694715\pi\)
−0.574273 + 0.818664i \(0.694715\pi\)
\(464\) 0 0
\(465\) −477.222 −1.02628
\(466\) 0 0
\(467\) −883.914 −1.89275 −0.946375 0.323070i \(-0.895285\pi\)
−0.946375 + 0.323070i \(0.895285\pi\)
\(468\) 0 0
\(469\) 862.318i 1.83863i
\(470\) 0 0
\(471\) 454.734i 0.965466i
\(472\) 0 0
\(473\) 441.639 0.933697
\(474\) 0 0
\(475\) −414.772 429.362i −0.873204 0.903920i
\(476\) 0 0
\(477\) 320.862i 0.672666i
\(478\) 0 0
\(479\) 434.287 0.906653 0.453327 0.891345i \(-0.350237\pi\)
0.453327 + 0.891345i \(0.350237\pi\)
\(480\) 0 0
\(481\) 301.021 0.625823
\(482\) 0 0
\(483\) 20.5904i 0.0426301i
\(484\) 0 0
\(485\) 1334.23i 2.75098i
\(486\) 0 0
\(487\) 420.157i 0.862746i 0.902174 + 0.431373i \(0.141971\pi\)
−0.902174 + 0.431373i \(0.858029\pi\)
\(488\) 0 0
\(489\) 87.8131i 0.179577i
\(490\) 0 0
\(491\) −148.458 −0.302359 −0.151179 0.988506i \(-0.548307\pi\)
−0.151179 + 0.988506i \(0.548307\pi\)
\(492\) 0 0
\(493\) 210.867i 0.427722i
\(494\) 0 0
\(495\) 715.808 1.44608
\(496\) 0 0
\(497\) 222.601i 0.447890i
\(498\) 0 0
\(499\) 662.516 1.32769 0.663844 0.747871i \(-0.268924\pi\)
0.663844 + 0.747871i \(0.268924\pi\)
\(500\) 0 0
\(501\) 233.863 0.466793
\(502\) 0 0
\(503\) −483.994 −0.962214 −0.481107 0.876662i \(-0.659765\pi\)
−0.481107 + 0.876662i \(0.659765\pi\)
\(504\) 0 0
\(505\) −688.282 −1.36294
\(506\) 0 0
\(507\) 1604.97i 3.16562i
\(508\) 0 0
\(509\) 481.859i 0.946678i −0.880880 0.473339i \(-0.843049\pi\)
0.880880 0.473339i \(-0.156951\pi\)
\(510\) 0 0
\(511\) −949.778 −1.85866
\(512\) 0 0
\(513\) 130.212 125.787i 0.253825 0.245200i
\(514\) 0 0
\(515\) 1454.11i 2.82352i
\(516\) 0 0
\(517\) 641.895 1.24158
\(518\) 0 0
\(519\) −867.812 −1.67208
\(520\) 0 0
\(521\) 11.8425i 0.0227303i 0.999935 + 0.0113651i \(0.00361771\pi\)
−0.999935 + 0.0113651i \(0.996382\pi\)
\(522\) 0 0
\(523\) 133.860i 0.255946i 0.991778 + 0.127973i \(0.0408470\pi\)
−0.991778 + 0.127973i \(0.959153\pi\)
\(524\) 0 0
\(525\) 1417.98i 2.70091i
\(526\) 0 0
\(527\) 431.930i 0.819601i
\(528\) 0 0
\(529\) −528.792 −0.999606
\(530\) 0 0
\(531\) 288.190i 0.542731i
\(532\) 0 0
\(533\) 1164.25 2.18434
\(534\) 0 0
\(535\) 360.445i 0.673729i
\(536\) 0 0
\(537\) 613.674 1.14278
\(538\) 0 0
\(539\) 1181.66 2.19233
\(540\) 0 0
\(541\) −926.200 −1.71202 −0.856008 0.516963i \(-0.827062\pi\)
−0.856008 + 0.516963i \(0.827062\pi\)
\(542\) 0 0
\(543\) 250.528 0.461377
\(544\) 0 0
\(545\) 1401.88i 2.57226i
\(546\) 0 0
\(547\) 408.806i 0.747360i 0.927558 + 0.373680i \(0.121904\pi\)
−0.927558 + 0.373680i \(0.878096\pi\)
\(548\) 0 0
\(549\) −23.9916 −0.0437005
\(550\) 0 0
\(551\) 107.360 103.712i 0.194846 0.188225i
\(552\) 0 0
\(553\) 845.355i 1.52867i
\(554\) 0 0
\(555\) 372.094 0.670439
\(556\) 0 0
\(557\) 165.552 0.297220 0.148610 0.988896i \(-0.452520\pi\)
0.148610 + 0.988896i \(0.452520\pi\)
\(558\) 0 0
\(559\) 732.270i 1.30996i
\(560\) 0 0
\(561\) 1533.15i 2.73290i
\(562\) 0 0
\(563\) 318.882i 0.566397i 0.959061 + 0.283199i \(0.0913956\pi\)
−0.959061 + 0.283199i \(0.908604\pi\)
\(564\) 0 0
\(565\) 82.1123i 0.145332i
\(566\) 0 0
\(567\) −1107.64 −1.95351
\(568\) 0 0
\(569\) 601.270i 1.05671i −0.849022 0.528357i \(-0.822808\pi\)
0.849022 0.528357i \(-0.177192\pi\)
\(570\) 0 0
\(571\) −649.481 −1.13745 −0.568723 0.822529i \(-0.692562\pi\)
−0.568723 + 0.822529i \(0.692562\pi\)
\(572\) 0 0
\(573\) 840.843i 1.46744i
\(574\) 0 0
\(575\) −14.3354 −0.0249312
\(576\) 0 0
\(577\) 335.898 0.582146 0.291073 0.956701i \(-0.405988\pi\)
0.291073 + 0.956701i \(0.405988\pi\)
\(578\) 0 0
\(579\) −372.935 −0.644102
\(580\) 0 0
\(581\) −48.8278 −0.0840409
\(582\) 0 0
\(583\) 704.854i 1.20901i
\(584\) 0 0
\(585\) 1186.86i 2.02883i
\(586\) 0 0
\(587\) −651.573 −1.11000 −0.555002 0.831849i \(-0.687283\pi\)
−0.555002 + 0.831849i \(0.687283\pi\)
\(588\) 0 0
\(589\) −219.911 + 212.438i −0.373363 + 0.360676i
\(590\) 0 0
\(591\) 1.73812i 0.00294098i
\(592\) 0 0
\(593\) −110.514 −0.186364 −0.0931822 0.995649i \(-0.529704\pi\)
−0.0931822 + 0.995649i \(0.529704\pi\)
\(594\) 0 0
\(595\) −2304.56 −3.87321
\(596\) 0 0
\(597\) 314.902i 0.527474i
\(598\) 0 0
\(599\) 767.215i 1.28083i 0.768031 + 0.640413i \(0.221237\pi\)
−0.768031 + 0.640413i \(0.778763\pi\)
\(600\) 0 0
\(601\) 708.739i 1.17927i −0.807671 0.589633i \(-0.799272\pi\)
0.807671 0.589633i \(-0.200728\pi\)
\(602\) 0 0
\(603\) 496.853i 0.823969i
\(604\) 0 0
\(605\) −663.582 −1.09683
\(606\) 0 0
\(607\) 779.388i 1.28400i 0.766705 + 0.642000i \(0.221895\pi\)
−0.766705 + 0.642000i \(0.778105\pi\)
\(608\) 0 0
\(609\) −354.558 −0.582198
\(610\) 0 0
\(611\) 1064.31i 1.74191i
\(612\) 0 0
\(613\) −744.842 −1.21508 −0.607538 0.794291i \(-0.707843\pi\)
−0.607538 + 0.794291i \(0.707843\pi\)
\(614\) 0 0
\(615\) 1439.14 2.34007
\(616\) 0 0
\(617\) 304.897 0.494161 0.247080 0.968995i \(-0.420529\pi\)
0.247080 + 0.968995i \(0.420529\pi\)
\(618\) 0 0
\(619\) 764.804 1.23555 0.617774 0.786356i \(-0.288035\pi\)
0.617774 + 0.786356i \(0.288035\pi\)
\(620\) 0 0
\(621\) 4.34749i 0.00700078i
\(622\) 0 0
\(623\) 1205.09i 1.93434i
\(624\) 0 0
\(625\) −423.279 −0.677247
\(626\) 0 0
\(627\) 780.584 754.059i 1.24495 1.20265i
\(628\) 0 0
\(629\) 336.779i 0.535420i
\(630\) 0 0
\(631\) 682.979 1.08238 0.541188 0.840902i \(-0.317975\pi\)
0.541188 + 0.840902i \(0.317975\pi\)
\(632\) 0 0
\(633\) −712.014 −1.12482
\(634\) 0 0
\(635\) 336.904i 0.530557i
\(636\) 0 0
\(637\) 1959.29i 3.07580i
\(638\) 0 0
\(639\) 128.259i 0.200719i
\(640\) 0 0
\(641\) 1040.26i 1.62287i 0.584445 + 0.811433i \(0.301312\pi\)
−0.584445 + 0.811433i \(0.698688\pi\)
\(642\) 0 0
\(643\) 1097.65 1.70707 0.853535 0.521036i \(-0.174454\pi\)
0.853535 + 0.521036i \(0.174454\pi\)
\(644\) 0 0
\(645\) 905.163i 1.40335i
\(646\) 0 0
\(647\) −1024.20 −1.58299 −0.791497 0.611173i \(-0.790698\pi\)
−0.791497 + 0.611173i \(0.790698\pi\)
\(648\) 0 0
\(649\) 633.083i 0.975475i
\(650\) 0 0
\(651\) 726.260 1.11561
\(652\) 0 0
\(653\) −996.126 −1.52546 −0.762731 0.646716i \(-0.776142\pi\)
−0.762731 + 0.646716i \(0.776142\pi\)
\(654\) 0 0
\(655\) −765.569 −1.16881
\(656\) 0 0
\(657\) 547.246 0.832947
\(658\) 0 0
\(659\) 506.836i 0.769098i −0.923105 0.384549i \(-0.874357\pi\)
0.923105 0.384549i \(-0.125643\pi\)
\(660\) 0 0
\(661\) 891.671i 1.34897i −0.738288 0.674486i \(-0.764365\pi\)
0.738288 0.674486i \(-0.235635\pi\)
\(662\) 0 0
\(663\) 2542.08 3.83422
\(664\) 0 0
\(665\) 1133.46 + 1173.33i 1.70445 + 1.76441i
\(666\) 0 0
\(667\) 3.58450i 0.00537407i
\(668\) 0 0
\(669\) −48.9743 −0.0732053
\(670\) 0 0
\(671\) 52.7036 0.0785449
\(672\) 0 0
\(673\) 493.557i 0.733368i −0.930346 0.366684i \(-0.880493\pi\)
0.930346 0.366684i \(-0.119507\pi\)
\(674\) 0 0
\(675\) 299.394i 0.443547i
\(676\) 0 0
\(677\) 689.996i 1.01920i 0.860412 + 0.509598i \(0.170206\pi\)
−0.860412 + 0.509598i \(0.829794\pi\)
\(678\) 0 0
\(679\) 2030.49i 2.99041i
\(680\) 0 0
\(681\) −248.909 −0.365505
\(682\) 0 0
\(683\) 1097.59i 1.60701i −0.595300 0.803503i \(-0.702967\pi\)
0.595300 0.803503i \(-0.297033\pi\)
\(684\) 0 0
\(685\) −1060.28 −1.54786
\(686\) 0 0
\(687\) 469.632i 0.683599i
\(688\) 0 0
\(689\) −1168.70 −1.69623
\(690\) 0 0
\(691\) −952.346 −1.37821 −0.689107 0.724659i \(-0.741997\pi\)
−0.689107 + 0.724659i \(0.741997\pi\)
\(692\) 0 0
\(693\) −1089.35 −1.57193
\(694\) 0 0
\(695\) −105.283 −0.151486
\(696\) 0 0
\(697\) 1302.55i 1.86880i
\(698\) 0 0
\(699\) 526.116i 0.752670i
\(700\) 0 0
\(701\) 563.636 0.804046 0.402023 0.915630i \(-0.368307\pi\)
0.402023 + 0.915630i \(0.368307\pi\)
\(702\) 0 0
\(703\) 171.466 165.640i 0.243906 0.235618i
\(704\) 0 0
\(705\) 1315.60i 1.86610i
\(706\) 0 0
\(707\) 1047.46 1.48156
\(708\) 0 0
\(709\) 111.158 0.156781 0.0783904 0.996923i \(-0.475022\pi\)
0.0783904 + 0.996923i \(0.475022\pi\)
\(710\) 0 0
\(711\) 487.080i 0.685063i
\(712\) 0 0
\(713\) 7.34232i 0.0102978i
\(714\) 0 0
\(715\) 2607.24i 3.64650i
\(716\) 0 0
\(717\) 614.985i 0.857719i
\(718\) 0 0
\(719\) −183.695 −0.255486 −0.127743 0.991807i \(-0.540773\pi\)
−0.127743 + 0.991807i \(0.540773\pi\)
\(720\) 0 0
\(721\) 2212.94i 3.06926i
\(722\) 0 0
\(723\) 816.408 1.12920
\(724\) 0 0
\(725\) 246.851i 0.340484i
\(726\) 0 0
\(727\) 559.944 0.770212 0.385106 0.922872i \(-0.374165\pi\)
0.385106 + 0.922872i \(0.374165\pi\)
\(728\) 0 0
\(729\) 299.631 0.411016
\(730\) 0 0
\(731\) 819.256 1.12073
\(732\) 0 0
\(733\) −607.258 −0.828456 −0.414228 0.910173i \(-0.635948\pi\)
−0.414228 + 0.910173i \(0.635948\pi\)
\(734\) 0 0
\(735\) 2421.88i 3.29508i
\(736\) 0 0
\(737\) 1091.46i 1.48096i
\(738\) 0 0
\(739\) −1340.34 −1.81372 −0.906862 0.421428i \(-0.861529\pi\)
−0.906862 + 0.421428i \(0.861529\pi\)
\(740\) 0 0
\(741\) −1250.29 1294.27i −1.68729 1.74665i
\(742\) 0 0
\(743\) 1336.88i 1.79930i 0.436609 + 0.899651i \(0.356179\pi\)
−0.436609 + 0.899651i \(0.643821\pi\)
\(744\) 0 0
\(745\) −1517.67 −2.03715
\(746\) 0 0
\(747\) 28.1338 0.0376623
\(748\) 0 0
\(749\) 548.543i 0.732367i
\(750\) 0 0
\(751\) 136.252i 0.181428i −0.995877 0.0907138i \(-0.971085\pi\)
0.995877 0.0907138i \(-0.0289149\pi\)
\(752\) 0 0
\(753\) 241.511i 0.320732i
\(754\) 0 0
\(755\) 66.3322i 0.0878573i
\(756\) 0 0
\(757\) 152.519 0.201478 0.100739 0.994913i \(-0.467879\pi\)
0.100739 + 0.994913i \(0.467879\pi\)
\(758\) 0 0
\(759\) 26.0619i 0.0343371i
\(760\) 0 0
\(761\) −961.843 −1.26392 −0.631960 0.775001i \(-0.717749\pi\)
−0.631960 + 0.775001i \(0.717749\pi\)
\(762\) 0 0
\(763\) 2133.45i 2.79614i
\(764\) 0 0
\(765\) 1327.85 1.73575
\(766\) 0 0
\(767\) −1049.70 −1.36858
\(768\) 0 0
\(769\) 848.788 1.10376 0.551878 0.833925i \(-0.313912\pi\)
0.551878 + 0.833925i \(0.313912\pi\)
\(770\) 0 0
\(771\) −1382.67 −1.79335
\(772\) 0 0
\(773\) 991.416i 1.28256i −0.767308 0.641278i \(-0.778404\pi\)
0.767308 0.641278i \(-0.221596\pi\)
\(774\) 0 0
\(775\) 505.637i 0.652434i
\(776\) 0 0
\(777\) −566.270 −0.728791
\(778\) 0 0
\(779\) 663.177 640.641i 0.851318 0.822389i
\(780\) 0 0
\(781\) 281.754i 0.360761i
\(782\) 0 0
\(783\) −74.8621 −0.0956094
\(784\) 0 0
\(785\) 865.171 1.10213
\(786\) 0 0
\(787\) 598.126i 0.760008i 0.924985 + 0.380004i \(0.124077\pi\)
−0.924985 + 0.380004i \(0.875923\pi\)
\(788\) 0 0
\(789\) 373.266i 0.473088i
\(790\) 0 0
\(791\) 124.962i 0.157980i
\(792\) 0 0
\(793\) 87.3865i 0.110197i
\(794\) 0 0
\(795\) −1444.64 −1.81716
\(796\) 0 0
\(797\) 144.141i 0.180855i 0.995903 + 0.0904275i \(0.0288233\pi\)
−0.995903 + 0.0904275i \(0.971177\pi\)
\(798\) 0 0
\(799\) 1190.74 1.49028
\(800\) 0 0
\(801\) 694.354i 0.866860i
\(802\) 0 0
\(803\) −1202.17 −1.49709
\(804\) 0 0
\(805\) 39.1749 0.0486644
\(806\) 0 0
\(807\) −274.102 −0.339656
\(808\) 0 0
\(809\) −271.105 −0.335111 −0.167556 0.985863i \(-0.553587\pi\)
−0.167556 + 0.985863i \(0.553587\pi\)
\(810\) 0 0
\(811\) 1150.68i 1.41884i −0.704787 0.709419i \(-0.748957\pi\)
0.704787 0.709419i \(-0.251043\pi\)
\(812\) 0 0
\(813\) 673.023i 0.827827i
\(814\) 0 0
\(815\) 167.072 0.204996
\(816\) 0 0
\(817\) −402.938 417.112i −0.493193 0.510541i
\(818\) 0 0
\(819\) 1806.22i 2.20540i
\(820\) 0 0
\(821\) 851.160 1.03674 0.518368 0.855158i \(-0.326540\pi\)
0.518368 + 0.855158i \(0.326540\pi\)
\(822\) 0 0
\(823\) 1074.72 1.30586 0.652928 0.757420i \(-0.273540\pi\)
0.652928 + 0.757420i \(0.273540\pi\)
\(824\) 0 0
\(825\) 1794.78i 2.17549i
\(826\) 0 0
\(827\) 703.353i 0.850487i −0.905079 0.425243i \(-0.860189\pi\)
0.905079 0.425243i \(-0.139811\pi\)
\(828\) 0 0
\(829\) 62.9506i 0.0759356i −0.999279 0.0379678i \(-0.987912\pi\)
0.999279 0.0379678i \(-0.0120884\pi\)
\(830\) 0 0
\(831\) 1383.75i 1.66517i
\(832\) 0 0
\(833\) 2192.03 2.63148
\(834\) 0 0
\(835\) 444.945i 0.532868i
\(836\) 0 0
\(837\) 153.344 0.183207
\(838\) 0 0
\(839\) 745.845i 0.888969i 0.895787 + 0.444484i \(0.146613\pi\)
−0.895787 + 0.444484i \(0.853387\pi\)
\(840\) 0 0
\(841\) 779.276 0.926607
\(842\) 0 0
\(843\) −22.4679 −0.0266524
\(844\) 0 0
\(845\) 3053.59 3.61372
\(846\) 0 0
\(847\) 1009.87 1.19229
\(848\) 0 0
\(849\) 1961.39i 2.31024i
\(850\) 0 0
\(851\) 5.72486i 0.00672722i
\(852\) 0 0
\(853\) −63.4665 −0.0744039 −0.0372019 0.999308i \(-0.511844\pi\)
−0.0372019 + 0.999308i \(0.511844\pi\)
\(854\) 0 0
\(855\) −653.082 676.055i −0.763839 0.790708i
\(856\) 0 0
\(857\) 304.235i 0.355000i 0.984121 + 0.177500i \(0.0568009\pi\)
−0.984121 + 0.177500i \(0.943199\pi\)
\(858\) 0 0
\(859\) −1336.81 −1.55624 −0.778119 0.628117i \(-0.783826\pi\)
−0.778119 + 0.628117i \(0.783826\pi\)
\(860\) 0 0
\(861\) −2190.15 −2.54373
\(862\) 0 0
\(863\) 752.833i 0.872344i −0.899863 0.436172i \(-0.856334\pi\)
0.899863 0.436172i \(-0.143666\pi\)
\(864\) 0 0
\(865\) 1651.09i 1.90877i
\(866\) 0 0
\(867\) 1703.09i 1.96435i
\(868\) 0 0
\(869\) 1069.99i 1.23129i
\(870\) 0 0
\(871\) 1809.73 2.07776
\(872\) 0 0
\(873\) 1169.93i 1.34013i
\(874\) 0 0
\(875\) −551.249 −0.629999
\(876\) 0 0
\(877\) 1209.77i 1.37945i 0.724074 + 0.689723i \(0.242268\pi\)
−0.724074 + 0.689723i \(0.757732\pi\)
\(878\) 0 0
\(879\) −670.802 −0.763142
\(880\) 0 0
\(881\) −1126.67 −1.27885 −0.639425 0.768854i \(-0.720827\pi\)
−0.639425 + 0.768854i \(0.720827\pi\)
\(882\) 0 0
\(883\) −509.573 −0.577092 −0.288546 0.957466i \(-0.593172\pi\)
−0.288546 + 0.957466i \(0.593172\pi\)
\(884\) 0 0
\(885\) −1297.54 −1.46615
\(886\) 0 0
\(887\) 1167.27i 1.31597i −0.753030 0.657986i \(-0.771409\pi\)
0.753030 0.657986i \(-0.228591\pi\)
\(888\) 0 0
\(889\) 512.717i 0.576734i
\(890\) 0 0
\(891\) −1401.97 −1.57348
\(892\) 0 0
\(893\) −585.646 606.247i −0.655819 0.678888i
\(894\) 0 0
\(895\) 1167.57i 1.30454i
\(896\) 0 0
\(897\) −43.2126 −0.0481745
\(898\) 0 0
\(899\) 126.432 0.140636
\(900\) 0 0
\(901\) 1307.53i 1.45120i
\(902\) 0 0
\(903\) 1377.52i 1.52549i
\(904\) 0 0
\(905\) 476.650i 0.526685i
\(906\) 0 0
\(907\) 83.2264i 0.0917601i −0.998947 0.0458800i \(-0.985391\pi\)
0.998947 0.0458800i \(-0.0146092\pi\)
\(908\) 0 0
\(909\) −603.530 −0.663949
\(910\) 0 0
\(911\) 300.362i 0.329706i −0.986318 0.164853i \(-0.947285\pi\)
0.986318 0.164853i \(-0.0527149\pi\)
\(912\) 0 0
\(913\) −61.8029 −0.0676922
\(914\) 0 0
\(915\) 108.019i 0.118054i
\(916\) 0 0
\(917\) 1165.08 1.27053
\(918\) 0 0
\(919\) 285.792 0.310981 0.155491 0.987837i \(-0.450304\pi\)
0.155491 + 0.987837i \(0.450304\pi\)
\(920\) 0 0
\(921\) 69.7270 0.0757079
\(922\) 0 0
\(923\) −467.169 −0.506142
\(924\) 0 0
\(925\) 394.249i 0.426215i
\(926\) 0 0
\(927\) 1275.06i 1.37547i
\(928\) 0 0
\(929\) −1456.23 −1.56752 −0.783760 0.621064i \(-0.786701\pi\)
−0.783760 + 0.621064i \(0.786701\pi\)
\(930\) 0 0
\(931\) −1078.11 1116.04i −1.15802 1.19875i
\(932\) 0 0
\(933\) 45.1050i 0.0483441i
\(934\) 0 0
\(935\) −2916.96 −3.11974
\(936\) 0 0
\(937\) −756.375 −0.807230 −0.403615 0.914929i \(-0.632247\pi\)
−0.403615 + 0.914929i \(0.632247\pi\)
\(938\) 0 0
\(939\) 593.816i 0.632392i
\(940\) 0 0
\(941\) 710.309i 0.754845i 0.926041 + 0.377422i \(0.123189\pi\)
−0.926041 + 0.377422i \(0.876811\pi\)
\(942\) 0 0
\(943\) 22.1419i 0.0234803i
\(944\) 0 0
\(945\) 818.165i 0.865783i
\(946\) 0 0
\(947\) −134.816 −0.142361 −0.0711805 0.997463i \(-0.522677\pi\)
−0.0711805 + 0.997463i \(0.522677\pi\)
\(948\) 0 0
\(949\) 1993.28i 2.10040i
\(950\) 0 0
\(951\) −1866.06 −1.96221
\(952\) 0 0
\(953\) 665.726i 0.698558i −0.937019 0.349279i \(-0.886427\pi\)
0.937019 0.349279i \(-0.113573\pi\)
\(954\) 0 0
\(955\) 1599.77 1.67516
\(956\) 0 0
\(957\) −448.776 −0.468941
\(958\) 0 0
\(959\) 1613.59 1.68257
\(960\) 0 0
\(961\) 702.023 0.730513
\(962\) 0 0
\(963\) 316.061i 0.328205i
\(964\) 0 0
\(965\) 709.540i 0.735274i
\(966\) 0 0
\(967\) 241.670 0.249917 0.124959 0.992162i \(-0.460120\pi\)
0.124959 + 0.992162i \(0.460120\pi\)
\(968\) 0 0
\(969\) 1448.01 1398.81i 1.49433 1.44356i
\(970\) 0 0
\(971\) 917.585i 0.944990i 0.881333 + 0.472495i \(0.156646\pi\)
−0.881333 + 0.472495i \(0.843354\pi\)
\(972\) 0 0
\(973\) 160.225 0.164671
\(974\) 0 0
\(975\) 2975.88 3.05218
\(976\) 0 0
\(977\) 282.297i 0.288943i 0.989509 + 0.144472i \(0.0461482\pi\)
−0.989509 + 0.144472i \(0.953852\pi\)
\(978\) 0 0
\(979\) 1525.33i 1.55804i
\(980\) 0 0
\(981\) 1229.26i 1.25307i
\(982\) 0 0
\(983\) 1007.79i 1.02521i −0.858623 0.512607i \(-0.828680\pi\)
0.858623 0.512607i \(-0.171320\pi\)
\(984\) 0 0
\(985\) −3.30692 −0.00335728
\(986\) 0 0
\(987\) 2002.14i 2.02851i
\(988\) 0 0
\(989\) −13.9264 −0.0140813
\(990\) 0 0
\(991\) 1698.36i 1.71379i 0.515492 + 0.856894i \(0.327609\pi\)
−0.515492 + 0.856894i \(0.672391\pi\)
\(992\) 0 0
\(993\) 1821.96 1.83481
\(994\) 0 0
\(995\) 599.127 0.602138
\(996\) 0 0
\(997\) 910.114 0.912852 0.456426 0.889761i \(-0.349129\pi\)
0.456426 + 0.889761i \(0.349129\pi\)
\(998\) 0 0
\(999\) −119.563 −0.119683
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 608.3.e.b.417.16 yes 20
4.3 odd 2 inner 608.3.e.b.417.5 20
8.3 odd 2 1216.3.e.p.1025.15 20
8.5 even 2 1216.3.e.p.1025.6 20
19.18 odd 2 inner 608.3.e.b.417.6 yes 20
76.75 even 2 inner 608.3.e.b.417.15 yes 20
152.37 odd 2 1216.3.e.p.1025.16 20
152.75 even 2 1216.3.e.p.1025.5 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
608.3.e.b.417.5 20 4.3 odd 2 inner
608.3.e.b.417.6 yes 20 19.18 odd 2 inner
608.3.e.b.417.15 yes 20 76.75 even 2 inner
608.3.e.b.417.16 yes 20 1.1 even 1 trivial
1216.3.e.p.1025.5 20 152.75 even 2
1216.3.e.p.1025.6 20 8.5 even 2
1216.3.e.p.1025.15 20 8.3 odd 2
1216.3.e.p.1025.16 20 152.37 odd 2