Properties

Label 608.3
Level 608
Weight 3
Dimension 12718
Nonzero newspaces 18
Sturm bound 69120
Trace bound 9

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 608 = 2^{5} \cdot 19 \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 18 \)
Sturm bound: \(69120\)
Trace bound: \(9\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(608))\).

Total New Old
Modular forms 23616 13058 10558
Cusp forms 22464 12718 9746
Eisenstein series 1152 340 812

Trace form

\( 12718 q - 64 q^{2} - 50 q^{3} - 64 q^{4} - 72 q^{5} - 64 q^{6} - 46 q^{7} - 64 q^{8} - 62 q^{9} + 16 q^{10} - 18 q^{11} + 32 q^{12} - 8 q^{13} - 32 q^{14} - 38 q^{15} - 104 q^{16} - 112 q^{17} - 184 q^{18}+ \cdots - 626 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(608))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
608.3.d \(\chi_{608}(191, \cdot)\) 608.3.d.a 16 1
608.3.d.b 20
608.3.e \(\chi_{608}(417, \cdot)\) 608.3.e.a 20 1
608.3.e.b 20
608.3.f \(\chi_{608}(495, \cdot)\) 608.3.f.a 36 1
608.3.g \(\chi_{608}(113, \cdot)\) 608.3.g.a 3 1
608.3.g.b 3
608.3.g.c 32
608.3.j \(\chi_{608}(265, \cdot)\) None 0 2
608.3.l \(\chi_{608}(39, \cdot)\) None 0 2
608.3.o \(\chi_{608}(239, \cdot)\) 608.3.o.a 4 2
608.3.o.b 72
608.3.p \(\chi_{608}(145, \cdot)\) 608.3.p.a 76 2
608.3.q \(\chi_{608}(159, \cdot)\) 608.3.q.a 40 2
608.3.q.b 40
608.3.r \(\chi_{608}(65, \cdot)\) 608.3.r.a 40 2
608.3.r.b 40
608.3.w \(\chi_{608}(37, \cdot)\) n/a 632 4
608.3.x \(\chi_{608}(115, \cdot)\) n/a 576 4
608.3.ba \(\chi_{608}(217, \cdot)\) None 0 4
608.3.bc \(\chi_{608}(7, \cdot)\) None 0 4
608.3.bd \(\chi_{608}(33, \cdot)\) n/a 240 6
608.3.be \(\chi_{608}(241, \cdot)\) n/a 228 6
608.3.bg \(\chi_{608}(47, \cdot)\) n/a 228 6
608.3.bj \(\chi_{608}(63, \cdot)\) n/a 240 6
608.3.bk \(\chi_{608}(11, \cdot)\) n/a 1264 8
608.3.bl \(\chi_{608}(69, \cdot)\) n/a 1264 8
608.3.bp \(\chi_{608}(23, \cdot)\) None 0 12
608.3.br \(\chi_{608}(41, \cdot)\) None 0 12
608.3.bu \(\chi_{608}(35, \cdot)\) n/a 3792 24
608.3.bv \(\chi_{608}(13, \cdot)\) n/a 3792 24

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(608))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(608)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 10}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(38))\)\(^{\oplus 5}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(76))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(152))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(304))\)\(^{\oplus 2}\)