L(s) = 1 | + 3.94i·3-s − 7.51·5-s + 11.4·7-s − 6.58·9-s + 14.4·11-s − 23.9i·13-s − 29.6i·15-s + 26.8·17-s + (−13.2 − 13.6i)19-s + 45.1i·21-s − 0.456·23-s + 31.4·25-s + 9.52i·27-s + 7.85i·29-s − 16.0i·31-s + ⋯ |
L(s) = 1 | + 1.31i·3-s − 1.50·5-s + 1.63·7-s − 0.731·9-s + 1.31·11-s − 1.84i·13-s − 1.97i·15-s + 1.57·17-s + (−0.694 − 0.719i)19-s + 2.14i·21-s − 0.0198·23-s + 1.25·25-s + 0.352i·27-s + 0.270i·29-s − 0.519i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 608 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.719 - 0.694i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 608 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.719 - 0.694i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.834628609\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.834628609\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 19 | \( 1 + (13.2 + 13.6i)T \) |
good | 3 | \( 1 - 3.94iT - 9T^{2} \) |
| 5 | \( 1 + 7.51T + 25T^{2} \) |
| 7 | \( 1 - 11.4T + 49T^{2} \) |
| 11 | \( 1 - 14.4T + 121T^{2} \) |
| 13 | \( 1 + 23.9iT - 169T^{2} \) |
| 17 | \( 1 - 26.8T + 289T^{2} \) |
| 23 | \( 1 + 0.456T + 529T^{2} \) |
| 29 | \( 1 - 7.85iT - 841T^{2} \) |
| 31 | \( 1 + 16.0iT - 961T^{2} \) |
| 37 | \( 1 - 12.5iT - 1.36e3T^{2} \) |
| 41 | \( 1 - 48.5iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 30.5T + 1.84e3T^{2} \) |
| 47 | \( 1 - 44.3T + 2.20e3T^{2} \) |
| 53 | \( 1 + 48.7iT - 2.80e3T^{2} \) |
| 59 | \( 1 + 43.7iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 3.64T + 3.72e3T^{2} \) |
| 67 | \( 1 - 75.4iT - 4.48e3T^{2} \) |
| 71 | \( 1 + 19.4iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 83.0T + 5.32e3T^{2} \) |
| 79 | \( 1 - 73.9iT - 6.24e3T^{2} \) |
| 83 | \( 1 + 4.27T + 6.88e3T^{2} \) |
| 89 | \( 1 - 105. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + 177. iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.69240328859136700178576127111, −9.804757912825795380809482500043, −8.626462222073228345270099575979, −8.076657362134188182279155344801, −7.32044433897912342344058787642, −5.61317523364956733896572728461, −4.72531907741087706316586170180, −4.04719130823081290342768627679, −3.19881100853142855324595099050, −0.965401911353103383095344968937,
1.10094263286726530325159124220, 1.89694625859548104623187341199, 3.86624106833007416687306915369, 4.47068372879399678801317901211, 6.00180577113456859874766496416, 7.13697688333390647855155351458, 7.54560351203863894714322316130, 8.338041598147359017721336650094, 9.063434507296137413337679904451, 10.70020244917540630861478332274