Properties

Label 608.3.d.b.191.9
Level $608$
Weight $3$
Character 608.191
Analytic conductor $16.567$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [608,3,Mod(191,608)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("608.191"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(608, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 608 = 2^{5} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 608.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.5668000731\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 124 x^{18} + 6294 x^{16} + 169580 x^{14} + 2633777 x^{12} + 23965840 x^{10} + 123396288 x^{8} + \cdots + 6553600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{32}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 191.9
Root \(0.760762i\) of defining polynomial
Character \(\chi\) \(=\) 608.191
Dual form 608.3.d.b.191.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.760762i q^{3} +3.86554 q^{5} -8.82674i q^{7} +8.42124 q^{9} +11.2858i q^{11} +10.3144 q^{13} -2.94076i q^{15} +2.39130 q^{17} -4.35890i q^{19} -6.71505 q^{21} +0.748138i q^{23} -10.0576 q^{25} -13.2534i q^{27} +26.1770 q^{29} -19.5534i q^{31} +8.58580 q^{33} -34.1201i q^{35} -26.2742 q^{37} -7.84682i q^{39} +22.0622 q^{41} -58.0818i q^{43} +32.5527 q^{45} +26.2030i q^{47} -28.9113 q^{49} -1.81921i q^{51} +56.1426 q^{53} +43.6257i q^{55} -3.31609 q^{57} +5.58045i q^{59} +92.1800 q^{61} -74.3321i q^{63} +39.8708 q^{65} -3.00658i q^{67} +0.569155 q^{69} +24.8541i q^{71} -31.0555 q^{73} +7.65144i q^{75} +99.6167 q^{77} -80.2428i q^{79} +65.7085 q^{81} -36.4566i q^{83} +9.24369 q^{85} -19.9145i q^{87} -162.602 q^{89} -91.0426i q^{91} -14.8755 q^{93} -16.8495i q^{95} -158.112 q^{97} +95.0403i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 68 q^{9} - 16 q^{13} + 8 q^{17} + 64 q^{21} + 196 q^{25} - 88 q^{29} - 184 q^{33} + 16 q^{37} - 16 q^{41} + 16 q^{45} + 52 q^{49} + 88 q^{53} - 208 q^{61} - 192 q^{65} + 248 q^{69} - 152 q^{73} + 312 q^{77}+ \cdots - 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/608\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(191\) \(229\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 0.760762i − 0.253587i −0.991929 0.126794i \(-0.959531\pi\)
0.991929 0.126794i \(-0.0404686\pi\)
\(4\) 0 0
\(5\) 3.86554 0.773108 0.386554 0.922267i \(-0.373665\pi\)
0.386554 + 0.922267i \(0.373665\pi\)
\(6\) 0 0
\(7\) − 8.82674i − 1.26096i −0.776204 0.630481i \(-0.782858\pi\)
0.776204 0.630481i \(-0.217142\pi\)
\(8\) 0 0
\(9\) 8.42124 0.935693
\(10\) 0 0
\(11\) 11.2858i 1.02598i 0.858394 + 0.512990i \(0.171462\pi\)
−0.858394 + 0.512990i \(0.828538\pi\)
\(12\) 0 0
\(13\) 10.3144 0.793416 0.396708 0.917945i \(-0.370153\pi\)
0.396708 + 0.917945i \(0.370153\pi\)
\(14\) 0 0
\(15\) − 2.94076i − 0.196051i
\(16\) 0 0
\(17\) 2.39130 0.140665 0.0703325 0.997524i \(-0.477594\pi\)
0.0703325 + 0.997524i \(0.477594\pi\)
\(18\) 0 0
\(19\) − 4.35890i − 0.229416i
\(20\) 0 0
\(21\) −6.71505 −0.319764
\(22\) 0 0
\(23\) 0.748138i 0.0325277i 0.999868 + 0.0162639i \(0.00517718\pi\)
−0.999868 + 0.0162639i \(0.994823\pi\)
\(24\) 0 0
\(25\) −10.0576 −0.402304
\(26\) 0 0
\(27\) − 13.2534i − 0.490868i
\(28\) 0 0
\(29\) 26.1770 0.902655 0.451327 0.892358i \(-0.350951\pi\)
0.451327 + 0.892358i \(0.350951\pi\)
\(30\) 0 0
\(31\) − 19.5534i − 0.630754i −0.948967 0.315377i \(-0.897869\pi\)
0.948967 0.315377i \(-0.102131\pi\)
\(32\) 0 0
\(33\) 8.58580 0.260176
\(34\) 0 0
\(35\) − 34.1201i − 0.974861i
\(36\) 0 0
\(37\) −26.2742 −0.710113 −0.355056 0.934845i \(-0.615538\pi\)
−0.355056 + 0.934845i \(0.615538\pi\)
\(38\) 0 0
\(39\) − 7.84682i − 0.201200i
\(40\) 0 0
\(41\) 22.0622 0.538102 0.269051 0.963126i \(-0.413290\pi\)
0.269051 + 0.963126i \(0.413290\pi\)
\(42\) 0 0
\(43\) − 58.0818i − 1.35074i −0.737480 0.675369i \(-0.763984\pi\)
0.737480 0.675369i \(-0.236016\pi\)
\(44\) 0 0
\(45\) 32.5527 0.723392
\(46\) 0 0
\(47\) 26.2030i 0.557511i 0.960362 + 0.278755i \(0.0899219\pi\)
−0.960362 + 0.278755i \(0.910078\pi\)
\(48\) 0 0
\(49\) −28.9113 −0.590027
\(50\) 0 0
\(51\) − 1.81921i − 0.0356709i
\(52\) 0 0
\(53\) 56.1426 1.05929 0.529647 0.848218i \(-0.322324\pi\)
0.529647 + 0.848218i \(0.322324\pi\)
\(54\) 0 0
\(55\) 43.6257i 0.793194i
\(56\) 0 0
\(57\) −3.31609 −0.0581770
\(58\) 0 0
\(59\) 5.58045i 0.0945840i 0.998881 + 0.0472920i \(0.0150591\pi\)
−0.998881 + 0.0472920i \(0.984941\pi\)
\(60\) 0 0
\(61\) 92.1800 1.51115 0.755574 0.655063i \(-0.227358\pi\)
0.755574 + 0.655063i \(0.227358\pi\)
\(62\) 0 0
\(63\) − 74.3321i − 1.17987i
\(64\) 0 0
\(65\) 39.8708 0.613397
\(66\) 0 0
\(67\) − 3.00658i − 0.0448744i −0.999748 0.0224372i \(-0.992857\pi\)
0.999748 0.0224372i \(-0.00714257\pi\)
\(68\) 0 0
\(69\) 0.569155 0.00824863
\(70\) 0 0
\(71\) 24.8541i 0.350058i 0.984563 + 0.175029i \(0.0560020\pi\)
−0.984563 + 0.175029i \(0.943998\pi\)
\(72\) 0 0
\(73\) −31.0555 −0.425418 −0.212709 0.977116i \(-0.568229\pi\)
−0.212709 + 0.977116i \(0.568229\pi\)
\(74\) 0 0
\(75\) 7.65144i 0.102019i
\(76\) 0 0
\(77\) 99.6167 1.29372
\(78\) 0 0
\(79\) − 80.2428i − 1.01573i −0.861436 0.507866i \(-0.830435\pi\)
0.861436 0.507866i \(-0.169565\pi\)
\(80\) 0 0
\(81\) 65.7085 0.811215
\(82\) 0 0
\(83\) − 36.4566i − 0.439237i −0.975586 0.219618i \(-0.929519\pi\)
0.975586 0.219618i \(-0.0704812\pi\)
\(84\) 0 0
\(85\) 9.24369 0.108749
\(86\) 0 0
\(87\) − 19.9145i − 0.228902i
\(88\) 0 0
\(89\) −162.602 −1.82699 −0.913496 0.406847i \(-0.866628\pi\)
−0.913496 + 0.406847i \(0.866628\pi\)
\(90\) 0 0
\(91\) − 91.0426i − 1.00047i
\(92\) 0 0
\(93\) −14.8755 −0.159951
\(94\) 0 0
\(95\) − 16.8495i − 0.177363i
\(96\) 0 0
\(97\) −158.112 −1.63002 −0.815010 0.579447i \(-0.803269\pi\)
−0.815010 + 0.579447i \(0.803269\pi\)
\(98\) 0 0
\(99\) 95.0403i 0.960003i
\(100\) 0 0
\(101\) 85.3780 0.845327 0.422664 0.906287i \(-0.361095\pi\)
0.422664 + 0.906287i \(0.361095\pi\)
\(102\) 0 0
\(103\) − 130.762i − 1.26954i −0.772703 0.634768i \(-0.781096\pi\)
0.772703 0.634768i \(-0.218904\pi\)
\(104\) 0 0
\(105\) −25.9573 −0.247212
\(106\) 0 0
\(107\) − 59.6796i − 0.557753i −0.960327 0.278877i \(-0.910038\pi\)
0.960327 0.278877i \(-0.0899621\pi\)
\(108\) 0 0
\(109\) 162.073 1.48691 0.743456 0.668785i \(-0.233185\pi\)
0.743456 + 0.668785i \(0.233185\pi\)
\(110\) 0 0
\(111\) 19.9884i 0.180076i
\(112\) 0 0
\(113\) −81.7194 −0.723181 −0.361590 0.932337i \(-0.617766\pi\)
−0.361590 + 0.932337i \(0.617766\pi\)
\(114\) 0 0
\(115\) 2.89196i 0.0251475i
\(116\) 0 0
\(117\) 86.8601 0.742394
\(118\) 0 0
\(119\) − 21.1074i − 0.177373i
\(120\) 0 0
\(121\) −6.36896 −0.0526361
\(122\) 0 0
\(123\) − 16.7841i − 0.136456i
\(124\) 0 0
\(125\) −135.517 −1.08413
\(126\) 0 0
\(127\) 116.320i 0.915906i 0.888976 + 0.457953i \(0.151417\pi\)
−0.888976 + 0.457953i \(0.848583\pi\)
\(128\) 0 0
\(129\) −44.1864 −0.342531
\(130\) 0 0
\(131\) 251.950i 1.92328i 0.274313 + 0.961641i \(0.411550\pi\)
−0.274313 + 0.961641i \(0.588450\pi\)
\(132\) 0 0
\(133\) −38.4749 −0.289285
\(134\) 0 0
\(135\) − 51.2317i − 0.379494i
\(136\) 0 0
\(137\) 47.2361 0.344789 0.172395 0.985028i \(-0.444850\pi\)
0.172395 + 0.985028i \(0.444850\pi\)
\(138\) 0 0
\(139\) 96.6697i 0.695466i 0.937594 + 0.347733i \(0.113048\pi\)
−0.937594 + 0.347733i \(0.886952\pi\)
\(140\) 0 0
\(141\) 19.9343 0.141378
\(142\) 0 0
\(143\) 116.406i 0.814030i
\(144\) 0 0
\(145\) 101.188 0.697850
\(146\) 0 0
\(147\) 21.9946i 0.149623i
\(148\) 0 0
\(149\) −36.1156 −0.242387 −0.121193 0.992629i \(-0.538672\pi\)
−0.121193 + 0.992629i \(0.538672\pi\)
\(150\) 0 0
\(151\) 237.443i 1.57247i 0.617927 + 0.786235i \(0.287973\pi\)
−0.617927 + 0.786235i \(0.712027\pi\)
\(152\) 0 0
\(153\) 20.1377 0.131619
\(154\) 0 0
\(155\) − 75.5843i − 0.487641i
\(156\) 0 0
\(157\) −132.029 −0.840946 −0.420473 0.907305i \(-0.638136\pi\)
−0.420473 + 0.907305i \(0.638136\pi\)
\(158\) 0 0
\(159\) − 42.7112i − 0.268624i
\(160\) 0 0
\(161\) 6.60362 0.0410163
\(162\) 0 0
\(163\) 262.316i 1.60930i 0.593749 + 0.804650i \(0.297647\pi\)
−0.593749 + 0.804650i \(0.702353\pi\)
\(164\) 0 0
\(165\) 33.1888 0.201144
\(166\) 0 0
\(167\) − 23.1647i − 0.138711i −0.997592 0.0693553i \(-0.977906\pi\)
0.997592 0.0693553i \(-0.0220942\pi\)
\(168\) 0 0
\(169\) −62.6129 −0.370491
\(170\) 0 0
\(171\) − 36.7073i − 0.214663i
\(172\) 0 0
\(173\) −152.260 −0.880117 −0.440059 0.897969i \(-0.645042\pi\)
−0.440059 + 0.897969i \(0.645042\pi\)
\(174\) 0 0
\(175\) 88.7757i 0.507290i
\(176\) 0 0
\(177\) 4.24540 0.0239853
\(178\) 0 0
\(179\) 10.8248i 0.0604738i 0.999543 + 0.0302369i \(0.00962616\pi\)
−0.999543 + 0.0302369i \(0.990374\pi\)
\(180\) 0 0
\(181\) 37.8087 0.208888 0.104444 0.994531i \(-0.466694\pi\)
0.104444 + 0.994531i \(0.466694\pi\)
\(182\) 0 0
\(183\) − 70.1271i − 0.383208i
\(184\) 0 0
\(185\) −101.564 −0.548994
\(186\) 0 0
\(187\) 26.9877i 0.144319i
\(188\) 0 0
\(189\) −116.985 −0.618966
\(190\) 0 0
\(191\) 247.848i 1.29763i 0.760945 + 0.648817i \(0.224736\pi\)
−0.760945 + 0.648817i \(0.775264\pi\)
\(192\) 0 0
\(193\) −266.743 −1.38209 −0.691043 0.722814i \(-0.742848\pi\)
−0.691043 + 0.722814i \(0.742848\pi\)
\(194\) 0 0
\(195\) − 30.3322i − 0.155550i
\(196\) 0 0
\(197\) −210.230 −1.06716 −0.533579 0.845750i \(-0.679153\pi\)
−0.533579 + 0.845750i \(0.679153\pi\)
\(198\) 0 0
\(199\) − 13.9023i − 0.0698610i −0.999390 0.0349305i \(-0.988879\pi\)
0.999390 0.0349305i \(-0.0111210\pi\)
\(200\) 0 0
\(201\) −2.28729 −0.0113796
\(202\) 0 0
\(203\) − 231.057i − 1.13821i
\(204\) 0 0
\(205\) 85.2823 0.416011
\(206\) 0 0
\(207\) 6.30025i 0.0304360i
\(208\) 0 0
\(209\) 49.1936 0.235376
\(210\) 0 0
\(211\) 118.599i 0.562079i 0.959696 + 0.281040i \(0.0906792\pi\)
−0.959696 + 0.281040i \(0.909321\pi\)
\(212\) 0 0
\(213\) 18.9081 0.0887704
\(214\) 0 0
\(215\) − 224.518i − 1.04427i
\(216\) 0 0
\(217\) −172.592 −0.795357
\(218\) 0 0
\(219\) 23.6258i 0.107881i
\(220\) 0 0
\(221\) 24.6649 0.111606
\(222\) 0 0
\(223\) − 15.0828i − 0.0676360i −0.999428 0.0338180i \(-0.989233\pi\)
0.999428 0.0338180i \(-0.0107667\pi\)
\(224\) 0 0
\(225\) −84.6974 −0.376433
\(226\) 0 0
\(227\) − 174.226i − 0.767515i −0.923434 0.383758i \(-0.874630\pi\)
0.923434 0.383758i \(-0.125370\pi\)
\(228\) 0 0
\(229\) 152.404 0.665520 0.332760 0.943012i \(-0.392020\pi\)
0.332760 + 0.943012i \(0.392020\pi\)
\(230\) 0 0
\(231\) − 75.7846i − 0.328072i
\(232\) 0 0
\(233\) 384.340 1.64953 0.824764 0.565477i \(-0.191308\pi\)
0.824764 + 0.565477i \(0.191308\pi\)
\(234\) 0 0
\(235\) 101.289i 0.431016i
\(236\) 0 0
\(237\) −61.0457 −0.257577
\(238\) 0 0
\(239\) 390.143i 1.63240i 0.577772 + 0.816199i \(0.303922\pi\)
−0.577772 + 0.816199i \(0.696078\pi\)
\(240\) 0 0
\(241\) −453.554 −1.88196 −0.940982 0.338456i \(-0.890096\pi\)
−0.940982 + 0.338456i \(0.890096\pi\)
\(242\) 0 0
\(243\) − 169.269i − 0.696582i
\(244\) 0 0
\(245\) −111.758 −0.456155
\(246\) 0 0
\(247\) − 44.9595i − 0.182022i
\(248\) 0 0
\(249\) −27.7348 −0.111385
\(250\) 0 0
\(251\) − 193.468i − 0.770788i −0.922752 0.385394i \(-0.874066\pi\)
0.922752 0.385394i \(-0.125934\pi\)
\(252\) 0 0
\(253\) −8.44332 −0.0333728
\(254\) 0 0
\(255\) − 7.03225i − 0.0275774i
\(256\) 0 0
\(257\) 73.9117 0.287594 0.143797 0.989607i \(-0.454069\pi\)
0.143797 + 0.989607i \(0.454069\pi\)
\(258\) 0 0
\(259\) 231.915i 0.895426i
\(260\) 0 0
\(261\) 220.443 0.844608
\(262\) 0 0
\(263\) − 91.3741i − 0.347430i −0.984796 0.173715i \(-0.944423\pi\)
0.984796 0.173715i \(-0.0555771\pi\)
\(264\) 0 0
\(265\) 217.022 0.818950
\(266\) 0 0
\(267\) 123.702i 0.463302i
\(268\) 0 0
\(269\) 110.840 0.412045 0.206023 0.978547i \(-0.433948\pi\)
0.206023 + 0.978547i \(0.433948\pi\)
\(270\) 0 0
\(271\) 532.042i 1.96326i 0.190806 + 0.981628i \(0.438890\pi\)
−0.190806 + 0.981628i \(0.561110\pi\)
\(272\) 0 0
\(273\) −69.2618 −0.253706
\(274\) 0 0
\(275\) − 113.508i − 0.412756i
\(276\) 0 0
\(277\) 118.545 0.427961 0.213981 0.976838i \(-0.431357\pi\)
0.213981 + 0.976838i \(0.431357\pi\)
\(278\) 0 0
\(279\) − 164.664i − 0.590192i
\(280\) 0 0
\(281\) −121.730 −0.433204 −0.216602 0.976260i \(-0.569497\pi\)
−0.216602 + 0.976260i \(0.569497\pi\)
\(282\) 0 0
\(283\) 201.427i 0.711758i 0.934532 + 0.355879i \(0.115818\pi\)
−0.934532 + 0.355879i \(0.884182\pi\)
\(284\) 0 0
\(285\) −12.8185 −0.0449771
\(286\) 0 0
\(287\) − 194.737i − 0.678527i
\(288\) 0 0
\(289\) −283.282 −0.980213
\(290\) 0 0
\(291\) 120.286i 0.413353i
\(292\) 0 0
\(293\) −464.387 −1.58494 −0.792469 0.609912i \(-0.791205\pi\)
−0.792469 + 0.609912i \(0.791205\pi\)
\(294\) 0 0
\(295\) 21.5715i 0.0731237i
\(296\) 0 0
\(297\) 149.575 0.503621
\(298\) 0 0
\(299\) 7.71660i 0.0258080i
\(300\) 0 0
\(301\) −512.673 −1.70323
\(302\) 0 0
\(303\) − 64.9524i − 0.214364i
\(304\) 0 0
\(305\) 356.326 1.16828
\(306\) 0 0
\(307\) 361.537i 1.17764i 0.808263 + 0.588822i \(0.200408\pi\)
−0.808263 + 0.588822i \(0.799592\pi\)
\(308\) 0 0
\(309\) −99.4790 −0.321938
\(310\) 0 0
\(311\) 54.8958i 0.176514i 0.996098 + 0.0882570i \(0.0281297\pi\)
−0.996098 + 0.0882570i \(0.971870\pi\)
\(312\) 0 0
\(313\) 146.624 0.468447 0.234223 0.972183i \(-0.424745\pi\)
0.234223 + 0.972183i \(0.424745\pi\)
\(314\) 0 0
\(315\) − 287.334i − 0.912171i
\(316\) 0 0
\(317\) 323.315 1.01992 0.509961 0.860197i \(-0.329660\pi\)
0.509961 + 0.860197i \(0.329660\pi\)
\(318\) 0 0
\(319\) 295.428i 0.926106i
\(320\) 0 0
\(321\) −45.4020 −0.141439
\(322\) 0 0
\(323\) − 10.4235i − 0.0322708i
\(324\) 0 0
\(325\) −103.738 −0.319194
\(326\) 0 0
\(327\) − 123.299i − 0.377062i
\(328\) 0 0
\(329\) 231.287 0.703000
\(330\) 0 0
\(331\) − 46.0501i − 0.139124i −0.997578 0.0695620i \(-0.977840\pi\)
0.997578 0.0695620i \(-0.0221602\pi\)
\(332\) 0 0
\(333\) −221.261 −0.664448
\(334\) 0 0
\(335\) − 11.6221i − 0.0346927i
\(336\) 0 0
\(337\) 221.171 0.656294 0.328147 0.944627i \(-0.393576\pi\)
0.328147 + 0.944627i \(0.393576\pi\)
\(338\) 0 0
\(339\) 62.1691i 0.183390i
\(340\) 0 0
\(341\) 220.675 0.647141
\(342\) 0 0
\(343\) − 177.318i − 0.516961i
\(344\) 0 0
\(345\) 2.20009 0.00637708
\(346\) 0 0
\(347\) 269.239i 0.775904i 0.921679 + 0.387952i \(0.126817\pi\)
−0.921679 + 0.387952i \(0.873183\pi\)
\(348\) 0 0
\(349\) 22.0942 0.0633070 0.0316535 0.999499i \(-0.489923\pi\)
0.0316535 + 0.999499i \(0.489923\pi\)
\(350\) 0 0
\(351\) − 136.701i − 0.389462i
\(352\) 0 0
\(353\) 534.345 1.51372 0.756862 0.653575i \(-0.226731\pi\)
0.756862 + 0.653575i \(0.226731\pi\)
\(354\) 0 0
\(355\) 96.0747i 0.270633i
\(356\) 0 0
\(357\) −16.0577 −0.0449796
\(358\) 0 0
\(359\) − 635.968i − 1.77150i −0.464164 0.885750i \(-0.653645\pi\)
0.464164 0.885750i \(-0.346355\pi\)
\(360\) 0 0
\(361\) −19.0000 −0.0526316
\(362\) 0 0
\(363\) 4.84527i 0.0133478i
\(364\) 0 0
\(365\) −120.046 −0.328894
\(366\) 0 0
\(367\) − 155.366i − 0.423339i −0.977341 0.211670i \(-0.932110\pi\)
0.977341 0.211670i \(-0.0678901\pi\)
\(368\) 0 0
\(369\) 185.791 0.503499
\(370\) 0 0
\(371\) − 495.556i − 1.33573i
\(372\) 0 0
\(373\) −367.645 −0.985642 −0.492821 0.870131i \(-0.664034\pi\)
−0.492821 + 0.870131i \(0.664034\pi\)
\(374\) 0 0
\(375\) 103.096i 0.274922i
\(376\) 0 0
\(377\) 270.000 0.716181
\(378\) 0 0
\(379\) − 256.207i − 0.676008i −0.941145 0.338004i \(-0.890248\pi\)
0.941145 0.338004i \(-0.109752\pi\)
\(380\) 0 0
\(381\) 88.4919 0.232262
\(382\) 0 0
\(383\) − 129.804i − 0.338913i −0.985538 0.169457i \(-0.945799\pi\)
0.985538 0.169457i \(-0.0542012\pi\)
\(384\) 0 0
\(385\) 385.072 1.00019
\(386\) 0 0
\(387\) − 489.121i − 1.26388i
\(388\) 0 0
\(389\) −26.2241 −0.0674141 −0.0337071 0.999432i \(-0.510731\pi\)
−0.0337071 + 0.999432i \(0.510731\pi\)
\(390\) 0 0
\(391\) 1.78903i 0.00457551i
\(392\) 0 0
\(393\) 191.674 0.487720
\(394\) 0 0
\(395\) − 310.182i − 0.785270i
\(396\) 0 0
\(397\) 439.813 1.10784 0.553920 0.832570i \(-0.313131\pi\)
0.553920 + 0.832570i \(0.313131\pi\)
\(398\) 0 0
\(399\) 29.2702i 0.0733590i
\(400\) 0 0
\(401\) 695.947 1.73553 0.867764 0.496976i \(-0.165556\pi\)
0.867764 + 0.496976i \(0.165556\pi\)
\(402\) 0 0
\(403\) − 201.681i − 0.500450i
\(404\) 0 0
\(405\) 253.999 0.627157
\(406\) 0 0
\(407\) − 296.525i − 0.728562i
\(408\) 0 0
\(409\) −323.243 −0.790324 −0.395162 0.918611i \(-0.629312\pi\)
−0.395162 + 0.918611i \(0.629312\pi\)
\(410\) 0 0
\(411\) − 35.9355i − 0.0874342i
\(412\) 0 0
\(413\) 49.2572 0.119267
\(414\) 0 0
\(415\) − 140.925i − 0.339578i
\(416\) 0 0
\(417\) 73.5427 0.176361
\(418\) 0 0
\(419\) 662.516i 1.58118i 0.612343 + 0.790592i \(0.290227\pi\)
−0.612343 + 0.790592i \(0.709773\pi\)
\(420\) 0 0
\(421\) −287.728 −0.683440 −0.341720 0.939802i \(-0.611009\pi\)
−0.341720 + 0.939802i \(0.611009\pi\)
\(422\) 0 0
\(423\) 220.662i 0.521659i
\(424\) 0 0
\(425\) −24.0508 −0.0565900
\(426\) 0 0
\(427\) − 813.649i − 1.90550i
\(428\) 0 0
\(429\) 88.5575 0.206428
\(430\) 0 0
\(431\) 96.3997i 0.223665i 0.993727 + 0.111833i \(0.0356720\pi\)
−0.993727 + 0.111833i \(0.964328\pi\)
\(432\) 0 0
\(433\) −280.807 −0.648514 −0.324257 0.945969i \(-0.605114\pi\)
−0.324257 + 0.945969i \(0.605114\pi\)
\(434\) 0 0
\(435\) − 76.9802i − 0.176966i
\(436\) 0 0
\(437\) 3.26106 0.00746237
\(438\) 0 0
\(439\) − 252.456i − 0.575070i −0.957770 0.287535i \(-0.907164\pi\)
0.957770 0.287535i \(-0.0928358\pi\)
\(440\) 0 0
\(441\) −243.469 −0.552084
\(442\) 0 0
\(443\) 152.899i 0.345145i 0.984997 + 0.172573i \(0.0552079\pi\)
−0.984997 + 0.172573i \(0.944792\pi\)
\(444\) 0 0
\(445\) −628.546 −1.41246
\(446\) 0 0
\(447\) 27.4754i 0.0614662i
\(448\) 0 0
\(449\) 504.216 1.12297 0.561487 0.827485i \(-0.310229\pi\)
0.561487 + 0.827485i \(0.310229\pi\)
\(450\) 0 0
\(451\) 248.989i 0.552083i
\(452\) 0 0
\(453\) 180.638 0.398759
\(454\) 0 0
\(455\) − 351.929i − 0.773470i
\(456\) 0 0
\(457\) 260.361 0.569719 0.284859 0.958569i \(-0.408053\pi\)
0.284859 + 0.958569i \(0.408053\pi\)
\(458\) 0 0
\(459\) − 31.6930i − 0.0690479i
\(460\) 0 0
\(461\) −98.7594 −0.214229 −0.107114 0.994247i \(-0.534161\pi\)
−0.107114 + 0.994247i \(0.534161\pi\)
\(462\) 0 0
\(463\) 456.959i 0.986952i 0.869759 + 0.493476i \(0.164274\pi\)
−0.869759 + 0.493476i \(0.835726\pi\)
\(464\) 0 0
\(465\) −57.5017 −0.123660
\(466\) 0 0
\(467\) 170.991i 0.366148i 0.983099 + 0.183074i \(0.0586048\pi\)
−0.983099 + 0.183074i \(0.941395\pi\)
\(468\) 0 0
\(469\) −26.5383 −0.0565849
\(470\) 0 0
\(471\) 100.442i 0.213253i
\(472\) 0 0
\(473\) 655.498 1.38583
\(474\) 0 0
\(475\) 43.8400i 0.0922948i
\(476\) 0 0
\(477\) 472.791 0.991175
\(478\) 0 0
\(479\) − 181.600i − 0.379124i −0.981869 0.189562i \(-0.939293\pi\)
0.981869 0.189562i \(-0.0607068\pi\)
\(480\) 0 0
\(481\) −271.003 −0.563415
\(482\) 0 0
\(483\) − 5.02378i − 0.0104012i
\(484\) 0 0
\(485\) −611.188 −1.26018
\(486\) 0 0
\(487\) 455.016i 0.934324i 0.884172 + 0.467162i \(0.154724\pi\)
−0.884172 + 0.467162i \(0.845276\pi\)
\(488\) 0 0
\(489\) 199.560 0.408099
\(490\) 0 0
\(491\) − 662.583i − 1.34946i −0.738066 0.674729i \(-0.764261\pi\)
0.738066 0.674729i \(-0.235739\pi\)
\(492\) 0 0
\(493\) 62.5971 0.126972
\(494\) 0 0
\(495\) 367.382i 0.742186i
\(496\) 0 0
\(497\) 219.381 0.441411
\(498\) 0 0
\(499\) 321.749i 0.644787i 0.946606 + 0.322393i \(0.104487\pi\)
−0.946606 + 0.322393i \(0.895513\pi\)
\(500\) 0 0
\(501\) −17.6228 −0.0351753
\(502\) 0 0
\(503\) − 283.832i − 0.564279i −0.959373 0.282139i \(-0.908956\pi\)
0.959373 0.282139i \(-0.0910440\pi\)
\(504\) 0 0
\(505\) 330.032 0.653529
\(506\) 0 0
\(507\) 47.6336i 0.0939518i
\(508\) 0 0
\(509\) 599.831 1.17845 0.589225 0.807969i \(-0.299433\pi\)
0.589225 + 0.807969i \(0.299433\pi\)
\(510\) 0 0
\(511\) 274.119i 0.536436i
\(512\) 0 0
\(513\) −57.7703 −0.112613
\(514\) 0 0
\(515\) − 505.467i − 0.981489i
\(516\) 0 0
\(517\) −295.722 −0.571995
\(518\) 0 0
\(519\) 115.834i 0.223187i
\(520\) 0 0
\(521\) −698.443 −1.34058 −0.670291 0.742099i \(-0.733831\pi\)
−0.670291 + 0.742099i \(0.733831\pi\)
\(522\) 0 0
\(523\) − 451.840i − 0.863939i −0.901888 0.431969i \(-0.857819\pi\)
0.901888 0.431969i \(-0.142181\pi\)
\(524\) 0 0
\(525\) 67.5372 0.128642
\(526\) 0 0
\(527\) − 46.7580i − 0.0887249i
\(528\) 0 0
\(529\) 528.440 0.998942
\(530\) 0 0
\(531\) 46.9943i 0.0885016i
\(532\) 0 0
\(533\) 227.559 0.426939
\(534\) 0 0
\(535\) − 230.694i − 0.431204i
\(536\) 0 0
\(537\) 8.23510 0.0153354
\(538\) 0 0
\(539\) − 326.287i − 0.605356i
\(540\) 0 0
\(541\) −709.992 −1.31237 −0.656185 0.754600i \(-0.727831\pi\)
−0.656185 + 0.754600i \(0.727831\pi\)
\(542\) 0 0
\(543\) − 28.7635i − 0.0529714i
\(544\) 0 0
\(545\) 626.501 1.14954
\(546\) 0 0
\(547\) 642.779i 1.17510i 0.809189 + 0.587549i \(0.199907\pi\)
−0.809189 + 0.587549i \(0.800093\pi\)
\(548\) 0 0
\(549\) 776.270 1.41397
\(550\) 0 0
\(551\) − 114.103i − 0.207083i
\(552\) 0 0
\(553\) −708.282 −1.28080
\(554\) 0 0
\(555\) 77.2660i 0.139218i
\(556\) 0 0
\(557\) −1004.45 −1.80331 −0.901656 0.432453i \(-0.857648\pi\)
−0.901656 + 0.432453i \(0.857648\pi\)
\(558\) 0 0
\(559\) − 599.079i − 1.07170i
\(560\) 0 0
\(561\) 20.5313 0.0365976
\(562\) 0 0
\(563\) 925.064i 1.64310i 0.570138 + 0.821549i \(0.306890\pi\)
−0.570138 + 0.821549i \(0.693110\pi\)
\(564\) 0 0
\(565\) −315.890 −0.559097
\(566\) 0 0
\(567\) − 579.991i − 1.02291i
\(568\) 0 0
\(569\) −470.845 −0.827495 −0.413748 0.910392i \(-0.635780\pi\)
−0.413748 + 0.910392i \(0.635780\pi\)
\(570\) 0 0
\(571\) 501.167i 0.877701i 0.898560 + 0.438851i \(0.144614\pi\)
−0.898560 + 0.438851i \(0.855386\pi\)
\(572\) 0 0
\(573\) 188.553 0.329064
\(574\) 0 0
\(575\) − 7.52446i − 0.0130860i
\(576\) 0 0
\(577\) 179.702 0.311443 0.155721 0.987801i \(-0.450230\pi\)
0.155721 + 0.987801i \(0.450230\pi\)
\(578\) 0 0
\(579\) 202.928i 0.350480i
\(580\) 0 0
\(581\) −321.793 −0.553861
\(582\) 0 0
\(583\) 633.614i 1.08682i
\(584\) 0 0
\(585\) 335.761 0.573951
\(586\) 0 0
\(587\) 361.326i 0.615547i 0.951460 + 0.307773i \(0.0995839\pi\)
−0.951460 + 0.307773i \(0.900416\pi\)
\(588\) 0 0
\(589\) −85.2311 −0.144705
\(590\) 0 0
\(591\) 159.935i 0.270618i
\(592\) 0 0
\(593\) −751.538 −1.26735 −0.633675 0.773600i \(-0.718454\pi\)
−0.633675 + 0.773600i \(0.718454\pi\)
\(594\) 0 0
\(595\) − 81.5916i − 0.137129i
\(596\) 0 0
\(597\) −10.5764 −0.0177159
\(598\) 0 0
\(599\) − 1061.20i − 1.77161i −0.464056 0.885806i \(-0.653606\pi\)
0.464056 0.885806i \(-0.346394\pi\)
\(600\) 0 0
\(601\) −1012.81 −1.68521 −0.842607 0.538529i \(-0.818980\pi\)
−0.842607 + 0.538529i \(0.818980\pi\)
\(602\) 0 0
\(603\) − 25.3191i − 0.0419886i
\(604\) 0 0
\(605\) −24.6195 −0.0406934
\(606\) 0 0
\(607\) − 1046.98i − 1.72484i −0.506195 0.862419i \(-0.668948\pi\)
0.506195 0.862419i \(-0.331052\pi\)
\(608\) 0 0
\(609\) −175.780 −0.288637
\(610\) 0 0
\(611\) 270.269i 0.442338i
\(612\) 0 0
\(613\) 826.300 1.34796 0.673981 0.738749i \(-0.264583\pi\)
0.673981 + 0.738749i \(0.264583\pi\)
\(614\) 0 0
\(615\) − 64.8796i − 0.105495i
\(616\) 0 0
\(617\) −285.852 −0.463293 −0.231647 0.972800i \(-0.574411\pi\)
−0.231647 + 0.972800i \(0.574411\pi\)
\(618\) 0 0
\(619\) − 1149.76i − 1.85745i −0.370772 0.928724i \(-0.620907\pi\)
0.370772 0.928724i \(-0.379093\pi\)
\(620\) 0 0
\(621\) 9.91539 0.0159668
\(622\) 0 0
\(623\) 1435.25i 2.30377i
\(624\) 0 0
\(625\) −272.405 −0.435848
\(626\) 0 0
\(627\) − 37.4246i − 0.0596884i
\(628\) 0 0
\(629\) −62.8295 −0.0998880
\(630\) 0 0
\(631\) − 249.014i − 0.394634i −0.980340 0.197317i \(-0.936777\pi\)
0.980340 0.197317i \(-0.0632229\pi\)
\(632\) 0 0
\(633\) 90.2255 0.142536
\(634\) 0 0
\(635\) 449.640i 0.708094i
\(636\) 0 0
\(637\) −298.203 −0.468137
\(638\) 0 0
\(639\) 209.303i 0.327547i
\(640\) 0 0
\(641\) 130.308 0.203289 0.101645 0.994821i \(-0.467590\pi\)
0.101645 + 0.994821i \(0.467590\pi\)
\(642\) 0 0
\(643\) 902.547i 1.40365i 0.712349 + 0.701825i \(0.247631\pi\)
−0.712349 + 0.701825i \(0.752369\pi\)
\(644\) 0 0
\(645\) −170.804 −0.264813
\(646\) 0 0
\(647\) − 826.308i − 1.27714i −0.769565 0.638569i \(-0.779527\pi\)
0.769565 0.638569i \(-0.220473\pi\)
\(648\) 0 0
\(649\) −62.9798 −0.0970413
\(650\) 0 0
\(651\) 131.302i 0.201693i
\(652\) 0 0
\(653\) 116.405 0.178262 0.0891312 0.996020i \(-0.471591\pi\)
0.0891312 + 0.996020i \(0.471591\pi\)
\(654\) 0 0
\(655\) 973.923i 1.48690i
\(656\) 0 0
\(657\) −261.526 −0.398060
\(658\) 0 0
\(659\) 203.861i 0.309349i 0.987965 + 0.154674i \(0.0494329\pi\)
−0.987965 + 0.154674i \(0.950567\pi\)
\(660\) 0 0
\(661\) −231.009 −0.349484 −0.174742 0.984614i \(-0.555909\pi\)
−0.174742 + 0.984614i \(0.555909\pi\)
\(662\) 0 0
\(663\) − 18.7641i − 0.0283018i
\(664\) 0 0
\(665\) −148.726 −0.223648
\(666\) 0 0
\(667\) 19.5840i 0.0293613i
\(668\) 0 0
\(669\) −11.4744 −0.0171516
\(670\) 0 0
\(671\) 1040.32i 1.55041i
\(672\) 0 0
\(673\) −850.912 −1.26436 −0.632179 0.774823i \(-0.717839\pi\)
−0.632179 + 0.774823i \(0.717839\pi\)
\(674\) 0 0
\(675\) 133.298i 0.197478i
\(676\) 0 0
\(677\) 560.684 0.828189 0.414095 0.910234i \(-0.364098\pi\)
0.414095 + 0.910234i \(0.364098\pi\)
\(678\) 0 0
\(679\) 1395.61i 2.05539i
\(680\) 0 0
\(681\) −132.545 −0.194632
\(682\) 0 0
\(683\) 116.683i 0.170838i 0.996345 + 0.0854191i \(0.0272229\pi\)
−0.996345 + 0.0854191i \(0.972777\pi\)
\(684\) 0 0
\(685\) 182.593 0.266559
\(686\) 0 0
\(687\) − 115.943i − 0.168767i
\(688\) 0 0
\(689\) 579.078 0.840462
\(690\) 0 0
\(691\) − 515.820i − 0.746483i −0.927734 0.373242i \(-0.878246\pi\)
0.927734 0.373242i \(-0.121754\pi\)
\(692\) 0 0
\(693\) 838.896 1.21053
\(694\) 0 0
\(695\) 373.681i 0.537670i
\(696\) 0 0
\(697\) 52.7574 0.0756921
\(698\) 0 0
\(699\) − 292.392i − 0.418300i
\(700\) 0 0
\(701\) 675.831 0.964095 0.482048 0.876145i \(-0.339893\pi\)
0.482048 + 0.876145i \(0.339893\pi\)
\(702\) 0 0
\(703\) 114.526i 0.162911i
\(704\) 0 0
\(705\) 77.0567 0.109300
\(706\) 0 0
\(707\) − 753.610i − 1.06593i
\(708\) 0 0
\(709\) 109.968 0.155103 0.0775517 0.996988i \(-0.475290\pi\)
0.0775517 + 0.996988i \(0.475290\pi\)
\(710\) 0 0
\(711\) − 675.744i − 0.950413i
\(712\) 0 0
\(713\) 14.6286 0.0205170
\(714\) 0 0
\(715\) 449.973i 0.629333i
\(716\) 0 0
\(717\) 296.806 0.413955
\(718\) 0 0
\(719\) − 1090.82i − 1.51713i −0.651596 0.758566i \(-0.725900\pi\)
0.651596 0.758566i \(-0.274100\pi\)
\(720\) 0 0
\(721\) −1154.20 −1.60084
\(722\) 0 0
\(723\) 345.046i 0.477243i
\(724\) 0 0
\(725\) −263.277 −0.363141
\(726\) 0 0
\(727\) 1163.76i 1.60077i 0.599488 + 0.800383i \(0.295371\pi\)
−0.599488 + 0.800383i \(0.704629\pi\)
\(728\) 0 0
\(729\) 462.602 0.634571
\(730\) 0 0
\(731\) − 138.891i − 0.190002i
\(732\) 0 0
\(733\) 657.756 0.897347 0.448674 0.893696i \(-0.351897\pi\)
0.448674 + 0.893696i \(0.351897\pi\)
\(734\) 0 0
\(735\) 85.0212i 0.115675i
\(736\) 0 0
\(737\) 33.9316 0.0460402
\(738\) 0 0
\(739\) 1091.82i 1.47744i 0.674015 + 0.738718i \(0.264568\pi\)
−0.674015 + 0.738718i \(0.735432\pi\)
\(740\) 0 0
\(741\) −34.2035 −0.0461585
\(742\) 0 0
\(743\) 955.090i 1.28545i 0.766096 + 0.642726i \(0.222196\pi\)
−0.766096 + 0.642726i \(0.777804\pi\)
\(744\) 0 0
\(745\) −139.606 −0.187391
\(746\) 0 0
\(747\) − 307.010i − 0.410991i
\(748\) 0 0
\(749\) −526.776 −0.703306
\(750\) 0 0
\(751\) 940.578i 1.25243i 0.779649 + 0.626217i \(0.215398\pi\)
−0.779649 + 0.626217i \(0.784602\pi\)
\(752\) 0 0
\(753\) −147.183 −0.195462
\(754\) 0 0
\(755\) 917.846i 1.21569i
\(756\) 0 0
\(757\) −177.412 −0.234362 −0.117181 0.993111i \(-0.537386\pi\)
−0.117181 + 0.993111i \(0.537386\pi\)
\(758\) 0 0
\(759\) 6.42336i 0.00846293i
\(760\) 0 0
\(761\) 515.326 0.677169 0.338585 0.940936i \(-0.390052\pi\)
0.338585 + 0.940936i \(0.390052\pi\)
\(762\) 0 0
\(763\) − 1430.58i − 1.87494i
\(764\) 0 0
\(765\) 77.8433 0.101756
\(766\) 0 0
\(767\) 57.5591i 0.0750445i
\(768\) 0 0
\(769\) −972.091 −1.26410 −0.632049 0.774929i \(-0.717786\pi\)
−0.632049 + 0.774929i \(0.717786\pi\)
\(770\) 0 0
\(771\) − 56.2293i − 0.0729303i
\(772\) 0 0
\(773\) −407.151 −0.526715 −0.263357 0.964698i \(-0.584830\pi\)
−0.263357 + 0.964698i \(0.584830\pi\)
\(774\) 0 0
\(775\) 196.660i 0.253754i
\(776\) 0 0
\(777\) 176.432 0.227069
\(778\) 0 0
\(779\) − 96.1669i − 0.123449i
\(780\) 0 0
\(781\) −280.499 −0.359153
\(782\) 0 0
\(783\) − 346.935i − 0.443084i
\(784\) 0 0
\(785\) −510.362 −0.650142
\(786\) 0 0
\(787\) − 333.101i − 0.423254i −0.977350 0.211627i \(-0.932124\pi\)
0.977350 0.211627i \(-0.0678763\pi\)
\(788\) 0 0
\(789\) −69.5140 −0.0881039
\(790\) 0 0
\(791\) 721.316i 0.911904i
\(792\) 0 0
\(793\) 950.783 1.19897
\(794\) 0 0
\(795\) − 165.102i − 0.207675i
\(796\) 0 0
\(797\) −652.883 −0.819175 −0.409588 0.912271i \(-0.634327\pi\)
−0.409588 + 0.912271i \(0.634327\pi\)
\(798\) 0 0
\(799\) 62.6594i 0.0784222i
\(800\) 0 0
\(801\) −1369.31 −1.70950
\(802\) 0 0
\(803\) − 350.486i − 0.436470i
\(804\) 0 0
\(805\) 25.5266 0.0317100
\(806\) 0 0
\(807\) − 84.3231i − 0.104490i
\(808\) 0 0
\(809\) −1517.67 −1.87598 −0.937990 0.346662i \(-0.887315\pi\)
−0.937990 + 0.346662i \(0.887315\pi\)
\(810\) 0 0
\(811\) 1542.04i 1.90140i 0.310106 + 0.950702i \(0.399635\pi\)
−0.310106 + 0.950702i \(0.600365\pi\)
\(812\) 0 0
\(813\) 404.758 0.497857
\(814\) 0 0
\(815\) 1013.99i 1.24416i
\(816\) 0 0
\(817\) −253.173 −0.309881
\(818\) 0 0
\(819\) − 766.692i − 0.936131i
\(820\) 0 0
\(821\) −1456.93 −1.77457 −0.887287 0.461218i \(-0.847413\pi\)
−0.887287 + 0.461218i \(0.847413\pi\)
\(822\) 0 0
\(823\) − 1297.13i − 1.57610i −0.615609 0.788052i \(-0.711090\pi\)
0.615609 0.788052i \(-0.288910\pi\)
\(824\) 0 0
\(825\) −86.3525 −0.104670
\(826\) 0 0
\(827\) − 1222.01i − 1.47764i −0.673902 0.738821i \(-0.735383\pi\)
0.673902 0.738821i \(-0.264617\pi\)
\(828\) 0 0
\(829\) 651.502 0.785889 0.392945 0.919562i \(-0.371456\pi\)
0.392945 + 0.919562i \(0.371456\pi\)
\(830\) 0 0
\(831\) − 90.1848i − 0.108526i
\(832\) 0 0
\(833\) −69.1357 −0.0829961
\(834\) 0 0
\(835\) − 89.5440i − 0.107238i
\(836\) 0 0
\(837\) −259.149 −0.309616
\(838\) 0 0
\(839\) 507.581i 0.604983i 0.953152 + 0.302491i \(0.0978184\pi\)
−0.953152 + 0.302491i \(0.902182\pi\)
\(840\) 0 0
\(841\) −155.765 −0.185214
\(842\) 0 0
\(843\) 92.6079i 0.109855i
\(844\) 0 0
\(845\) −242.033 −0.286429
\(846\) 0 0
\(847\) 56.2172i 0.0663721i
\(848\) 0 0
\(849\) 153.238 0.180493
\(850\) 0 0
\(851\) − 19.6567i − 0.0230984i
\(852\) 0 0
\(853\) 606.802 0.711374 0.355687 0.934605i \(-0.384247\pi\)
0.355687 + 0.934605i \(0.384247\pi\)
\(854\) 0 0
\(855\) − 141.894i − 0.165958i
\(856\) 0 0
\(857\) 111.500 0.130105 0.0650527 0.997882i \(-0.479278\pi\)
0.0650527 + 0.997882i \(0.479278\pi\)
\(858\) 0 0
\(859\) − 129.261i − 0.150478i −0.997166 0.0752390i \(-0.976028\pi\)
0.997166 0.0752390i \(-0.0239720\pi\)
\(860\) 0 0
\(861\) −148.149 −0.172066
\(862\) 0 0
\(863\) − 1532.36i − 1.77562i −0.460214 0.887808i \(-0.652227\pi\)
0.460214 0.887808i \(-0.347773\pi\)
\(864\) 0 0
\(865\) −588.568 −0.680426
\(866\) 0 0
\(867\) 215.510i 0.248570i
\(868\) 0 0
\(869\) 905.603 1.04212
\(870\) 0 0
\(871\) − 31.0111i − 0.0356040i
\(872\) 0 0
\(873\) −1331.50 −1.52520
\(874\) 0 0
\(875\) 1196.17i 1.36705i
\(876\) 0 0
\(877\) −1151.28 −1.31274 −0.656372 0.754437i \(-0.727910\pi\)
−0.656372 + 0.754437i \(0.727910\pi\)
\(878\) 0 0
\(879\) 353.288i 0.401921i
\(880\) 0 0
\(881\) −782.531 −0.888230 −0.444115 0.895970i \(-0.646482\pi\)
−0.444115 + 0.895970i \(0.646482\pi\)
\(882\) 0 0
\(883\) 364.109i 0.412355i 0.978515 + 0.206177i \(0.0661024\pi\)
−0.978515 + 0.206177i \(0.933898\pi\)
\(884\) 0 0
\(885\) 16.4108 0.0185432
\(886\) 0 0
\(887\) − 1209.99i − 1.36413i −0.731290 0.682066i \(-0.761082\pi\)
0.731290 0.682066i \(-0.238918\pi\)
\(888\) 0 0
\(889\) 1026.73 1.15492
\(890\) 0 0
\(891\) 741.572i 0.832291i
\(892\) 0 0
\(893\) 114.216 0.127902
\(894\) 0 0
\(895\) 41.8437i 0.0467528i
\(896\) 0 0
\(897\) 5.87050 0.00654459
\(898\) 0 0
\(899\) − 511.848i − 0.569353i
\(900\) 0 0
\(901\) 134.254 0.149006
\(902\) 0 0
\(903\) 390.022i 0.431918i
\(904\) 0 0
\(905\) 146.151 0.161493
\(906\) 0 0
\(907\) 634.641i 0.699715i 0.936803 + 0.349857i \(0.113770\pi\)
−0.936803 + 0.349857i \(0.886230\pi\)
\(908\) 0 0
\(909\) 718.989 0.790967
\(910\) 0 0
\(911\) − 444.113i − 0.487500i −0.969838 0.243750i \(-0.921622\pi\)
0.969838 0.243750i \(-0.0783776\pi\)
\(912\) 0 0
\(913\) 411.442 0.450648
\(914\) 0 0
\(915\) − 271.079i − 0.296261i
\(916\) 0 0
\(917\) 2223.90 2.42519
\(918\) 0 0
\(919\) − 156.620i − 0.170425i −0.996363 0.0852123i \(-0.972843\pi\)
0.996363 0.0852123i \(-0.0271568\pi\)
\(920\) 0 0
\(921\) 275.044 0.298636
\(922\) 0 0
\(923\) 256.356i 0.277742i
\(924\) 0 0
\(925\) 264.255 0.285681
\(926\) 0 0
\(927\) − 1101.18i − 1.18790i
\(928\) 0 0
\(929\) 1369.54 1.47421 0.737106 0.675777i \(-0.236192\pi\)
0.737106 + 0.675777i \(0.236192\pi\)
\(930\) 0 0
\(931\) 126.022i 0.135361i
\(932\) 0 0
\(933\) 41.7627 0.0447617
\(934\) 0 0
\(935\) 104.322i 0.111575i
\(936\) 0 0
\(937\) 87.5411 0.0934270 0.0467135 0.998908i \(-0.485125\pi\)
0.0467135 + 0.998908i \(0.485125\pi\)
\(938\) 0 0
\(939\) − 111.546i − 0.118792i
\(940\) 0 0
\(941\) −460.843 −0.489738 −0.244869 0.969556i \(-0.578745\pi\)
−0.244869 + 0.969556i \(0.578745\pi\)
\(942\) 0 0
\(943\) 16.5056i 0.0175033i
\(944\) 0 0
\(945\) −452.209 −0.478528
\(946\) 0 0
\(947\) 1421.07i 1.50060i 0.661096 + 0.750302i \(0.270092\pi\)
−0.661096 + 0.750302i \(0.729908\pi\)
\(948\) 0 0
\(949\) −320.319 −0.337533
\(950\) 0 0
\(951\) − 245.966i − 0.258640i
\(952\) 0 0
\(953\) 1079.05 1.13227 0.566134 0.824313i \(-0.308439\pi\)
0.566134 + 0.824313i \(0.308439\pi\)
\(954\) 0 0
\(955\) 958.067i 1.00321i
\(956\) 0 0
\(957\) 224.750 0.234849
\(958\) 0 0
\(959\) − 416.941i − 0.434766i
\(960\) 0 0
\(961\) 578.666 0.602150
\(962\) 0 0
\(963\) − 502.576i − 0.521886i
\(964\) 0 0
\(965\) −1031.10 −1.06850
\(966\) 0 0
\(967\) 821.871i 0.849919i 0.905212 + 0.424959i \(0.139712\pi\)
−0.905212 + 0.424959i \(0.860288\pi\)
\(968\) 0 0
\(969\) −7.92977 −0.00818346
\(970\) 0 0
\(971\) − 147.307i − 0.151706i −0.997119 0.0758531i \(-0.975832\pi\)
0.997119 0.0758531i \(-0.0241680\pi\)
\(972\) 0 0
\(973\) 853.279 0.876956
\(974\) 0 0
\(975\) 78.9201i 0.0809436i
\(976\) 0 0
\(977\) 927.192 0.949020 0.474510 0.880250i \(-0.342625\pi\)
0.474510 + 0.880250i \(0.342625\pi\)
\(978\) 0 0
\(979\) − 1835.10i − 1.87446i
\(980\) 0 0
\(981\) 1364.86 1.39129
\(982\) 0 0
\(983\) − 81.6093i − 0.0830206i −0.999138 0.0415103i \(-0.986783\pi\)
0.999138 0.0415103i \(-0.0132169\pi\)
\(984\) 0 0
\(985\) −812.653 −0.825029
\(986\) 0 0
\(987\) − 175.955i − 0.178272i
\(988\) 0 0
\(989\) 43.4532 0.0439365
\(990\) 0 0
\(991\) − 1540.57i − 1.55456i −0.629153 0.777281i \(-0.716598\pi\)
0.629153 0.777281i \(-0.283402\pi\)
\(992\) 0 0
\(993\) −35.0332 −0.0352801
\(994\) 0 0
\(995\) − 53.7400i − 0.0540101i
\(996\) 0 0
\(997\) 1222.11 1.22579 0.612895 0.790164i \(-0.290005\pi\)
0.612895 + 0.790164i \(0.290005\pi\)
\(998\) 0 0
\(999\) 348.223i 0.348571i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 608.3.d.b.191.9 20
4.3 odd 2 inner 608.3.d.b.191.12 yes 20
8.3 odd 2 1216.3.d.f.191.9 20
8.5 even 2 1216.3.d.f.191.12 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
608.3.d.b.191.9 20 1.1 even 1 trivial
608.3.d.b.191.12 yes 20 4.3 odd 2 inner
1216.3.d.f.191.9 20 8.3 odd 2
1216.3.d.f.191.12 20 8.5 even 2