Properties

Label 1216.3.d.f.191.12
Level $1216$
Weight $3$
Character 1216.191
Analytic conductor $33.134$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1216,3,Mod(191,1216)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1216, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1216.191"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1216 = 2^{6} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1216.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.1336001462\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 124 x^{18} + 6294 x^{16} + 169580 x^{14} + 2633777 x^{12} + 23965840 x^{10} + 123396288 x^{8} + \cdots + 6553600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{32}\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 608)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 191.12
Root \(-0.760762i\) of defining polynomial
Character \(\chi\) \(=\) 1216.191
Dual form 1216.3.d.f.191.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.760762i q^{3} -3.86554 q^{5} -8.82674i q^{7} +8.42124 q^{9} -11.2858i q^{11} -10.3144 q^{13} -2.94076i q^{15} +2.39130 q^{17} +4.35890i q^{19} +6.71505 q^{21} +0.748138i q^{23} -10.0576 q^{25} +13.2534i q^{27} -26.1770 q^{29} -19.5534i q^{31} +8.58580 q^{33} +34.1201i q^{35} +26.2742 q^{37} -7.84682i q^{39} +22.0622 q^{41} +58.0818i q^{43} -32.5527 q^{45} +26.2030i q^{47} -28.9113 q^{49} +1.81921i q^{51} -56.1426 q^{53} +43.6257i q^{55} -3.31609 q^{57} -5.58045i q^{59} -92.1800 q^{61} -74.3321i q^{63} +39.8708 q^{65} +3.00658i q^{67} -0.569155 q^{69} +24.8541i q^{71} -31.0555 q^{73} -7.65144i q^{75} -99.6167 q^{77} -80.2428i q^{79} +65.7085 q^{81} +36.4566i q^{83} -9.24369 q^{85} -19.9145i q^{87} -162.602 q^{89} +91.0426i q^{91} +14.8755 q^{93} -16.8495i q^{95} -158.112 q^{97} -95.0403i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 68 q^{9} + 16 q^{13} + 8 q^{17} - 64 q^{21} + 196 q^{25} + 88 q^{29} - 184 q^{33} - 16 q^{37} - 16 q^{41} - 16 q^{45} + 52 q^{49} - 88 q^{53} + 208 q^{61} - 192 q^{65} - 248 q^{69} - 152 q^{73} - 312 q^{77}+ \cdots - 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1216\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(705\) \(837\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.760762i 0.253587i 0.991929 + 0.126794i \(0.0404686\pi\)
−0.991929 + 0.126794i \(0.959531\pi\)
\(4\) 0 0
\(5\) −3.86554 −0.773108 −0.386554 0.922267i \(-0.626335\pi\)
−0.386554 + 0.922267i \(0.626335\pi\)
\(6\) 0 0
\(7\) − 8.82674i − 1.26096i −0.776204 0.630481i \(-0.782858\pi\)
0.776204 0.630481i \(-0.217142\pi\)
\(8\) 0 0
\(9\) 8.42124 0.935693
\(10\) 0 0
\(11\) − 11.2858i − 1.02598i −0.858394 0.512990i \(-0.828538\pi\)
0.858394 0.512990i \(-0.171462\pi\)
\(12\) 0 0
\(13\) −10.3144 −0.793416 −0.396708 0.917945i \(-0.629847\pi\)
−0.396708 + 0.917945i \(0.629847\pi\)
\(14\) 0 0
\(15\) − 2.94076i − 0.196051i
\(16\) 0 0
\(17\) 2.39130 0.140665 0.0703325 0.997524i \(-0.477594\pi\)
0.0703325 + 0.997524i \(0.477594\pi\)
\(18\) 0 0
\(19\) 4.35890i 0.229416i
\(20\) 0 0
\(21\) 6.71505 0.319764
\(22\) 0 0
\(23\) 0.748138i 0.0325277i 0.999868 + 0.0162639i \(0.00517718\pi\)
−0.999868 + 0.0162639i \(0.994823\pi\)
\(24\) 0 0
\(25\) −10.0576 −0.402304
\(26\) 0 0
\(27\) 13.2534i 0.490868i
\(28\) 0 0
\(29\) −26.1770 −0.902655 −0.451327 0.892358i \(-0.649049\pi\)
−0.451327 + 0.892358i \(0.649049\pi\)
\(30\) 0 0
\(31\) − 19.5534i − 0.630754i −0.948967 0.315377i \(-0.897869\pi\)
0.948967 0.315377i \(-0.102131\pi\)
\(32\) 0 0
\(33\) 8.58580 0.260176
\(34\) 0 0
\(35\) 34.1201i 0.974861i
\(36\) 0 0
\(37\) 26.2742 0.710113 0.355056 0.934845i \(-0.384462\pi\)
0.355056 + 0.934845i \(0.384462\pi\)
\(38\) 0 0
\(39\) − 7.84682i − 0.201200i
\(40\) 0 0
\(41\) 22.0622 0.538102 0.269051 0.963126i \(-0.413290\pi\)
0.269051 + 0.963126i \(0.413290\pi\)
\(42\) 0 0
\(43\) 58.0818i 1.35074i 0.737480 + 0.675369i \(0.236016\pi\)
−0.737480 + 0.675369i \(0.763984\pi\)
\(44\) 0 0
\(45\) −32.5527 −0.723392
\(46\) 0 0
\(47\) 26.2030i 0.557511i 0.960362 + 0.278755i \(0.0899219\pi\)
−0.960362 + 0.278755i \(0.910078\pi\)
\(48\) 0 0
\(49\) −28.9113 −0.590027
\(50\) 0 0
\(51\) 1.81921i 0.0356709i
\(52\) 0 0
\(53\) −56.1426 −1.05929 −0.529647 0.848218i \(-0.677676\pi\)
−0.529647 + 0.848218i \(0.677676\pi\)
\(54\) 0 0
\(55\) 43.6257i 0.793194i
\(56\) 0 0
\(57\) −3.31609 −0.0581770
\(58\) 0 0
\(59\) − 5.58045i − 0.0945840i −0.998881 0.0472920i \(-0.984941\pi\)
0.998881 0.0472920i \(-0.0150591\pi\)
\(60\) 0 0
\(61\) −92.1800 −1.51115 −0.755574 0.655063i \(-0.772642\pi\)
−0.755574 + 0.655063i \(0.772642\pi\)
\(62\) 0 0
\(63\) − 74.3321i − 1.17987i
\(64\) 0 0
\(65\) 39.8708 0.613397
\(66\) 0 0
\(67\) 3.00658i 0.0448744i 0.999748 + 0.0224372i \(0.00714257\pi\)
−0.999748 + 0.0224372i \(0.992857\pi\)
\(68\) 0 0
\(69\) −0.569155 −0.00824863
\(70\) 0 0
\(71\) 24.8541i 0.350058i 0.984563 + 0.175029i \(0.0560020\pi\)
−0.984563 + 0.175029i \(0.943998\pi\)
\(72\) 0 0
\(73\) −31.0555 −0.425418 −0.212709 0.977116i \(-0.568229\pi\)
−0.212709 + 0.977116i \(0.568229\pi\)
\(74\) 0 0
\(75\) − 7.65144i − 0.102019i
\(76\) 0 0
\(77\) −99.6167 −1.29372
\(78\) 0 0
\(79\) − 80.2428i − 1.01573i −0.861436 0.507866i \(-0.830435\pi\)
0.861436 0.507866i \(-0.169565\pi\)
\(80\) 0 0
\(81\) 65.7085 0.811215
\(82\) 0 0
\(83\) 36.4566i 0.439237i 0.975586 + 0.219618i \(0.0704812\pi\)
−0.975586 + 0.219618i \(0.929519\pi\)
\(84\) 0 0
\(85\) −9.24369 −0.108749
\(86\) 0 0
\(87\) − 19.9145i − 0.228902i
\(88\) 0 0
\(89\) −162.602 −1.82699 −0.913496 0.406847i \(-0.866628\pi\)
−0.913496 + 0.406847i \(0.866628\pi\)
\(90\) 0 0
\(91\) 91.0426i 1.00047i
\(92\) 0 0
\(93\) 14.8755 0.159951
\(94\) 0 0
\(95\) − 16.8495i − 0.177363i
\(96\) 0 0
\(97\) −158.112 −1.63002 −0.815010 0.579447i \(-0.803269\pi\)
−0.815010 + 0.579447i \(0.803269\pi\)
\(98\) 0 0
\(99\) − 95.0403i − 0.960003i
\(100\) 0 0
\(101\) −85.3780 −0.845327 −0.422664 0.906287i \(-0.638905\pi\)
−0.422664 + 0.906287i \(0.638905\pi\)
\(102\) 0 0
\(103\) − 130.762i − 1.26954i −0.772703 0.634768i \(-0.781096\pi\)
0.772703 0.634768i \(-0.218904\pi\)
\(104\) 0 0
\(105\) −25.9573 −0.247212
\(106\) 0 0
\(107\) 59.6796i 0.557753i 0.960327 + 0.278877i \(0.0899621\pi\)
−0.960327 + 0.278877i \(0.910038\pi\)
\(108\) 0 0
\(109\) −162.073 −1.48691 −0.743456 0.668785i \(-0.766815\pi\)
−0.743456 + 0.668785i \(0.766815\pi\)
\(110\) 0 0
\(111\) 19.9884i 0.180076i
\(112\) 0 0
\(113\) −81.7194 −0.723181 −0.361590 0.932337i \(-0.617766\pi\)
−0.361590 + 0.932337i \(0.617766\pi\)
\(114\) 0 0
\(115\) − 2.89196i − 0.0251475i
\(116\) 0 0
\(117\) −86.8601 −0.742394
\(118\) 0 0
\(119\) − 21.1074i − 0.177373i
\(120\) 0 0
\(121\) −6.36896 −0.0526361
\(122\) 0 0
\(123\) 16.7841i 0.136456i
\(124\) 0 0
\(125\) 135.517 1.08413
\(126\) 0 0
\(127\) 116.320i 0.915906i 0.888976 + 0.457953i \(0.151417\pi\)
−0.888976 + 0.457953i \(0.848583\pi\)
\(128\) 0 0
\(129\) −44.1864 −0.342531
\(130\) 0 0
\(131\) − 251.950i − 1.92328i −0.274313 0.961641i \(-0.588450\pi\)
0.274313 0.961641i \(-0.411550\pi\)
\(132\) 0 0
\(133\) 38.4749 0.289285
\(134\) 0 0
\(135\) − 51.2317i − 0.379494i
\(136\) 0 0
\(137\) 47.2361 0.344789 0.172395 0.985028i \(-0.444850\pi\)
0.172395 + 0.985028i \(0.444850\pi\)
\(138\) 0 0
\(139\) − 96.6697i − 0.695466i −0.937594 0.347733i \(-0.886952\pi\)
0.937594 0.347733i \(-0.113048\pi\)
\(140\) 0 0
\(141\) −19.9343 −0.141378
\(142\) 0 0
\(143\) 116.406i 0.814030i
\(144\) 0 0
\(145\) 101.188 0.697850
\(146\) 0 0
\(147\) − 21.9946i − 0.149623i
\(148\) 0 0
\(149\) 36.1156 0.242387 0.121193 0.992629i \(-0.461328\pi\)
0.121193 + 0.992629i \(0.461328\pi\)
\(150\) 0 0
\(151\) 237.443i 1.57247i 0.617927 + 0.786235i \(0.287973\pi\)
−0.617927 + 0.786235i \(0.712027\pi\)
\(152\) 0 0
\(153\) 20.1377 0.131619
\(154\) 0 0
\(155\) 75.5843i 0.487641i
\(156\) 0 0
\(157\) 132.029 0.840946 0.420473 0.907305i \(-0.361864\pi\)
0.420473 + 0.907305i \(0.361864\pi\)
\(158\) 0 0
\(159\) − 42.7112i − 0.268624i
\(160\) 0 0
\(161\) 6.60362 0.0410163
\(162\) 0 0
\(163\) − 262.316i − 1.60930i −0.593749 0.804650i \(-0.702353\pi\)
0.593749 0.804650i \(-0.297647\pi\)
\(164\) 0 0
\(165\) −33.1888 −0.201144
\(166\) 0 0
\(167\) − 23.1647i − 0.138711i −0.997592 0.0693553i \(-0.977906\pi\)
0.997592 0.0693553i \(-0.0220942\pi\)
\(168\) 0 0
\(169\) −62.6129 −0.370491
\(170\) 0 0
\(171\) 36.7073i 0.214663i
\(172\) 0 0
\(173\) 152.260 0.880117 0.440059 0.897969i \(-0.354958\pi\)
0.440059 + 0.897969i \(0.354958\pi\)
\(174\) 0 0
\(175\) 88.7757i 0.507290i
\(176\) 0 0
\(177\) 4.24540 0.0239853
\(178\) 0 0
\(179\) − 10.8248i − 0.0604738i −0.999543 0.0302369i \(-0.990374\pi\)
0.999543 0.0302369i \(-0.00962616\pi\)
\(180\) 0 0
\(181\) −37.8087 −0.208888 −0.104444 0.994531i \(-0.533306\pi\)
−0.104444 + 0.994531i \(0.533306\pi\)
\(182\) 0 0
\(183\) − 70.1271i − 0.383208i
\(184\) 0 0
\(185\) −101.564 −0.548994
\(186\) 0 0
\(187\) − 26.9877i − 0.144319i
\(188\) 0 0
\(189\) 116.985 0.618966
\(190\) 0 0
\(191\) 247.848i 1.29763i 0.760945 + 0.648817i \(0.224736\pi\)
−0.760945 + 0.648817i \(0.775264\pi\)
\(192\) 0 0
\(193\) −266.743 −1.38209 −0.691043 0.722814i \(-0.742848\pi\)
−0.691043 + 0.722814i \(0.742848\pi\)
\(194\) 0 0
\(195\) 30.3322i 0.155550i
\(196\) 0 0
\(197\) 210.230 1.06716 0.533579 0.845750i \(-0.320847\pi\)
0.533579 + 0.845750i \(0.320847\pi\)
\(198\) 0 0
\(199\) − 13.9023i − 0.0698610i −0.999390 0.0349305i \(-0.988879\pi\)
0.999390 0.0349305i \(-0.0111210\pi\)
\(200\) 0 0
\(201\) −2.28729 −0.0113796
\(202\) 0 0
\(203\) 231.057i 1.13821i
\(204\) 0 0
\(205\) −85.2823 −0.416011
\(206\) 0 0
\(207\) 6.30025i 0.0304360i
\(208\) 0 0
\(209\) 49.1936 0.235376
\(210\) 0 0
\(211\) − 118.599i − 0.562079i −0.959696 0.281040i \(-0.909321\pi\)
0.959696 0.281040i \(-0.0906792\pi\)
\(212\) 0 0
\(213\) −18.9081 −0.0887704
\(214\) 0 0
\(215\) − 224.518i − 1.04427i
\(216\) 0 0
\(217\) −172.592 −0.795357
\(218\) 0 0
\(219\) − 23.6258i − 0.107881i
\(220\) 0 0
\(221\) −24.6649 −0.111606
\(222\) 0 0
\(223\) − 15.0828i − 0.0676360i −0.999428 0.0338180i \(-0.989233\pi\)
0.999428 0.0338180i \(-0.0107667\pi\)
\(224\) 0 0
\(225\) −84.6974 −0.376433
\(226\) 0 0
\(227\) 174.226i 0.767515i 0.923434 + 0.383758i \(0.125370\pi\)
−0.923434 + 0.383758i \(0.874630\pi\)
\(228\) 0 0
\(229\) −152.404 −0.665520 −0.332760 0.943012i \(-0.607980\pi\)
−0.332760 + 0.943012i \(0.607980\pi\)
\(230\) 0 0
\(231\) − 75.7846i − 0.328072i
\(232\) 0 0
\(233\) 384.340 1.64953 0.824764 0.565477i \(-0.191308\pi\)
0.824764 + 0.565477i \(0.191308\pi\)
\(234\) 0 0
\(235\) − 101.289i − 0.431016i
\(236\) 0 0
\(237\) 61.0457 0.257577
\(238\) 0 0
\(239\) 390.143i 1.63240i 0.577772 + 0.816199i \(0.303922\pi\)
−0.577772 + 0.816199i \(0.696078\pi\)
\(240\) 0 0
\(241\) −453.554 −1.88196 −0.940982 0.338456i \(-0.890096\pi\)
−0.940982 + 0.338456i \(0.890096\pi\)
\(242\) 0 0
\(243\) 169.269i 0.696582i
\(244\) 0 0
\(245\) 111.758 0.456155
\(246\) 0 0
\(247\) − 44.9595i − 0.182022i
\(248\) 0 0
\(249\) −27.7348 −0.111385
\(250\) 0 0
\(251\) 193.468i 0.770788i 0.922752 + 0.385394i \(0.125934\pi\)
−0.922752 + 0.385394i \(0.874066\pi\)
\(252\) 0 0
\(253\) 8.44332 0.0333728
\(254\) 0 0
\(255\) − 7.03225i − 0.0275774i
\(256\) 0 0
\(257\) 73.9117 0.287594 0.143797 0.989607i \(-0.454069\pi\)
0.143797 + 0.989607i \(0.454069\pi\)
\(258\) 0 0
\(259\) − 231.915i − 0.895426i
\(260\) 0 0
\(261\) −220.443 −0.844608
\(262\) 0 0
\(263\) − 91.3741i − 0.347430i −0.984796 0.173715i \(-0.944423\pi\)
0.984796 0.173715i \(-0.0555771\pi\)
\(264\) 0 0
\(265\) 217.022 0.818950
\(266\) 0 0
\(267\) − 123.702i − 0.463302i
\(268\) 0 0
\(269\) −110.840 −0.412045 −0.206023 0.978547i \(-0.566052\pi\)
−0.206023 + 0.978547i \(0.566052\pi\)
\(270\) 0 0
\(271\) 532.042i 1.96326i 0.190806 + 0.981628i \(0.438890\pi\)
−0.190806 + 0.981628i \(0.561110\pi\)
\(272\) 0 0
\(273\) −69.2618 −0.253706
\(274\) 0 0
\(275\) 113.508i 0.412756i
\(276\) 0 0
\(277\) −118.545 −0.427961 −0.213981 0.976838i \(-0.568643\pi\)
−0.213981 + 0.976838i \(0.568643\pi\)
\(278\) 0 0
\(279\) − 164.664i − 0.590192i
\(280\) 0 0
\(281\) −121.730 −0.433204 −0.216602 0.976260i \(-0.569497\pi\)
−0.216602 + 0.976260i \(0.569497\pi\)
\(282\) 0 0
\(283\) − 201.427i − 0.711758i −0.934532 0.355879i \(-0.884182\pi\)
0.934532 0.355879i \(-0.115818\pi\)
\(284\) 0 0
\(285\) 12.8185 0.0449771
\(286\) 0 0
\(287\) − 194.737i − 0.678527i
\(288\) 0 0
\(289\) −283.282 −0.980213
\(290\) 0 0
\(291\) − 120.286i − 0.413353i
\(292\) 0 0
\(293\) 464.387 1.58494 0.792469 0.609912i \(-0.208795\pi\)
0.792469 + 0.609912i \(0.208795\pi\)
\(294\) 0 0
\(295\) 21.5715i 0.0731237i
\(296\) 0 0
\(297\) 149.575 0.503621
\(298\) 0 0
\(299\) − 7.71660i − 0.0258080i
\(300\) 0 0
\(301\) 512.673 1.70323
\(302\) 0 0
\(303\) − 64.9524i − 0.214364i
\(304\) 0 0
\(305\) 356.326 1.16828
\(306\) 0 0
\(307\) − 361.537i − 1.17764i −0.808263 0.588822i \(-0.799592\pi\)
0.808263 0.588822i \(-0.200408\pi\)
\(308\) 0 0
\(309\) 99.4790 0.321938
\(310\) 0 0
\(311\) 54.8958i 0.176514i 0.996098 + 0.0882570i \(0.0281297\pi\)
−0.996098 + 0.0882570i \(0.971870\pi\)
\(312\) 0 0
\(313\) 146.624 0.468447 0.234223 0.972183i \(-0.424745\pi\)
0.234223 + 0.972183i \(0.424745\pi\)
\(314\) 0 0
\(315\) 287.334i 0.912171i
\(316\) 0 0
\(317\) −323.315 −1.01992 −0.509961 0.860197i \(-0.670340\pi\)
−0.509961 + 0.860197i \(0.670340\pi\)
\(318\) 0 0
\(319\) 295.428i 0.926106i
\(320\) 0 0
\(321\) −45.4020 −0.141439
\(322\) 0 0
\(323\) 10.4235i 0.0322708i
\(324\) 0 0
\(325\) 103.738 0.319194
\(326\) 0 0
\(327\) − 123.299i − 0.377062i
\(328\) 0 0
\(329\) 231.287 0.703000
\(330\) 0 0
\(331\) 46.0501i 0.139124i 0.997578 + 0.0695620i \(0.0221602\pi\)
−0.997578 + 0.0695620i \(0.977840\pi\)
\(332\) 0 0
\(333\) 221.261 0.664448
\(334\) 0 0
\(335\) − 11.6221i − 0.0346927i
\(336\) 0 0
\(337\) 221.171 0.656294 0.328147 0.944627i \(-0.393576\pi\)
0.328147 + 0.944627i \(0.393576\pi\)
\(338\) 0 0
\(339\) − 62.1691i − 0.183390i
\(340\) 0 0
\(341\) −220.675 −0.647141
\(342\) 0 0
\(343\) − 177.318i − 0.516961i
\(344\) 0 0
\(345\) 2.20009 0.00637708
\(346\) 0 0
\(347\) − 269.239i − 0.775904i −0.921679 0.387952i \(-0.873183\pi\)
0.921679 0.387952i \(-0.126817\pi\)
\(348\) 0 0
\(349\) −22.0942 −0.0633070 −0.0316535 0.999499i \(-0.510077\pi\)
−0.0316535 + 0.999499i \(0.510077\pi\)
\(350\) 0 0
\(351\) − 136.701i − 0.389462i
\(352\) 0 0
\(353\) 534.345 1.51372 0.756862 0.653575i \(-0.226731\pi\)
0.756862 + 0.653575i \(0.226731\pi\)
\(354\) 0 0
\(355\) − 96.0747i − 0.270633i
\(356\) 0 0
\(357\) 16.0577 0.0449796
\(358\) 0 0
\(359\) − 635.968i − 1.77150i −0.464164 0.885750i \(-0.653645\pi\)
0.464164 0.885750i \(-0.346355\pi\)
\(360\) 0 0
\(361\) −19.0000 −0.0526316
\(362\) 0 0
\(363\) − 4.84527i − 0.0133478i
\(364\) 0 0
\(365\) 120.046 0.328894
\(366\) 0 0
\(367\) − 155.366i − 0.423339i −0.977341 0.211670i \(-0.932110\pi\)
0.977341 0.211670i \(-0.0678901\pi\)
\(368\) 0 0
\(369\) 185.791 0.503499
\(370\) 0 0
\(371\) 495.556i 1.33573i
\(372\) 0 0
\(373\) 367.645 0.985642 0.492821 0.870131i \(-0.335966\pi\)
0.492821 + 0.870131i \(0.335966\pi\)
\(374\) 0 0
\(375\) 103.096i 0.274922i
\(376\) 0 0
\(377\) 270.000 0.716181
\(378\) 0 0
\(379\) 256.207i 0.676008i 0.941145 + 0.338004i \(0.109752\pi\)
−0.941145 + 0.338004i \(0.890248\pi\)
\(380\) 0 0
\(381\) −88.4919 −0.232262
\(382\) 0 0
\(383\) − 129.804i − 0.338913i −0.985538 0.169457i \(-0.945799\pi\)
0.985538 0.169457i \(-0.0542012\pi\)
\(384\) 0 0
\(385\) 385.072 1.00019
\(386\) 0 0
\(387\) 489.121i 1.26388i
\(388\) 0 0
\(389\) 26.2241 0.0674141 0.0337071 0.999432i \(-0.489269\pi\)
0.0337071 + 0.999432i \(0.489269\pi\)
\(390\) 0 0
\(391\) 1.78903i 0.00457551i
\(392\) 0 0
\(393\) 191.674 0.487720
\(394\) 0 0
\(395\) 310.182i 0.785270i
\(396\) 0 0
\(397\) −439.813 −1.10784 −0.553920 0.832570i \(-0.686869\pi\)
−0.553920 + 0.832570i \(0.686869\pi\)
\(398\) 0 0
\(399\) 29.2702i 0.0733590i
\(400\) 0 0
\(401\) 695.947 1.73553 0.867764 0.496976i \(-0.165556\pi\)
0.867764 + 0.496976i \(0.165556\pi\)
\(402\) 0 0
\(403\) 201.681i 0.500450i
\(404\) 0 0
\(405\) −253.999 −0.627157
\(406\) 0 0
\(407\) − 296.525i − 0.728562i
\(408\) 0 0
\(409\) −323.243 −0.790324 −0.395162 0.918611i \(-0.629312\pi\)
−0.395162 + 0.918611i \(0.629312\pi\)
\(410\) 0 0
\(411\) 35.9355i 0.0874342i
\(412\) 0 0
\(413\) −49.2572 −0.119267
\(414\) 0 0
\(415\) − 140.925i − 0.339578i
\(416\) 0 0
\(417\) 73.5427 0.176361
\(418\) 0 0
\(419\) − 662.516i − 1.58118i −0.612343 0.790592i \(-0.709773\pi\)
0.612343 0.790592i \(-0.290227\pi\)
\(420\) 0 0
\(421\) 287.728 0.683440 0.341720 0.939802i \(-0.388991\pi\)
0.341720 + 0.939802i \(0.388991\pi\)
\(422\) 0 0
\(423\) 220.662i 0.521659i
\(424\) 0 0
\(425\) −24.0508 −0.0565900
\(426\) 0 0
\(427\) 813.649i 1.90550i
\(428\) 0 0
\(429\) −88.5575 −0.206428
\(430\) 0 0
\(431\) 96.3997i 0.223665i 0.993727 + 0.111833i \(0.0356720\pi\)
−0.993727 + 0.111833i \(0.964328\pi\)
\(432\) 0 0
\(433\) −280.807 −0.648514 −0.324257 0.945969i \(-0.605114\pi\)
−0.324257 + 0.945969i \(0.605114\pi\)
\(434\) 0 0
\(435\) 76.9802i 0.176966i
\(436\) 0 0
\(437\) −3.26106 −0.00746237
\(438\) 0 0
\(439\) − 252.456i − 0.575070i −0.957770 0.287535i \(-0.907164\pi\)
0.957770 0.287535i \(-0.0928358\pi\)
\(440\) 0 0
\(441\) −243.469 −0.552084
\(442\) 0 0
\(443\) − 152.899i − 0.345145i −0.984997 0.172573i \(-0.944792\pi\)
0.984997 0.172573i \(-0.0552079\pi\)
\(444\) 0 0
\(445\) 628.546 1.41246
\(446\) 0 0
\(447\) 27.4754i 0.0614662i
\(448\) 0 0
\(449\) 504.216 1.12297 0.561487 0.827485i \(-0.310229\pi\)
0.561487 + 0.827485i \(0.310229\pi\)
\(450\) 0 0
\(451\) − 248.989i − 0.552083i
\(452\) 0 0
\(453\) −180.638 −0.398759
\(454\) 0 0
\(455\) − 351.929i − 0.773470i
\(456\) 0 0
\(457\) 260.361 0.569719 0.284859 0.958569i \(-0.408053\pi\)
0.284859 + 0.958569i \(0.408053\pi\)
\(458\) 0 0
\(459\) 31.6930i 0.0690479i
\(460\) 0 0
\(461\) 98.7594 0.214229 0.107114 0.994247i \(-0.465839\pi\)
0.107114 + 0.994247i \(0.465839\pi\)
\(462\) 0 0
\(463\) 456.959i 0.986952i 0.869759 + 0.493476i \(0.164274\pi\)
−0.869759 + 0.493476i \(0.835726\pi\)
\(464\) 0 0
\(465\) −57.5017 −0.123660
\(466\) 0 0
\(467\) − 170.991i − 0.366148i −0.983099 0.183074i \(-0.941395\pi\)
0.983099 0.183074i \(-0.0586048\pi\)
\(468\) 0 0
\(469\) 26.5383 0.0565849
\(470\) 0 0
\(471\) 100.442i 0.213253i
\(472\) 0 0
\(473\) 655.498 1.38583
\(474\) 0 0
\(475\) − 43.8400i − 0.0922948i
\(476\) 0 0
\(477\) −472.791 −0.991175
\(478\) 0 0
\(479\) − 181.600i − 0.379124i −0.981869 0.189562i \(-0.939293\pi\)
0.981869 0.189562i \(-0.0607068\pi\)
\(480\) 0 0
\(481\) −271.003 −0.563415
\(482\) 0 0
\(483\) 5.02378i 0.0104012i
\(484\) 0 0
\(485\) 611.188 1.26018
\(486\) 0 0
\(487\) 455.016i 0.934324i 0.884172 + 0.467162i \(0.154724\pi\)
−0.884172 + 0.467162i \(0.845276\pi\)
\(488\) 0 0
\(489\) 199.560 0.408099
\(490\) 0 0
\(491\) 662.583i 1.34946i 0.738066 + 0.674729i \(0.235739\pi\)
−0.738066 + 0.674729i \(0.764261\pi\)
\(492\) 0 0
\(493\) −62.5971 −0.126972
\(494\) 0 0
\(495\) 367.382i 0.742186i
\(496\) 0 0
\(497\) 219.381 0.441411
\(498\) 0 0
\(499\) − 321.749i − 0.644787i −0.946606 0.322393i \(-0.895513\pi\)
0.946606 0.322393i \(-0.104487\pi\)
\(500\) 0 0
\(501\) 17.6228 0.0351753
\(502\) 0 0
\(503\) − 283.832i − 0.564279i −0.959373 0.282139i \(-0.908956\pi\)
0.959373 0.282139i \(-0.0910440\pi\)
\(504\) 0 0
\(505\) 330.032 0.653529
\(506\) 0 0
\(507\) − 47.6336i − 0.0939518i
\(508\) 0 0
\(509\) −599.831 −1.17845 −0.589225 0.807969i \(-0.700567\pi\)
−0.589225 + 0.807969i \(0.700567\pi\)
\(510\) 0 0
\(511\) 274.119i 0.536436i
\(512\) 0 0
\(513\) −57.7703 −0.112613
\(514\) 0 0
\(515\) 505.467i 0.981489i
\(516\) 0 0
\(517\) 295.722 0.571995
\(518\) 0 0
\(519\) 115.834i 0.223187i
\(520\) 0 0
\(521\) −698.443 −1.34058 −0.670291 0.742099i \(-0.733831\pi\)
−0.670291 + 0.742099i \(0.733831\pi\)
\(522\) 0 0
\(523\) 451.840i 0.863939i 0.901888 + 0.431969i \(0.142181\pi\)
−0.901888 + 0.431969i \(0.857819\pi\)
\(524\) 0 0
\(525\) −67.5372 −0.128642
\(526\) 0 0
\(527\) − 46.7580i − 0.0887249i
\(528\) 0 0
\(529\) 528.440 0.998942
\(530\) 0 0
\(531\) − 46.9943i − 0.0885016i
\(532\) 0 0
\(533\) −227.559 −0.426939
\(534\) 0 0
\(535\) − 230.694i − 0.431204i
\(536\) 0 0
\(537\) 8.23510 0.0153354
\(538\) 0 0
\(539\) 326.287i 0.605356i
\(540\) 0 0
\(541\) 709.992 1.31237 0.656185 0.754600i \(-0.272169\pi\)
0.656185 + 0.754600i \(0.272169\pi\)
\(542\) 0 0
\(543\) − 28.7635i − 0.0529714i
\(544\) 0 0
\(545\) 626.501 1.14954
\(546\) 0 0
\(547\) − 642.779i − 1.17510i −0.809189 0.587549i \(-0.800093\pi\)
0.809189 0.587549i \(-0.199907\pi\)
\(548\) 0 0
\(549\) −776.270 −1.41397
\(550\) 0 0
\(551\) − 114.103i − 0.207083i
\(552\) 0 0
\(553\) −708.282 −1.28080
\(554\) 0 0
\(555\) − 77.2660i − 0.139218i
\(556\) 0 0
\(557\) 1004.45 1.80331 0.901656 0.432453i \(-0.142352\pi\)
0.901656 + 0.432453i \(0.142352\pi\)
\(558\) 0 0
\(559\) − 599.079i − 1.07170i
\(560\) 0 0
\(561\) 20.5313 0.0365976
\(562\) 0 0
\(563\) − 925.064i − 1.64310i −0.570138 0.821549i \(-0.693110\pi\)
0.570138 0.821549i \(-0.306890\pi\)
\(564\) 0 0
\(565\) 315.890 0.559097
\(566\) 0 0
\(567\) − 579.991i − 1.02291i
\(568\) 0 0
\(569\) −470.845 −0.827495 −0.413748 0.910392i \(-0.635780\pi\)
−0.413748 + 0.910392i \(0.635780\pi\)
\(570\) 0 0
\(571\) − 501.167i − 0.877701i −0.898560 0.438851i \(-0.855386\pi\)
0.898560 0.438851i \(-0.144614\pi\)
\(572\) 0 0
\(573\) −188.553 −0.329064
\(574\) 0 0
\(575\) − 7.52446i − 0.0130860i
\(576\) 0 0
\(577\) 179.702 0.311443 0.155721 0.987801i \(-0.450230\pi\)
0.155721 + 0.987801i \(0.450230\pi\)
\(578\) 0 0
\(579\) − 202.928i − 0.350480i
\(580\) 0 0
\(581\) 321.793 0.553861
\(582\) 0 0
\(583\) 633.614i 1.08682i
\(584\) 0 0
\(585\) 335.761 0.573951
\(586\) 0 0
\(587\) − 361.326i − 0.615547i −0.951460 0.307773i \(-0.900416\pi\)
0.951460 0.307773i \(-0.0995839\pi\)
\(588\) 0 0
\(589\) 85.2311 0.144705
\(590\) 0 0
\(591\) 159.935i 0.270618i
\(592\) 0 0
\(593\) −751.538 −1.26735 −0.633675 0.773600i \(-0.718454\pi\)
−0.633675 + 0.773600i \(0.718454\pi\)
\(594\) 0 0
\(595\) 81.5916i 0.137129i
\(596\) 0 0
\(597\) 10.5764 0.0177159
\(598\) 0 0
\(599\) − 1061.20i − 1.77161i −0.464056 0.885806i \(-0.653606\pi\)
0.464056 0.885806i \(-0.346394\pi\)
\(600\) 0 0
\(601\) −1012.81 −1.68521 −0.842607 0.538529i \(-0.818980\pi\)
−0.842607 + 0.538529i \(0.818980\pi\)
\(602\) 0 0
\(603\) 25.3191i 0.0419886i
\(604\) 0 0
\(605\) 24.6195 0.0406934
\(606\) 0 0
\(607\) − 1046.98i − 1.72484i −0.506195 0.862419i \(-0.668948\pi\)
0.506195 0.862419i \(-0.331052\pi\)
\(608\) 0 0
\(609\) −175.780 −0.288637
\(610\) 0 0
\(611\) − 270.269i − 0.442338i
\(612\) 0 0
\(613\) −826.300 −1.34796 −0.673981 0.738749i \(-0.735417\pi\)
−0.673981 + 0.738749i \(0.735417\pi\)
\(614\) 0 0
\(615\) − 64.8796i − 0.105495i
\(616\) 0 0
\(617\) −285.852 −0.463293 −0.231647 0.972800i \(-0.574411\pi\)
−0.231647 + 0.972800i \(0.574411\pi\)
\(618\) 0 0
\(619\) 1149.76i 1.85745i 0.370772 + 0.928724i \(0.379093\pi\)
−0.370772 + 0.928724i \(0.620907\pi\)
\(620\) 0 0
\(621\) −9.91539 −0.0159668
\(622\) 0 0
\(623\) 1435.25i 2.30377i
\(624\) 0 0
\(625\) −272.405 −0.435848
\(626\) 0 0
\(627\) 37.4246i 0.0596884i
\(628\) 0 0
\(629\) 62.8295 0.0998880
\(630\) 0 0
\(631\) − 249.014i − 0.394634i −0.980340 0.197317i \(-0.936777\pi\)
0.980340 0.197317i \(-0.0632229\pi\)
\(632\) 0 0
\(633\) 90.2255 0.142536
\(634\) 0 0
\(635\) − 449.640i − 0.708094i
\(636\) 0 0
\(637\) 298.203 0.468137
\(638\) 0 0
\(639\) 209.303i 0.327547i
\(640\) 0 0
\(641\) 130.308 0.203289 0.101645 0.994821i \(-0.467590\pi\)
0.101645 + 0.994821i \(0.467590\pi\)
\(642\) 0 0
\(643\) − 902.547i − 1.40365i −0.712349 0.701825i \(-0.752369\pi\)
0.712349 0.701825i \(-0.247631\pi\)
\(644\) 0 0
\(645\) 170.804 0.264813
\(646\) 0 0
\(647\) − 826.308i − 1.27714i −0.769565 0.638569i \(-0.779527\pi\)
0.769565 0.638569i \(-0.220473\pi\)
\(648\) 0 0
\(649\) −62.9798 −0.0970413
\(650\) 0 0
\(651\) − 131.302i − 0.201693i
\(652\) 0 0
\(653\) −116.405 −0.178262 −0.0891312 0.996020i \(-0.528409\pi\)
−0.0891312 + 0.996020i \(0.528409\pi\)
\(654\) 0 0
\(655\) 973.923i 1.48690i
\(656\) 0 0
\(657\) −261.526 −0.398060
\(658\) 0 0
\(659\) − 203.861i − 0.309349i −0.987965 0.154674i \(-0.950567\pi\)
0.987965 0.154674i \(-0.0494329\pi\)
\(660\) 0 0
\(661\) 231.009 0.349484 0.174742 0.984614i \(-0.444091\pi\)
0.174742 + 0.984614i \(0.444091\pi\)
\(662\) 0 0
\(663\) − 18.7641i − 0.0283018i
\(664\) 0 0
\(665\) −148.726 −0.223648
\(666\) 0 0
\(667\) − 19.5840i − 0.0293613i
\(668\) 0 0
\(669\) 11.4744 0.0171516
\(670\) 0 0
\(671\) 1040.32i 1.55041i
\(672\) 0 0
\(673\) −850.912 −1.26436 −0.632179 0.774823i \(-0.717839\pi\)
−0.632179 + 0.774823i \(0.717839\pi\)
\(674\) 0 0
\(675\) − 133.298i − 0.197478i
\(676\) 0 0
\(677\) −560.684 −0.828189 −0.414095 0.910234i \(-0.635902\pi\)
−0.414095 + 0.910234i \(0.635902\pi\)
\(678\) 0 0
\(679\) 1395.61i 2.05539i
\(680\) 0 0
\(681\) −132.545 −0.194632
\(682\) 0 0
\(683\) − 116.683i − 0.170838i −0.996345 0.0854191i \(-0.972777\pi\)
0.996345 0.0854191i \(-0.0272229\pi\)
\(684\) 0 0
\(685\) −182.593 −0.266559
\(686\) 0 0
\(687\) − 115.943i − 0.168767i
\(688\) 0 0
\(689\) 579.078 0.840462
\(690\) 0 0
\(691\) 515.820i 0.746483i 0.927734 + 0.373242i \(0.121754\pi\)
−0.927734 + 0.373242i \(0.878246\pi\)
\(692\) 0 0
\(693\) −838.896 −1.21053
\(694\) 0 0
\(695\) 373.681i 0.537670i
\(696\) 0 0
\(697\) 52.7574 0.0756921
\(698\) 0 0
\(699\) 292.392i 0.418300i
\(700\) 0 0
\(701\) −675.831 −0.964095 −0.482048 0.876145i \(-0.660107\pi\)
−0.482048 + 0.876145i \(0.660107\pi\)
\(702\) 0 0
\(703\) 114.526i 0.162911i
\(704\) 0 0
\(705\) 77.0567 0.109300
\(706\) 0 0
\(707\) 753.610i 1.06593i
\(708\) 0 0
\(709\) −109.968 −0.155103 −0.0775517 0.996988i \(-0.524710\pi\)
−0.0775517 + 0.996988i \(0.524710\pi\)
\(710\) 0 0
\(711\) − 675.744i − 0.950413i
\(712\) 0 0
\(713\) 14.6286 0.0205170
\(714\) 0 0
\(715\) − 449.973i − 0.629333i
\(716\) 0 0
\(717\) −296.806 −0.413955
\(718\) 0 0
\(719\) − 1090.82i − 1.51713i −0.651596 0.758566i \(-0.725900\pi\)
0.651596 0.758566i \(-0.274100\pi\)
\(720\) 0 0
\(721\) −1154.20 −1.60084
\(722\) 0 0
\(723\) − 345.046i − 0.477243i
\(724\) 0 0
\(725\) 263.277 0.363141
\(726\) 0 0
\(727\) 1163.76i 1.60077i 0.599488 + 0.800383i \(0.295371\pi\)
−0.599488 + 0.800383i \(0.704629\pi\)
\(728\) 0 0
\(729\) 462.602 0.634571
\(730\) 0 0
\(731\) 138.891i 0.190002i
\(732\) 0 0
\(733\) −657.756 −0.897347 −0.448674 0.893696i \(-0.648103\pi\)
−0.448674 + 0.893696i \(0.648103\pi\)
\(734\) 0 0
\(735\) 85.0212i 0.115675i
\(736\) 0 0
\(737\) 33.9316 0.0460402
\(738\) 0 0
\(739\) − 1091.82i − 1.47744i −0.674015 0.738718i \(-0.735432\pi\)
0.674015 0.738718i \(-0.264568\pi\)
\(740\) 0 0
\(741\) 34.2035 0.0461585
\(742\) 0 0
\(743\) 955.090i 1.28545i 0.766096 + 0.642726i \(0.222196\pi\)
−0.766096 + 0.642726i \(0.777804\pi\)
\(744\) 0 0
\(745\) −139.606 −0.187391
\(746\) 0 0
\(747\) 307.010i 0.410991i
\(748\) 0 0
\(749\) 526.776 0.703306
\(750\) 0 0
\(751\) 940.578i 1.25243i 0.779649 + 0.626217i \(0.215398\pi\)
−0.779649 + 0.626217i \(0.784602\pi\)
\(752\) 0 0
\(753\) −147.183 −0.195462
\(754\) 0 0
\(755\) − 917.846i − 1.21569i
\(756\) 0 0
\(757\) 177.412 0.234362 0.117181 0.993111i \(-0.462614\pi\)
0.117181 + 0.993111i \(0.462614\pi\)
\(758\) 0 0
\(759\) 6.42336i 0.00846293i
\(760\) 0 0
\(761\) 515.326 0.677169 0.338585 0.940936i \(-0.390052\pi\)
0.338585 + 0.940936i \(0.390052\pi\)
\(762\) 0 0
\(763\) 1430.58i 1.87494i
\(764\) 0 0
\(765\) −77.8433 −0.101756
\(766\) 0 0
\(767\) 57.5591i 0.0750445i
\(768\) 0 0
\(769\) −972.091 −1.26410 −0.632049 0.774929i \(-0.717786\pi\)
−0.632049 + 0.774929i \(0.717786\pi\)
\(770\) 0 0
\(771\) 56.2293i 0.0729303i
\(772\) 0 0
\(773\) 407.151 0.526715 0.263357 0.964698i \(-0.415170\pi\)
0.263357 + 0.964698i \(0.415170\pi\)
\(774\) 0 0
\(775\) 196.660i 0.253754i
\(776\) 0 0
\(777\) 176.432 0.227069
\(778\) 0 0
\(779\) 96.1669i 0.123449i
\(780\) 0 0
\(781\) 280.499 0.359153
\(782\) 0 0
\(783\) − 346.935i − 0.443084i
\(784\) 0 0
\(785\) −510.362 −0.650142
\(786\) 0 0
\(787\) 333.101i 0.423254i 0.977350 + 0.211627i \(0.0678763\pi\)
−0.977350 + 0.211627i \(0.932124\pi\)
\(788\) 0 0
\(789\) 69.5140 0.0881039
\(790\) 0 0
\(791\) 721.316i 0.911904i
\(792\) 0 0
\(793\) 950.783 1.19897
\(794\) 0 0
\(795\) 165.102i 0.207675i
\(796\) 0 0
\(797\) 652.883 0.819175 0.409588 0.912271i \(-0.365673\pi\)
0.409588 + 0.912271i \(0.365673\pi\)
\(798\) 0 0
\(799\) 62.6594i 0.0784222i
\(800\) 0 0
\(801\) −1369.31 −1.70950
\(802\) 0 0
\(803\) 350.486i 0.436470i
\(804\) 0 0
\(805\) −25.5266 −0.0317100
\(806\) 0 0
\(807\) − 84.3231i − 0.104490i
\(808\) 0 0
\(809\) −1517.67 −1.87598 −0.937990 0.346662i \(-0.887315\pi\)
−0.937990 + 0.346662i \(0.887315\pi\)
\(810\) 0 0
\(811\) − 1542.04i − 1.90140i −0.310106 0.950702i \(-0.600365\pi\)
0.310106 0.950702i \(-0.399635\pi\)
\(812\) 0 0
\(813\) −404.758 −0.497857
\(814\) 0 0
\(815\) 1013.99i 1.24416i
\(816\) 0 0
\(817\) −253.173 −0.309881
\(818\) 0 0
\(819\) 766.692i 0.936131i
\(820\) 0 0
\(821\) 1456.93 1.77457 0.887287 0.461218i \(-0.152587\pi\)
0.887287 + 0.461218i \(0.152587\pi\)
\(822\) 0 0
\(823\) − 1297.13i − 1.57610i −0.615609 0.788052i \(-0.711090\pi\)
0.615609 0.788052i \(-0.288910\pi\)
\(824\) 0 0
\(825\) −86.3525 −0.104670
\(826\) 0 0
\(827\) 1222.01i 1.47764i 0.673902 + 0.738821i \(0.264617\pi\)
−0.673902 + 0.738821i \(0.735383\pi\)
\(828\) 0 0
\(829\) −651.502 −0.785889 −0.392945 0.919562i \(-0.628544\pi\)
−0.392945 + 0.919562i \(0.628544\pi\)
\(830\) 0 0
\(831\) − 90.1848i − 0.108526i
\(832\) 0 0
\(833\) −69.1357 −0.0829961
\(834\) 0 0
\(835\) 89.5440i 0.107238i
\(836\) 0 0
\(837\) 259.149 0.309616
\(838\) 0 0
\(839\) 507.581i 0.604983i 0.953152 + 0.302491i \(0.0978184\pi\)
−0.953152 + 0.302491i \(0.902182\pi\)
\(840\) 0 0
\(841\) −155.765 −0.185214
\(842\) 0 0
\(843\) − 92.6079i − 0.109855i
\(844\) 0 0
\(845\) 242.033 0.286429
\(846\) 0 0
\(847\) 56.2172i 0.0663721i
\(848\) 0 0
\(849\) 153.238 0.180493
\(850\) 0 0
\(851\) 19.6567i 0.0230984i
\(852\) 0 0
\(853\) −606.802 −0.711374 −0.355687 0.934605i \(-0.615753\pi\)
−0.355687 + 0.934605i \(0.615753\pi\)
\(854\) 0 0
\(855\) − 141.894i − 0.165958i
\(856\) 0 0
\(857\) 111.500 0.130105 0.0650527 0.997882i \(-0.479278\pi\)
0.0650527 + 0.997882i \(0.479278\pi\)
\(858\) 0 0
\(859\) 129.261i 0.150478i 0.997166 + 0.0752390i \(0.0239720\pi\)
−0.997166 + 0.0752390i \(0.976028\pi\)
\(860\) 0 0
\(861\) 148.149 0.172066
\(862\) 0 0
\(863\) − 1532.36i − 1.77562i −0.460214 0.887808i \(-0.652227\pi\)
0.460214 0.887808i \(-0.347773\pi\)
\(864\) 0 0
\(865\) −588.568 −0.680426
\(866\) 0 0
\(867\) − 215.510i − 0.248570i
\(868\) 0 0
\(869\) −905.603 −1.04212
\(870\) 0 0
\(871\) − 31.0111i − 0.0356040i
\(872\) 0 0
\(873\) −1331.50 −1.52520
\(874\) 0 0
\(875\) − 1196.17i − 1.36705i
\(876\) 0 0
\(877\) 1151.28 1.31274 0.656372 0.754437i \(-0.272090\pi\)
0.656372 + 0.754437i \(0.272090\pi\)
\(878\) 0 0
\(879\) 353.288i 0.401921i
\(880\) 0 0
\(881\) −782.531 −0.888230 −0.444115 0.895970i \(-0.646482\pi\)
−0.444115 + 0.895970i \(0.646482\pi\)
\(882\) 0 0
\(883\) − 364.109i − 0.412355i −0.978515 0.206177i \(-0.933898\pi\)
0.978515 0.206177i \(-0.0661024\pi\)
\(884\) 0 0
\(885\) −16.4108 −0.0185432
\(886\) 0 0
\(887\) − 1209.99i − 1.36413i −0.731290 0.682066i \(-0.761082\pi\)
0.731290 0.682066i \(-0.238918\pi\)
\(888\) 0 0
\(889\) 1026.73 1.15492
\(890\) 0 0
\(891\) − 741.572i − 0.832291i
\(892\) 0 0
\(893\) −114.216 −0.127902
\(894\) 0 0
\(895\) 41.8437i 0.0467528i
\(896\) 0 0
\(897\) 5.87050 0.00654459
\(898\) 0 0
\(899\) 511.848i 0.569353i
\(900\) 0 0
\(901\) −134.254 −0.149006
\(902\) 0 0
\(903\) 390.022i 0.431918i
\(904\) 0 0
\(905\) 146.151 0.161493
\(906\) 0 0
\(907\) − 634.641i − 0.699715i −0.936803 0.349857i \(-0.886230\pi\)
0.936803 0.349857i \(-0.113770\pi\)
\(908\) 0 0
\(909\) −718.989 −0.790967
\(910\) 0 0
\(911\) − 444.113i − 0.487500i −0.969838 0.243750i \(-0.921622\pi\)
0.969838 0.243750i \(-0.0783776\pi\)
\(912\) 0 0
\(913\) 411.442 0.450648
\(914\) 0 0
\(915\) 271.079i 0.296261i
\(916\) 0 0
\(917\) −2223.90 −2.42519
\(918\) 0 0
\(919\) − 156.620i − 0.170425i −0.996363 0.0852123i \(-0.972843\pi\)
0.996363 0.0852123i \(-0.0271568\pi\)
\(920\) 0 0
\(921\) 275.044 0.298636
\(922\) 0 0
\(923\) − 256.356i − 0.277742i
\(924\) 0 0
\(925\) −264.255 −0.285681
\(926\) 0 0
\(927\) − 1101.18i − 1.18790i
\(928\) 0 0
\(929\) 1369.54 1.47421 0.737106 0.675777i \(-0.236192\pi\)
0.737106 + 0.675777i \(0.236192\pi\)
\(930\) 0 0
\(931\) − 126.022i − 0.135361i
\(932\) 0 0
\(933\) −41.7627 −0.0447617
\(934\) 0 0
\(935\) 104.322i 0.111575i
\(936\) 0 0
\(937\) 87.5411 0.0934270 0.0467135 0.998908i \(-0.485125\pi\)
0.0467135 + 0.998908i \(0.485125\pi\)
\(938\) 0 0
\(939\) 111.546i 0.118792i
\(940\) 0 0
\(941\) 460.843 0.489738 0.244869 0.969556i \(-0.421255\pi\)
0.244869 + 0.969556i \(0.421255\pi\)
\(942\) 0 0
\(943\) 16.5056i 0.0175033i
\(944\) 0 0
\(945\) −452.209 −0.478528
\(946\) 0 0
\(947\) − 1421.07i − 1.50060i −0.661096 0.750302i \(-0.729908\pi\)
0.661096 0.750302i \(-0.270092\pi\)
\(948\) 0 0
\(949\) 320.319 0.337533
\(950\) 0 0
\(951\) − 245.966i − 0.258640i
\(952\) 0 0
\(953\) 1079.05 1.13227 0.566134 0.824313i \(-0.308439\pi\)
0.566134 + 0.824313i \(0.308439\pi\)
\(954\) 0 0
\(955\) − 958.067i − 1.00321i
\(956\) 0 0
\(957\) −224.750 −0.234849
\(958\) 0 0
\(959\) − 416.941i − 0.434766i
\(960\) 0 0
\(961\) 578.666 0.602150
\(962\) 0 0
\(963\) 502.576i 0.521886i
\(964\) 0 0
\(965\) 1031.10 1.06850
\(966\) 0 0
\(967\) 821.871i 0.849919i 0.905212 + 0.424959i \(0.139712\pi\)
−0.905212 + 0.424959i \(0.860288\pi\)
\(968\) 0 0
\(969\) −7.92977 −0.00818346
\(970\) 0 0
\(971\) 147.307i 0.151706i 0.997119 + 0.0758531i \(0.0241680\pi\)
−0.997119 + 0.0758531i \(0.975832\pi\)
\(972\) 0 0
\(973\) −853.279 −0.876956
\(974\) 0 0
\(975\) 78.9201i 0.0809436i
\(976\) 0 0
\(977\) 927.192 0.949020 0.474510 0.880250i \(-0.342625\pi\)
0.474510 + 0.880250i \(0.342625\pi\)
\(978\) 0 0
\(979\) 1835.10i 1.87446i
\(980\) 0 0
\(981\) −1364.86 −1.39129
\(982\) 0 0
\(983\) − 81.6093i − 0.0830206i −0.999138 0.0415103i \(-0.986783\pi\)
0.999138 0.0415103i \(-0.0132169\pi\)
\(984\) 0 0
\(985\) −812.653 −0.825029
\(986\) 0 0
\(987\) 175.955i 0.178272i
\(988\) 0 0
\(989\) −43.4532 −0.0439365
\(990\) 0 0
\(991\) − 1540.57i − 1.55456i −0.629153 0.777281i \(-0.716598\pi\)
0.629153 0.777281i \(-0.283402\pi\)
\(992\) 0 0
\(993\) −35.0332 −0.0352801
\(994\) 0 0
\(995\) 53.7400i 0.0540101i
\(996\) 0 0
\(997\) −1222.11 −1.22579 −0.612895 0.790164i \(-0.709995\pi\)
−0.612895 + 0.790164i \(0.709995\pi\)
\(998\) 0 0
\(999\) 348.223i 0.348571i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1216.3.d.f.191.12 20
4.3 odd 2 inner 1216.3.d.f.191.9 20
8.3 odd 2 608.3.d.b.191.12 yes 20
8.5 even 2 608.3.d.b.191.9 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
608.3.d.b.191.9 20 8.5 even 2
608.3.d.b.191.12 yes 20 8.3 odd 2
1216.3.d.f.191.9 20 4.3 odd 2 inner
1216.3.d.f.191.12 20 1.1 even 1 trivial