Properties

Label 608.2.c.b.305.6
Level $608$
Weight $2$
Character 608.305
Analytic conductor $4.855$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [608,2,Mod(305,608)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(608, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("608.305"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 608 = 2^{5} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 608.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.85490444289\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 3 x^{14} - 4 x^{13} + 4 x^{12} + 4 x^{11} - 10 x^{10} + 24 x^{9} - 40 x^{8} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{13} \)
Twist minimal: no (minimal twist has level 152)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 305.6
Root \(-1.40771 + 0.135487i\) of defining polynomial
Character \(\chi\) \(=\) 608.305
Dual form 608.2.c.b.305.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.70663i q^{3} +1.66222i q^{5} +1.99556 q^{7} +0.0874066 q^{9} +2.08741i q^{11} +4.77322i q^{13} +2.83680 q^{15} +2.10657 q^{17} -1.00000i q^{19} -3.40569i q^{21} +4.84437 q^{23} +2.23703 q^{25} -5.26907i q^{27} -0.695946i q^{29} -9.77587 q^{31} +3.56244 q^{33} +3.31706i q^{35} -0.0772780i q^{37} +8.14614 q^{39} +10.7743 q^{41} -1.43840i q^{43} +0.145289i q^{45} +2.88133 q^{47} -3.01774 q^{49} -3.59513i q^{51} -9.00264i q^{53} -3.46973 q^{55} -1.70663 q^{57} +11.5253i q^{59} -8.82910i q^{61} +0.174425 q^{63} -7.93414 q^{65} -1.27859i q^{67} -8.26756i q^{69} +4.66655 q^{71} +4.44578 q^{73} -3.81779i q^{75} +4.16555i q^{77} -1.10044 q^{79} -8.73014 q^{81} -2.47419i q^{83} +3.50157i q^{85} -1.18772 q^{87} -15.8259 q^{89} +9.52526i q^{91} +16.6838i q^{93} +1.66222 q^{95} -13.9046 q^{97} +0.182453i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{7} - 24 q^{9} - 8 q^{17} - 24 q^{25} - 16 q^{31} - 8 q^{39} + 16 q^{41} - 24 q^{47} + 24 q^{49} - 16 q^{55} + 32 q^{63} + 16 q^{65} - 48 q^{71} + 48 q^{79} - 16 q^{81} + 48 q^{87} - 16 q^{89}+ \cdots + 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/608\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(191\) \(229\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.70663i − 0.985325i −0.870221 0.492662i \(-0.836024\pi\)
0.870221 0.492662i \(-0.163976\pi\)
\(4\) 0 0
\(5\) 1.66222i 0.743367i 0.928360 + 0.371683i \(0.121219\pi\)
−0.928360 + 0.371683i \(0.878781\pi\)
\(6\) 0 0
\(7\) 1.99556 0.754251 0.377125 0.926162i \(-0.376913\pi\)
0.377125 + 0.926162i \(0.376913\pi\)
\(8\) 0 0
\(9\) 0.0874066 0.0291355
\(10\) 0 0
\(11\) 2.08741i 0.629377i 0.949195 + 0.314688i \(0.101900\pi\)
−0.949195 + 0.314688i \(0.898100\pi\)
\(12\) 0 0
\(13\) 4.77322i 1.32385i 0.749568 + 0.661927i \(0.230261\pi\)
−0.749568 + 0.661927i \(0.769739\pi\)
\(14\) 0 0
\(15\) 2.83680 0.732457
\(16\) 0 0
\(17\) 2.10657 0.510917 0.255459 0.966820i \(-0.417774\pi\)
0.255459 + 0.966820i \(0.417774\pi\)
\(18\) 0 0
\(19\) − 1.00000i − 0.229416i
\(20\) 0 0
\(21\) − 3.40569i − 0.743182i
\(22\) 0 0
\(23\) 4.84437 1.01012 0.505061 0.863084i \(-0.331470\pi\)
0.505061 + 0.863084i \(0.331470\pi\)
\(24\) 0 0
\(25\) 2.23703 0.447406
\(26\) 0 0
\(27\) − 5.26907i − 1.01403i
\(28\) 0 0
\(29\) − 0.695946i − 0.129234i −0.997910 0.0646170i \(-0.979417\pi\)
0.997910 0.0646170i \(-0.0205826\pi\)
\(30\) 0 0
\(31\) −9.77587 −1.75580 −0.877899 0.478846i \(-0.841055\pi\)
−0.877899 + 0.478846i \(0.841055\pi\)
\(32\) 0 0
\(33\) 3.56244 0.620140
\(34\) 0 0
\(35\) 3.31706i 0.560685i
\(36\) 0 0
\(37\) − 0.0772780i − 0.0127044i −0.999980 0.00635221i \(-0.997978\pi\)
0.999980 0.00635221i \(-0.00202198\pi\)
\(38\) 0 0
\(39\) 8.14614 1.30443
\(40\) 0 0
\(41\) 10.7743 1.68267 0.841334 0.540516i \(-0.181771\pi\)
0.841334 + 0.540516i \(0.181771\pi\)
\(42\) 0 0
\(43\) − 1.43840i − 0.219354i −0.993967 0.109677i \(-0.965018\pi\)
0.993967 0.109677i \(-0.0349817\pi\)
\(44\) 0 0
\(45\) 0.145289i 0.0216584i
\(46\) 0 0
\(47\) 2.88133 0.420285 0.210143 0.977671i \(-0.432607\pi\)
0.210143 + 0.977671i \(0.432607\pi\)
\(48\) 0 0
\(49\) −3.01774 −0.431106
\(50\) 0 0
\(51\) − 3.59513i − 0.503419i
\(52\) 0 0
\(53\) − 9.00264i − 1.23661i −0.785939 0.618304i \(-0.787820\pi\)
0.785939 0.618304i \(-0.212180\pi\)
\(54\) 0 0
\(55\) −3.46973 −0.467858
\(56\) 0 0
\(57\) −1.70663 −0.226049
\(58\) 0 0
\(59\) 11.5253i 1.50046i 0.661177 + 0.750230i \(0.270057\pi\)
−0.661177 + 0.750230i \(0.729943\pi\)
\(60\) 0 0
\(61\) − 8.82910i − 1.13045i −0.824937 0.565225i \(-0.808789\pi\)
0.824937 0.565225i \(-0.191211\pi\)
\(62\) 0 0
\(63\) 0.174425 0.0219755
\(64\) 0 0
\(65\) −7.93414 −0.984109
\(66\) 0 0
\(67\) − 1.27859i − 0.156205i −0.996945 0.0781023i \(-0.975114\pi\)
0.996945 0.0781023i \(-0.0248861\pi\)
\(68\) 0 0
\(69\) − 8.26756i − 0.995297i
\(70\) 0 0
\(71\) 4.66655 0.553818 0.276909 0.960896i \(-0.410690\pi\)
0.276909 + 0.960896i \(0.410690\pi\)
\(72\) 0 0
\(73\) 4.44578 0.520339 0.260170 0.965563i \(-0.416221\pi\)
0.260170 + 0.965563i \(0.416221\pi\)
\(74\) 0 0
\(75\) − 3.81779i − 0.440840i
\(76\) 0 0
\(77\) 4.16555i 0.474708i
\(78\) 0 0
\(79\) −1.10044 −0.123809 −0.0619044 0.998082i \(-0.519717\pi\)
−0.0619044 + 0.998082i \(0.519717\pi\)
\(80\) 0 0
\(81\) −8.73014 −0.970016
\(82\) 0 0
\(83\) − 2.47419i − 0.271578i −0.990738 0.135789i \(-0.956643\pi\)
0.990738 0.135789i \(-0.0433569\pi\)
\(84\) 0 0
\(85\) 3.50157i 0.379799i
\(86\) 0 0
\(87\) −1.18772 −0.127337
\(88\) 0 0
\(89\) −15.8259 −1.67755 −0.838773 0.544481i \(-0.816727\pi\)
−0.838773 + 0.544481i \(0.816727\pi\)
\(90\) 0 0
\(91\) 9.52526i 0.998518i
\(92\) 0 0
\(93\) 16.6838i 1.73003i
\(94\) 0 0
\(95\) 1.66222 0.170540
\(96\) 0 0
\(97\) −13.9046 −1.41180 −0.705898 0.708313i \(-0.749456\pi\)
−0.705898 + 0.708313i \(0.749456\pi\)
\(98\) 0 0
\(99\) 0.182453i 0.0183372i
\(100\) 0 0
\(101\) − 1.00493i − 0.0999945i −0.998749 0.0499973i \(-0.984079\pi\)
0.998749 0.0499973i \(-0.0159213\pi\)
\(102\) 0 0
\(103\) −12.4581 −1.22753 −0.613767 0.789487i \(-0.710347\pi\)
−0.613767 + 0.789487i \(0.710347\pi\)
\(104\) 0 0
\(105\) 5.66100 0.552457
\(106\) 0 0
\(107\) 15.3004i 1.47915i 0.673076 + 0.739573i \(0.264973\pi\)
−0.673076 + 0.739573i \(0.735027\pi\)
\(108\) 0 0
\(109\) 7.65850i 0.733551i 0.930309 + 0.366775i \(0.119538\pi\)
−0.930309 + 0.366775i \(0.880462\pi\)
\(110\) 0 0
\(111\) −0.131885 −0.0125180
\(112\) 0 0
\(113\) 17.3938 1.63627 0.818134 0.575028i \(-0.195009\pi\)
0.818134 + 0.575028i \(0.195009\pi\)
\(114\) 0 0
\(115\) 8.05240i 0.750891i
\(116\) 0 0
\(117\) 0.417211i 0.0385712i
\(118\) 0 0
\(119\) 4.20378 0.385360
\(120\) 0 0
\(121\) 6.64273 0.603885
\(122\) 0 0
\(123\) − 18.3878i − 1.65797i
\(124\) 0 0
\(125\) 12.0295i 1.07595i
\(126\) 0 0
\(127\) −18.1488 −1.61045 −0.805225 0.592970i \(-0.797955\pi\)
−0.805225 + 0.592970i \(0.797955\pi\)
\(128\) 0 0
\(129\) −2.45482 −0.216135
\(130\) 0 0
\(131\) 9.70500i 0.847930i 0.905679 + 0.423965i \(0.139362\pi\)
−0.905679 + 0.423965i \(0.860638\pi\)
\(132\) 0 0
\(133\) − 1.99556i − 0.173037i
\(134\) 0 0
\(135\) 8.75834 0.753798
\(136\) 0 0
\(137\) −20.2253 −1.72797 −0.863983 0.503521i \(-0.832038\pi\)
−0.863983 + 0.503521i \(0.832038\pi\)
\(138\) 0 0
\(139\) − 16.7746i − 1.42280i −0.702786 0.711401i \(-0.748061\pi\)
0.702786 0.711401i \(-0.251939\pi\)
\(140\) 0 0
\(141\) − 4.91737i − 0.414117i
\(142\) 0 0
\(143\) −9.96366 −0.833203
\(144\) 0 0
\(145\) 1.15681 0.0960682
\(146\) 0 0
\(147\) 5.15017i 0.424779i
\(148\) 0 0
\(149\) − 13.6533i − 1.11853i −0.828991 0.559263i \(-0.811084\pi\)
0.828991 0.559263i \(-0.188916\pi\)
\(150\) 0 0
\(151\) −6.77602 −0.551425 −0.275712 0.961240i \(-0.588914\pi\)
−0.275712 + 0.961240i \(0.588914\pi\)
\(152\) 0 0
\(153\) 0.184128 0.0148858
\(154\) 0 0
\(155\) − 16.2496i − 1.30520i
\(156\) 0 0
\(157\) 23.4178i 1.86895i 0.356035 + 0.934473i \(0.384129\pi\)
−0.356035 + 0.934473i \(0.615871\pi\)
\(158\) 0 0
\(159\) −15.3642 −1.21846
\(160\) 0 0
\(161\) 9.66724 0.761885
\(162\) 0 0
\(163\) 1.06973i 0.0837875i 0.999122 + 0.0418938i \(0.0133391\pi\)
−0.999122 + 0.0418938i \(0.986661\pi\)
\(164\) 0 0
\(165\) 5.92155i 0.460992i
\(166\) 0 0
\(167\) −13.6217 −1.05408 −0.527039 0.849841i \(-0.676698\pi\)
−0.527039 + 0.849841i \(0.676698\pi\)
\(168\) 0 0
\(169\) −9.78367 −0.752590
\(170\) 0 0
\(171\) − 0.0874066i − 0.00668415i
\(172\) 0 0
\(173\) − 11.5684i − 0.879527i −0.898114 0.439763i \(-0.855062\pi\)
0.898114 0.439763i \(-0.144938\pi\)
\(174\) 0 0
\(175\) 4.46413 0.337456
\(176\) 0 0
\(177\) 19.6694 1.47844
\(178\) 0 0
\(179\) − 20.4983i − 1.53211i −0.642772 0.766057i \(-0.722216\pi\)
0.642772 0.766057i \(-0.277784\pi\)
\(180\) 0 0
\(181\) − 18.7745i − 1.39550i −0.716341 0.697750i \(-0.754185\pi\)
0.716341 0.697750i \(-0.245815\pi\)
\(182\) 0 0
\(183\) −15.0680 −1.11386
\(184\) 0 0
\(185\) 0.128453 0.00944404
\(186\) 0 0
\(187\) 4.39726i 0.321560i
\(188\) 0 0
\(189\) − 10.5147i − 0.764835i
\(190\) 0 0
\(191\) 14.0392 1.01584 0.507919 0.861405i \(-0.330415\pi\)
0.507919 + 0.861405i \(0.330415\pi\)
\(192\) 0 0
\(193\) −23.8700 −1.71820 −0.859099 0.511809i \(-0.828976\pi\)
−0.859099 + 0.511809i \(0.828976\pi\)
\(194\) 0 0
\(195\) 13.5407i 0.969667i
\(196\) 0 0
\(197\) − 1.84890i − 0.131729i −0.997829 0.0658645i \(-0.979020\pi\)
0.997829 0.0658645i \(-0.0209805\pi\)
\(198\) 0 0
\(199\) 18.3608 1.30156 0.650781 0.759266i \(-0.274442\pi\)
0.650781 + 0.759266i \(0.274442\pi\)
\(200\) 0 0
\(201\) −2.18208 −0.153912
\(202\) 0 0
\(203\) − 1.38880i − 0.0974748i
\(204\) 0 0
\(205\) 17.9093i 1.25084i
\(206\) 0 0
\(207\) 0.423430 0.0294304
\(208\) 0 0
\(209\) 2.08741 0.144389
\(210\) 0 0
\(211\) − 15.5147i − 1.06808i −0.845460 0.534039i \(-0.820674\pi\)
0.845460 0.534039i \(-0.179326\pi\)
\(212\) 0 0
\(213\) − 7.96409i − 0.545690i
\(214\) 0 0
\(215\) 2.39094 0.163061
\(216\) 0 0
\(217\) −19.5083 −1.32431
\(218\) 0 0
\(219\) − 7.58731i − 0.512703i
\(220\) 0 0
\(221\) 10.0551i 0.676380i
\(222\) 0 0
\(223\) 13.9260 0.932553 0.466276 0.884639i \(-0.345595\pi\)
0.466276 + 0.884639i \(0.345595\pi\)
\(224\) 0 0
\(225\) 0.195531 0.0130354
\(226\) 0 0
\(227\) 1.49624i 0.0993088i 0.998766 + 0.0496544i \(0.0158120\pi\)
−0.998766 + 0.0496544i \(0.984188\pi\)
\(228\) 0 0
\(229\) − 1.03706i − 0.0685310i −0.999413 0.0342655i \(-0.989091\pi\)
0.999413 0.0342655i \(-0.0109092\pi\)
\(230\) 0 0
\(231\) 7.10905 0.467741
\(232\) 0 0
\(233\) 4.93372 0.323219 0.161609 0.986855i \(-0.448332\pi\)
0.161609 + 0.986855i \(0.448332\pi\)
\(234\) 0 0
\(235\) 4.78940i 0.312426i
\(236\) 0 0
\(237\) 1.87804i 0.121992i
\(238\) 0 0
\(239\) 3.84533 0.248733 0.124367 0.992236i \(-0.460310\pi\)
0.124367 + 0.992236i \(0.460310\pi\)
\(240\) 0 0
\(241\) −1.41134 −0.0909123 −0.0454562 0.998966i \(-0.514474\pi\)
−0.0454562 + 0.998966i \(0.514474\pi\)
\(242\) 0 0
\(243\) − 0.908064i − 0.0582523i
\(244\) 0 0
\(245\) − 5.01614i − 0.320469i
\(246\) 0 0
\(247\) 4.77322 0.303713
\(248\) 0 0
\(249\) −4.22253 −0.267592
\(250\) 0 0
\(251\) − 8.24640i − 0.520508i −0.965540 0.260254i \(-0.916194\pi\)
0.965540 0.260254i \(-0.0838063\pi\)
\(252\) 0 0
\(253\) 10.1122i 0.635747i
\(254\) 0 0
\(255\) 5.97590 0.374225
\(256\) 0 0
\(257\) 15.0726 0.940200 0.470100 0.882613i \(-0.344218\pi\)
0.470100 + 0.882613i \(0.344218\pi\)
\(258\) 0 0
\(259\) − 0.154213i − 0.00958232i
\(260\) 0 0
\(261\) − 0.0608303i − 0.00376530i
\(262\) 0 0
\(263\) 9.49141 0.585265 0.292633 0.956225i \(-0.405469\pi\)
0.292633 + 0.956225i \(0.405469\pi\)
\(264\) 0 0
\(265\) 14.9644 0.919253
\(266\) 0 0
\(267\) 27.0091i 1.65293i
\(268\) 0 0
\(269\) 3.98549i 0.243000i 0.992591 + 0.121500i \(0.0387704\pi\)
−0.992591 + 0.121500i \(0.961230\pi\)
\(270\) 0 0
\(271\) 6.38427 0.387817 0.193908 0.981020i \(-0.437884\pi\)
0.193908 + 0.981020i \(0.437884\pi\)
\(272\) 0 0
\(273\) 16.2561 0.983865
\(274\) 0 0
\(275\) 4.66959i 0.281587i
\(276\) 0 0
\(277\) − 15.1758i − 0.911823i −0.890025 0.455912i \(-0.849313\pi\)
0.890025 0.455912i \(-0.150687\pi\)
\(278\) 0 0
\(279\) −0.854475 −0.0511561
\(280\) 0 0
\(281\) 14.9058 0.889207 0.444603 0.895728i \(-0.353345\pi\)
0.444603 + 0.895728i \(0.353345\pi\)
\(282\) 0 0
\(283\) 14.9931i 0.891250i 0.895220 + 0.445625i \(0.147019\pi\)
−0.895220 + 0.445625i \(0.852981\pi\)
\(284\) 0 0
\(285\) − 2.83680i − 0.168037i
\(286\) 0 0
\(287\) 21.5008 1.26915
\(288\) 0 0
\(289\) −12.5624 −0.738963
\(290\) 0 0
\(291\) 23.7300i 1.39108i
\(292\) 0 0
\(293\) − 21.6983i − 1.26763i −0.773485 0.633814i \(-0.781488\pi\)
0.773485 0.633814i \(-0.218512\pi\)
\(294\) 0 0
\(295\) −19.1575 −1.11539
\(296\) 0 0
\(297\) 10.9987 0.638208
\(298\) 0 0
\(299\) 23.1233i 1.33725i
\(300\) 0 0
\(301\) − 2.87042i − 0.165448i
\(302\) 0 0
\(303\) −1.71505 −0.0985270
\(304\) 0 0
\(305\) 14.6759 0.840339
\(306\) 0 0
\(307\) 7.81449i 0.445996i 0.974819 + 0.222998i \(0.0715844\pi\)
−0.974819 + 0.222998i \(0.928416\pi\)
\(308\) 0 0
\(309\) 21.2614i 1.20952i
\(310\) 0 0
\(311\) −12.8288 −0.727455 −0.363727 0.931505i \(-0.618496\pi\)
−0.363727 + 0.931505i \(0.618496\pi\)
\(312\) 0 0
\(313\) −4.07578 −0.230377 −0.115188 0.993344i \(-0.536747\pi\)
−0.115188 + 0.993344i \(0.536747\pi\)
\(314\) 0 0
\(315\) 0.289933i 0.0163358i
\(316\) 0 0
\(317\) − 2.26448i − 0.127186i −0.997976 0.0635931i \(-0.979744\pi\)
0.997976 0.0635931i \(-0.0202560\pi\)
\(318\) 0 0
\(319\) 1.45272 0.0813368
\(320\) 0 0
\(321\) 26.1122 1.45744
\(322\) 0 0
\(323\) − 2.10657i − 0.117212i
\(324\) 0 0
\(325\) 10.6778i 0.592300i
\(326\) 0 0
\(327\) 13.0702 0.722786
\(328\) 0 0
\(329\) 5.74987 0.317000
\(330\) 0 0
\(331\) 7.31171i 0.401888i 0.979603 + 0.200944i \(0.0644009\pi\)
−0.979603 + 0.200944i \(0.935599\pi\)
\(332\) 0 0
\(333\) − 0.00675460i 0 0.000370150i
\(334\) 0 0
\(335\) 2.12529 0.116117
\(336\) 0 0
\(337\) −6.00356 −0.327035 −0.163517 0.986540i \(-0.552284\pi\)
−0.163517 + 0.986540i \(0.552284\pi\)
\(338\) 0 0
\(339\) − 29.6848i − 1.61225i
\(340\) 0 0
\(341\) − 20.4062i − 1.10506i
\(342\) 0 0
\(343\) −19.9910 −1.07941
\(344\) 0 0
\(345\) 13.7425 0.739871
\(346\) 0 0
\(347\) 6.66747i 0.357929i 0.983856 + 0.178964i \(0.0572747\pi\)
−0.983856 + 0.178964i \(0.942725\pi\)
\(348\) 0 0
\(349\) − 35.5072i − 1.90066i −0.311248 0.950329i \(-0.600747\pi\)
0.311248 0.950329i \(-0.399253\pi\)
\(350\) 0 0
\(351\) 25.1504 1.34243
\(352\) 0 0
\(353\) −27.8315 −1.48132 −0.740659 0.671881i \(-0.765487\pi\)
−0.740659 + 0.671881i \(0.765487\pi\)
\(354\) 0 0
\(355\) 7.75683i 0.411690i
\(356\) 0 0
\(357\) − 7.17431i − 0.379705i
\(358\) 0 0
\(359\) −10.6778 −0.563551 −0.281775 0.959480i \(-0.590923\pi\)
−0.281775 + 0.959480i \(0.590923\pi\)
\(360\) 0 0
\(361\) −1.00000 −0.0526316
\(362\) 0 0
\(363\) − 11.3367i − 0.595023i
\(364\) 0 0
\(365\) 7.38986i 0.386803i
\(366\) 0 0
\(367\) −16.8950 −0.881911 −0.440956 0.897529i \(-0.645360\pi\)
−0.440956 + 0.897529i \(0.645360\pi\)
\(368\) 0 0
\(369\) 0.941747 0.0490254
\(370\) 0 0
\(371\) − 17.9653i − 0.932713i
\(372\) 0 0
\(373\) 33.4640i 1.73270i 0.499438 + 0.866350i \(0.333540\pi\)
−0.499438 + 0.866350i \(0.666460\pi\)
\(374\) 0 0
\(375\) 20.5300 1.06016
\(376\) 0 0
\(377\) 3.32191 0.171087
\(378\) 0 0
\(379\) − 37.0251i − 1.90185i −0.309423 0.950925i \(-0.600136\pi\)
0.309423 0.950925i \(-0.399864\pi\)
\(380\) 0 0
\(381\) 30.9734i 1.58682i
\(382\) 0 0
\(383\) 16.2264 0.829131 0.414566 0.910019i \(-0.363934\pi\)
0.414566 + 0.910019i \(0.363934\pi\)
\(384\) 0 0
\(385\) −6.92405 −0.352882
\(386\) 0 0
\(387\) − 0.125726i − 0.00639100i
\(388\) 0 0
\(389\) − 11.8131i − 0.598947i −0.954105 0.299473i \(-0.903189\pi\)
0.954105 0.299473i \(-0.0968110\pi\)
\(390\) 0 0
\(391\) 10.2050 0.516089
\(392\) 0 0
\(393\) 16.5629 0.835486
\(394\) 0 0
\(395\) − 1.82917i − 0.0920353i
\(396\) 0 0
\(397\) 10.9654i 0.550340i 0.961396 + 0.275170i \(0.0887341\pi\)
−0.961396 + 0.275170i \(0.911266\pi\)
\(398\) 0 0
\(399\) −3.40569 −0.170498
\(400\) 0 0
\(401\) 11.9479 0.596650 0.298325 0.954464i \(-0.403572\pi\)
0.298325 + 0.954464i \(0.403572\pi\)
\(402\) 0 0
\(403\) − 46.6624i − 2.32442i
\(404\) 0 0
\(405\) − 14.5114i − 0.721077i
\(406\) 0 0
\(407\) 0.161311 0.00799587
\(408\) 0 0
\(409\) −1.28997 −0.0637848 −0.0318924 0.999491i \(-0.510153\pi\)
−0.0318924 + 0.999491i \(0.510153\pi\)
\(410\) 0 0
\(411\) 34.5172i 1.70261i
\(412\) 0 0
\(413\) 22.9993i 1.13172i
\(414\) 0 0
\(415\) 4.11265 0.201882
\(416\) 0 0
\(417\) −28.6281 −1.40192
\(418\) 0 0
\(419\) 15.6802i 0.766030i 0.923742 + 0.383015i \(0.125114\pi\)
−0.923742 + 0.383015i \(0.874886\pi\)
\(420\) 0 0
\(421\) − 26.2544i − 1.27956i −0.768557 0.639782i \(-0.779025\pi\)
0.768557 0.639782i \(-0.220975\pi\)
\(422\) 0 0
\(423\) 0.251847 0.0122452
\(424\) 0 0
\(425\) 4.71245 0.228587
\(426\) 0 0
\(427\) − 17.6190i − 0.852643i
\(428\) 0 0
\(429\) 17.0043i 0.820975i
\(430\) 0 0
\(431\) 33.4648 1.61194 0.805972 0.591954i \(-0.201643\pi\)
0.805972 + 0.591954i \(0.201643\pi\)
\(432\) 0 0
\(433\) 5.89119 0.283112 0.141556 0.989930i \(-0.454789\pi\)
0.141556 + 0.989930i \(0.454789\pi\)
\(434\) 0 0
\(435\) − 1.97426i − 0.0946584i
\(436\) 0 0
\(437\) − 4.84437i − 0.231738i
\(438\) 0 0
\(439\) −25.9770 −1.23982 −0.619908 0.784674i \(-0.712830\pi\)
−0.619908 + 0.784674i \(0.712830\pi\)
\(440\) 0 0
\(441\) −0.263770 −0.0125605
\(442\) 0 0
\(443\) − 11.0652i − 0.525722i −0.964834 0.262861i \(-0.915334\pi\)
0.964834 0.262861i \(-0.0846661\pi\)
\(444\) 0 0
\(445\) − 26.3062i − 1.24703i
\(446\) 0 0
\(447\) −23.3012 −1.10211
\(448\) 0 0
\(449\) 3.56950 0.168455 0.0842274 0.996447i \(-0.473158\pi\)
0.0842274 + 0.996447i \(0.473158\pi\)
\(450\) 0 0
\(451\) 22.4904i 1.05903i
\(452\) 0 0
\(453\) 11.5642i 0.543332i
\(454\) 0 0
\(455\) −15.8331 −0.742265
\(456\) 0 0
\(457\) −23.3258 −1.09113 −0.545567 0.838067i \(-0.683686\pi\)
−0.545567 + 0.838067i \(0.683686\pi\)
\(458\) 0 0
\(459\) − 11.0996i − 0.518087i
\(460\) 0 0
\(461\) 8.16887i 0.380462i 0.981739 + 0.190231i \(0.0609237\pi\)
−0.981739 + 0.190231i \(0.939076\pi\)
\(462\) 0 0
\(463\) 12.8015 0.594936 0.297468 0.954732i \(-0.403858\pi\)
0.297468 + 0.954732i \(0.403858\pi\)
\(464\) 0 0
\(465\) −27.7321 −1.28605
\(466\) 0 0
\(467\) − 0.897425i − 0.0415279i −0.999784 0.0207639i \(-0.993390\pi\)
0.999784 0.0207639i \(-0.00660984\pi\)
\(468\) 0 0
\(469\) − 2.55150i − 0.117817i
\(470\) 0 0
\(471\) 39.9656 1.84152
\(472\) 0 0
\(473\) 3.00253 0.138056
\(474\) 0 0
\(475\) − 2.23703i − 0.102642i
\(476\) 0 0
\(477\) − 0.786890i − 0.0360292i
\(478\) 0 0
\(479\) −12.9960 −0.593803 −0.296901 0.954908i \(-0.595953\pi\)
−0.296901 + 0.954908i \(0.595953\pi\)
\(480\) 0 0
\(481\) 0.368865 0.0168188
\(482\) 0 0
\(483\) − 16.4984i − 0.750704i
\(484\) 0 0
\(485\) − 23.1125i − 1.04948i
\(486\) 0 0
\(487\) −12.0621 −0.546588 −0.273294 0.961931i \(-0.588113\pi\)
−0.273294 + 0.961931i \(0.588113\pi\)
\(488\) 0 0
\(489\) 1.82563 0.0825579
\(490\) 0 0
\(491\) − 30.5337i − 1.37797i −0.724778 0.688983i \(-0.758058\pi\)
0.724778 0.688983i \(-0.241942\pi\)
\(492\) 0 0
\(493\) − 1.46606i − 0.0660279i
\(494\) 0 0
\(495\) −0.303277 −0.0136313
\(496\) 0 0
\(497\) 9.31239 0.417718
\(498\) 0 0
\(499\) 40.2124i 1.80015i 0.435731 + 0.900077i \(0.356490\pi\)
−0.435731 + 0.900077i \(0.643510\pi\)
\(500\) 0 0
\(501\) 23.2472i 1.03861i
\(502\) 0 0
\(503\) −35.7181 −1.59259 −0.796296 0.604907i \(-0.793210\pi\)
−0.796296 + 0.604907i \(0.793210\pi\)
\(504\) 0 0
\(505\) 1.67042 0.0743326
\(506\) 0 0
\(507\) 16.6971i 0.741545i
\(508\) 0 0
\(509\) 35.3428i 1.56654i 0.621681 + 0.783270i \(0.286450\pi\)
−0.621681 + 0.783270i \(0.713550\pi\)
\(510\) 0 0
\(511\) 8.87183 0.392466
\(512\) 0 0
\(513\) −5.26907 −0.232635
\(514\) 0 0
\(515\) − 20.7081i − 0.912508i
\(516\) 0 0
\(517\) 6.01450i 0.264518i
\(518\) 0 0
\(519\) −19.7429 −0.866619
\(520\) 0 0
\(521\) 2.50662 0.109817 0.0549086 0.998491i \(-0.482513\pi\)
0.0549086 + 0.998491i \(0.482513\pi\)
\(522\) 0 0
\(523\) 9.95330i 0.435227i 0.976035 + 0.217614i \(0.0698273\pi\)
−0.976035 + 0.217614i \(0.930173\pi\)
\(524\) 0 0
\(525\) − 7.61863i − 0.332504i
\(526\) 0 0
\(527\) −20.5935 −0.897068
\(528\) 0 0
\(529\) 0.467940 0.0203452
\(530\) 0 0
\(531\) 1.00738i 0.0437167i
\(532\) 0 0
\(533\) 51.4283i 2.22761i
\(534\) 0 0
\(535\) −25.4326 −1.09955
\(536\) 0 0
\(537\) −34.9831 −1.50963
\(538\) 0 0
\(539\) − 6.29925i − 0.271328i
\(540\) 0 0
\(541\) − 34.7061i − 1.49213i −0.665873 0.746065i \(-0.731941\pi\)
0.665873 0.746065i \(-0.268059\pi\)
\(542\) 0 0
\(543\) −32.0412 −1.37502
\(544\) 0 0
\(545\) −12.7301 −0.545297
\(546\) 0 0
\(547\) 7.21429i 0.308461i 0.988035 + 0.154230i \(0.0492898\pi\)
−0.988035 + 0.154230i \(0.950710\pi\)
\(548\) 0 0
\(549\) − 0.771721i − 0.0329363i
\(550\) 0 0
\(551\) −0.695946 −0.0296483
\(552\) 0 0
\(553\) −2.19599 −0.0933829
\(554\) 0 0
\(555\) − 0.219222i − 0.00930545i
\(556\) 0 0
\(557\) − 4.27230i − 0.181023i −0.995895 0.0905116i \(-0.971150\pi\)
0.995895 0.0905116i \(-0.0288502\pi\)
\(558\) 0 0
\(559\) 6.86582 0.290393
\(560\) 0 0
\(561\) 7.50451 0.316840
\(562\) 0 0
\(563\) − 23.9662i − 1.01005i −0.863103 0.505027i \(-0.831482\pi\)
0.863103 0.505027i \(-0.168518\pi\)
\(564\) 0 0
\(565\) 28.9122i 1.21635i
\(566\) 0 0
\(567\) −17.4215 −0.731635
\(568\) 0 0
\(569\) 6.53074 0.273783 0.136891 0.990586i \(-0.456289\pi\)
0.136891 + 0.990586i \(0.456289\pi\)
\(570\) 0 0
\(571\) − 13.8125i − 0.578035i −0.957324 0.289017i \(-0.906671\pi\)
0.957324 0.289017i \(-0.0933285\pi\)
\(572\) 0 0
\(573\) − 23.9597i − 1.00093i
\(574\) 0 0
\(575\) 10.8370 0.451934
\(576\) 0 0
\(577\) −1.75601 −0.0731035 −0.0365517 0.999332i \(-0.511637\pi\)
−0.0365517 + 0.999332i \(0.511637\pi\)
\(578\) 0 0
\(579\) 40.7373i 1.69298i
\(580\) 0 0
\(581\) − 4.93740i − 0.204838i
\(582\) 0 0
\(583\) 18.7922 0.778293
\(584\) 0 0
\(585\) −0.693496 −0.0286725
\(586\) 0 0
\(587\) 22.1818i 0.915540i 0.889071 + 0.457770i \(0.151352\pi\)
−0.889071 + 0.457770i \(0.848648\pi\)
\(588\) 0 0
\(589\) 9.77587i 0.402808i
\(590\) 0 0
\(591\) −3.15540 −0.129796
\(592\) 0 0
\(593\) −14.8347 −0.609186 −0.304593 0.952483i \(-0.598520\pi\)
−0.304593 + 0.952483i \(0.598520\pi\)
\(594\) 0 0
\(595\) 6.98760i 0.286464i
\(596\) 0 0
\(597\) − 31.3351i − 1.28246i
\(598\) 0 0
\(599\) 19.9337 0.814468 0.407234 0.913324i \(-0.366493\pi\)
0.407234 + 0.913324i \(0.366493\pi\)
\(600\) 0 0
\(601\) 31.4765 1.28395 0.641976 0.766724i \(-0.278115\pi\)
0.641976 + 0.766724i \(0.278115\pi\)
\(602\) 0 0
\(603\) − 0.111757i − 0.00455110i
\(604\) 0 0
\(605\) 11.0417i 0.448908i
\(606\) 0 0
\(607\) −25.8245 −1.04818 −0.524092 0.851662i \(-0.675595\pi\)
−0.524092 + 0.851662i \(0.675595\pi\)
\(608\) 0 0
\(609\) −2.37018 −0.0960443
\(610\) 0 0
\(611\) 13.7532i 0.556396i
\(612\) 0 0
\(613\) − 0.844965i − 0.0341278i −0.999854 0.0170639i \(-0.994568\pi\)
0.999854 0.0170639i \(-0.00543187\pi\)
\(614\) 0 0
\(615\) 30.5646 1.23248
\(616\) 0 0
\(617\) −10.0344 −0.403970 −0.201985 0.979389i \(-0.564739\pi\)
−0.201985 + 0.979389i \(0.564739\pi\)
\(618\) 0 0
\(619\) 29.2896i 1.17725i 0.808406 + 0.588625i \(0.200331\pi\)
−0.808406 + 0.588625i \(0.799669\pi\)
\(620\) 0 0
\(621\) − 25.5253i − 1.02430i
\(622\) 0 0
\(623\) −31.5816 −1.26529
\(624\) 0 0
\(625\) −8.81055 −0.352422
\(626\) 0 0
\(627\) − 3.56244i − 0.142270i
\(628\) 0 0
\(629\) − 0.162791i − 0.00649091i
\(630\) 0 0
\(631\) 1.02437 0.0407796 0.0203898 0.999792i \(-0.493509\pi\)
0.0203898 + 0.999792i \(0.493509\pi\)
\(632\) 0 0
\(633\) −26.4779 −1.05240
\(634\) 0 0
\(635\) − 30.1673i − 1.19715i
\(636\) 0 0
\(637\) − 14.4043i − 0.570721i
\(638\) 0 0
\(639\) 0.407887 0.0161358
\(640\) 0 0
\(641\) −31.8367 −1.25747 −0.628737 0.777618i \(-0.716428\pi\)
−0.628737 + 0.777618i \(0.716428\pi\)
\(642\) 0 0
\(643\) 34.2996i 1.35264i 0.736606 + 0.676322i \(0.236427\pi\)
−0.736606 + 0.676322i \(0.763573\pi\)
\(644\) 0 0
\(645\) − 4.08045i − 0.160668i
\(646\) 0 0
\(647\) −9.45559 −0.371738 −0.185869 0.982575i \(-0.559510\pi\)
−0.185869 + 0.982575i \(0.559510\pi\)
\(648\) 0 0
\(649\) −24.0579 −0.944355
\(650\) 0 0
\(651\) 33.2936i 1.30488i
\(652\) 0 0
\(653\) − 6.33451i − 0.247888i −0.992289 0.123944i \(-0.960446\pi\)
0.992289 0.123944i \(-0.0395544\pi\)
\(654\) 0 0
\(655\) −16.1318 −0.630323
\(656\) 0 0
\(657\) 0.388590 0.0151604
\(658\) 0 0
\(659\) − 7.22355i − 0.281390i −0.990053 0.140695i \(-0.955066\pi\)
0.990053 0.140695i \(-0.0449337\pi\)
\(660\) 0 0
\(661\) 0.529621i 0.0205999i 0.999947 + 0.0102999i \(0.00327863\pi\)
−0.999947 + 0.0102999i \(0.996721\pi\)
\(662\) 0 0
\(663\) 17.1604 0.666454
\(664\) 0 0
\(665\) 3.31706 0.128630
\(666\) 0 0
\(667\) − 3.37142i − 0.130542i
\(668\) 0 0
\(669\) − 23.7665i − 0.918867i
\(670\) 0 0
\(671\) 18.4299 0.711479
\(672\) 0 0
\(673\) 41.7434 1.60909 0.804544 0.593893i \(-0.202410\pi\)
0.804544 + 0.593893i \(0.202410\pi\)
\(674\) 0 0
\(675\) − 11.7871i − 0.453684i
\(676\) 0 0
\(677\) 33.4165i 1.28430i 0.766578 + 0.642151i \(0.221958\pi\)
−0.766578 + 0.642151i \(0.778042\pi\)
\(678\) 0 0
\(679\) −27.7474 −1.06485
\(680\) 0 0
\(681\) 2.55353 0.0978514
\(682\) 0 0
\(683\) 30.1765i 1.15467i 0.816507 + 0.577336i \(0.195908\pi\)
−0.816507 + 0.577336i \(0.804092\pi\)
\(684\) 0 0
\(685\) − 33.6189i − 1.28451i
\(686\) 0 0
\(687\) −1.76988 −0.0675252
\(688\) 0 0
\(689\) 42.9716 1.63709
\(690\) 0 0
\(691\) − 17.6002i − 0.669544i −0.942299 0.334772i \(-0.891341\pi\)
0.942299 0.334772i \(-0.108659\pi\)
\(692\) 0 0
\(693\) 0.364096i 0.0138309i
\(694\) 0 0
\(695\) 27.8830 1.05766
\(696\) 0 0
\(697\) 22.6968 0.859704
\(698\) 0 0
\(699\) − 8.42005i − 0.318475i
\(700\) 0 0
\(701\) 30.6993i 1.15950i 0.814796 + 0.579748i \(0.196849\pi\)
−0.814796 + 0.579748i \(0.803151\pi\)
\(702\) 0 0
\(703\) −0.0772780 −0.00291459
\(704\) 0 0
\(705\) 8.17374 0.307841
\(706\) 0 0
\(707\) − 2.00540i − 0.0754210i
\(708\) 0 0
\(709\) 8.79437i 0.330279i 0.986270 + 0.165140i \(0.0528075\pi\)
−0.986270 + 0.165140i \(0.947193\pi\)
\(710\) 0 0
\(711\) −0.0961853 −0.00360723
\(712\) 0 0
\(713\) −47.3579 −1.77357
\(714\) 0 0
\(715\) − 16.5618i − 0.619375i
\(716\) 0 0
\(717\) − 6.56256i − 0.245083i
\(718\) 0 0
\(719\) −12.5991 −0.469867 −0.234933 0.972011i \(-0.575487\pi\)
−0.234933 + 0.972011i \(0.575487\pi\)
\(720\) 0 0
\(721\) −24.8609 −0.925869
\(722\) 0 0
\(723\) 2.40864i 0.0895781i
\(724\) 0 0
\(725\) − 1.55685i − 0.0578200i
\(726\) 0 0
\(727\) 39.7756 1.47519 0.737597 0.675241i \(-0.235960\pi\)
0.737597 + 0.675241i \(0.235960\pi\)
\(728\) 0 0
\(729\) −27.7402 −1.02741
\(730\) 0 0
\(731\) − 3.03009i − 0.112072i
\(732\) 0 0
\(733\) 5.50154i 0.203204i 0.994825 + 0.101602i \(0.0323968\pi\)
−0.994825 + 0.101602i \(0.967603\pi\)
\(734\) 0 0
\(735\) −8.56071 −0.315766
\(736\) 0 0
\(737\) 2.66894 0.0983115
\(738\) 0 0
\(739\) 52.6937i 1.93837i 0.246335 + 0.969185i \(0.420774\pi\)
−0.246335 + 0.969185i \(0.579226\pi\)
\(740\) 0 0
\(741\) − 8.14614i − 0.299256i
\(742\) 0 0
\(743\) 6.61647 0.242735 0.121367 0.992608i \(-0.461272\pi\)
0.121367 + 0.992608i \(0.461272\pi\)
\(744\) 0 0
\(745\) 22.6948 0.831474
\(746\) 0 0
\(747\) − 0.216261i − 0.00791256i
\(748\) 0 0
\(749\) 30.5329i 1.11565i
\(750\) 0 0
\(751\) 39.9062 1.45620 0.728099 0.685472i \(-0.240404\pi\)
0.728099 + 0.685472i \(0.240404\pi\)
\(752\) 0 0
\(753\) −14.0736 −0.512869
\(754\) 0 0
\(755\) − 11.2632i − 0.409911i
\(756\) 0 0
\(757\) − 34.2645i − 1.24537i −0.782475 0.622683i \(-0.786043\pi\)
0.782475 0.622683i \(-0.213957\pi\)
\(758\) 0 0
\(759\) 17.2578 0.626417
\(760\) 0 0
\(761\) −12.4757 −0.452243 −0.226122 0.974099i \(-0.572605\pi\)
−0.226122 + 0.974099i \(0.572605\pi\)
\(762\) 0 0
\(763\) 15.2830i 0.553281i
\(764\) 0 0
\(765\) 0.306060i 0.0110656i
\(766\) 0 0
\(767\) −55.0126 −1.98639
\(768\) 0 0
\(769\) 3.32384 0.119861 0.0599304 0.998203i \(-0.480912\pi\)
0.0599304 + 0.998203i \(0.480912\pi\)
\(770\) 0 0
\(771\) − 25.7233i − 0.926402i
\(772\) 0 0
\(773\) 14.4248i 0.518824i 0.965767 + 0.259412i \(0.0835287\pi\)
−0.965767 + 0.259412i \(0.916471\pi\)
\(774\) 0 0
\(775\) −21.8689 −0.785555
\(776\) 0 0
\(777\) −0.263185 −0.00944170
\(778\) 0 0
\(779\) − 10.7743i − 0.386030i
\(780\) 0 0
\(781\) 9.74099i 0.348560i
\(782\) 0 0
\(783\) −3.66699 −0.131047
\(784\) 0 0
\(785\) −38.9255 −1.38931
\(786\) 0 0
\(787\) − 38.6403i − 1.37738i −0.725057 0.688689i \(-0.758187\pi\)
0.725057 0.688689i \(-0.241813\pi\)
\(788\) 0 0
\(789\) − 16.1983i − 0.576676i
\(790\) 0 0
\(791\) 34.7103 1.23416
\(792\) 0 0
\(793\) 42.1433 1.49655
\(794\) 0 0
\(795\) − 25.5387i − 0.905763i
\(796\) 0 0
\(797\) − 30.9316i − 1.09565i −0.836592 0.547826i \(-0.815456\pi\)
0.836592 0.547826i \(-0.184544\pi\)
\(798\) 0 0
\(799\) 6.06971 0.214731
\(800\) 0 0
\(801\) −1.38329 −0.0488762
\(802\) 0 0
\(803\) 9.28015i 0.327490i
\(804\) 0 0
\(805\) 16.0691i 0.566360i
\(806\) 0 0
\(807\) 6.80177 0.239434
\(808\) 0 0
\(809\) 56.7269 1.99441 0.997206 0.0747056i \(-0.0238017\pi\)
0.997206 + 0.0747056i \(0.0238017\pi\)
\(810\) 0 0
\(811\) 4.91800i 0.172694i 0.996265 + 0.0863472i \(0.0275195\pi\)
−0.996265 + 0.0863472i \(0.972481\pi\)
\(812\) 0 0
\(813\) − 10.8956i − 0.382125i
\(814\) 0 0
\(815\) −1.77812 −0.0622849
\(816\) 0 0
\(817\) −1.43840 −0.0503233
\(818\) 0 0
\(819\) 0.832570i 0.0290924i
\(820\) 0 0
\(821\) − 19.0797i − 0.665886i −0.942947 0.332943i \(-0.891958\pi\)
0.942947 0.332943i \(-0.108042\pi\)
\(822\) 0 0
\(823\) 19.6263 0.684131 0.342066 0.939676i \(-0.388873\pi\)
0.342066 + 0.939676i \(0.388873\pi\)
\(824\) 0 0
\(825\) 7.96928 0.277455
\(826\) 0 0
\(827\) − 28.0107i − 0.974029i −0.873394 0.487014i \(-0.838086\pi\)
0.873394 0.487014i \(-0.161914\pi\)
\(828\) 0 0
\(829\) − 23.1932i − 0.805533i −0.915303 0.402766i \(-0.868049\pi\)
0.915303 0.402766i \(-0.131951\pi\)
\(830\) 0 0
\(831\) −25.8995 −0.898442
\(832\) 0 0
\(833\) −6.35707 −0.220259
\(834\) 0 0
\(835\) − 22.6422i − 0.783567i
\(836\) 0 0
\(837\) 51.5097i 1.78044i
\(838\) 0 0
\(839\) −27.6363 −0.954110 −0.477055 0.878873i \(-0.658296\pi\)
−0.477055 + 0.878873i \(0.658296\pi\)
\(840\) 0 0
\(841\) 28.5157 0.983299
\(842\) 0 0
\(843\) − 25.4388i − 0.876157i
\(844\) 0 0
\(845\) − 16.2626i − 0.559450i
\(846\) 0 0
\(847\) 13.2560 0.455481
\(848\) 0 0
\(849\) 25.5878 0.878171
\(850\) 0 0
\(851\) − 0.374363i − 0.0128330i
\(852\) 0 0
\(853\) 53.0502i 1.81640i 0.418532 + 0.908202i \(0.362545\pi\)
−0.418532 + 0.908202i \(0.637455\pi\)
\(854\) 0 0
\(855\) 0.145289 0.00496877
\(856\) 0 0
\(857\) −8.06832 −0.275609 −0.137804 0.990459i \(-0.544004\pi\)
−0.137804 + 0.990459i \(0.544004\pi\)
\(858\) 0 0
\(859\) − 10.1806i − 0.347357i −0.984802 0.173679i \(-0.944435\pi\)
0.984802 0.173679i \(-0.0555654\pi\)
\(860\) 0 0
\(861\) − 36.6940i − 1.25053i
\(862\) 0 0
\(863\) 45.7074 1.55590 0.777949 0.628327i \(-0.216260\pi\)
0.777949 + 0.628327i \(0.216260\pi\)
\(864\) 0 0
\(865\) 19.2292 0.653811
\(866\) 0 0
\(867\) 21.4394i 0.728119i
\(868\) 0 0
\(869\) − 2.29706i − 0.0779223i
\(870\) 0 0
\(871\) 6.10299 0.206792
\(872\) 0 0
\(873\) −1.21535 −0.0411334
\(874\) 0 0
\(875\) 24.0056i 0.811539i
\(876\) 0 0
\(877\) − 8.41970i − 0.284313i −0.989844 0.142157i \(-0.954596\pi\)
0.989844 0.142157i \(-0.0454037\pi\)
\(878\) 0 0
\(879\) −37.0310 −1.24903
\(880\) 0 0
\(881\) 8.33625 0.280855 0.140428 0.990091i \(-0.455152\pi\)
0.140428 + 0.990091i \(0.455152\pi\)
\(882\) 0 0
\(883\) − 26.9797i − 0.907941i −0.891017 0.453970i \(-0.850007\pi\)
0.891017 0.453970i \(-0.149993\pi\)
\(884\) 0 0
\(885\) 32.6948i 1.09902i
\(886\) 0 0
\(887\) 25.8570 0.868193 0.434097 0.900866i \(-0.357068\pi\)
0.434097 + 0.900866i \(0.357068\pi\)
\(888\) 0 0
\(889\) −36.2171 −1.21468
\(890\) 0 0
\(891\) − 18.2234i − 0.610505i
\(892\) 0 0
\(893\) − 2.88133i − 0.0964200i
\(894\) 0 0
\(895\) 34.0726 1.13892
\(896\) 0 0
\(897\) 39.4629 1.31763
\(898\) 0 0
\(899\) 6.80348i 0.226909i
\(900\) 0 0
\(901\) − 18.9647i − 0.631805i
\(902\) 0 0
\(903\) −4.89875 −0.163020
\(904\) 0 0
\(905\) 31.2074 1.03737
\(906\) 0 0
\(907\) − 21.7649i − 0.722690i −0.932432 0.361345i \(-0.882318\pi\)
0.932432 0.361345i \(-0.117682\pi\)
\(908\) 0 0
\(909\) − 0.0878377i − 0.00291339i
\(910\) 0 0
\(911\) 13.3098 0.440974 0.220487 0.975390i \(-0.429235\pi\)
0.220487 + 0.975390i \(0.429235\pi\)
\(912\) 0 0
\(913\) 5.16464 0.170925
\(914\) 0 0
\(915\) − 25.0464i − 0.828007i
\(916\) 0 0
\(917\) 19.3669i 0.639552i
\(918\) 0 0
\(919\) 29.7421 0.981103 0.490551 0.871412i \(-0.336795\pi\)
0.490551 + 0.871412i \(0.336795\pi\)
\(920\) 0 0
\(921\) 13.3365 0.439451
\(922\) 0 0
\(923\) 22.2745i 0.733174i
\(924\) 0 0
\(925\) − 0.172873i − 0.00568403i
\(926\) 0 0
\(927\) −1.08892 −0.0357648
\(928\) 0 0
\(929\) −30.3181 −0.994705 −0.497352 0.867549i \(-0.665694\pi\)
−0.497352 + 0.867549i \(0.665694\pi\)
\(930\) 0 0
\(931\) 3.01774i 0.0989024i
\(932\) 0 0
\(933\) 21.8941i 0.716779i
\(934\) 0 0
\(935\) −7.30921 −0.239037
\(936\) 0 0
\(937\) −8.81465 −0.287962 −0.143981 0.989580i \(-0.545990\pi\)
−0.143981 + 0.989580i \(0.545990\pi\)
\(938\) 0 0
\(939\) 6.95586i 0.226996i
\(940\) 0 0
\(941\) 42.2936i 1.37873i 0.724413 + 0.689366i \(0.242111\pi\)
−0.724413 + 0.689366i \(0.757889\pi\)
\(942\) 0 0
\(943\) 52.1949 1.69970
\(944\) 0 0
\(945\) 17.4778 0.568553
\(946\) 0 0
\(947\) 30.2387i 0.982626i 0.870983 + 0.491313i \(0.163483\pi\)
−0.870983 + 0.491313i \(0.836517\pi\)
\(948\) 0 0
\(949\) 21.2207i 0.688853i
\(950\) 0 0
\(951\) −3.86464 −0.125320
\(952\) 0 0
\(953\) −1.52937 −0.0495411 −0.0247706 0.999693i \(-0.507886\pi\)
−0.0247706 + 0.999693i \(0.507886\pi\)
\(954\) 0 0
\(955\) 23.3362i 0.755141i
\(956\) 0 0
\(957\) − 2.47926i − 0.0801432i
\(958\) 0 0
\(959\) −40.3609 −1.30332
\(960\) 0 0
\(961\) 64.5676 2.08283
\(962\) 0 0
\(963\) 1.33736i 0.0430957i
\(964\) 0 0
\(965\) − 39.6771i − 1.27725i
\(966\) 0 0
\(967\) 3.67723 0.118252 0.0591259 0.998251i \(-0.481169\pi\)
0.0591259 + 0.998251i \(0.481169\pi\)
\(968\) 0 0
\(969\) −3.59513 −0.115492
\(970\) 0 0
\(971\) − 5.89852i − 0.189293i −0.995511 0.0946463i \(-0.969828\pi\)
0.995511 0.0946463i \(-0.0301720\pi\)
\(972\) 0 0
\(973\) − 33.4747i − 1.07315i
\(974\) 0 0
\(975\) 18.2232 0.583608
\(976\) 0 0
\(977\) −19.5003 −0.623871 −0.311935 0.950103i \(-0.600977\pi\)
−0.311935 + 0.950103i \(0.600977\pi\)
\(978\) 0 0
\(979\) − 33.0352i − 1.05581i
\(980\) 0 0
\(981\) 0.669403i 0.0213724i
\(982\) 0 0
\(983\) 2.43384 0.0776274 0.0388137 0.999246i \(-0.487642\pi\)
0.0388137 + 0.999246i \(0.487642\pi\)
\(984\) 0 0
\(985\) 3.07328 0.0979229
\(986\) 0 0
\(987\) − 9.81291i − 0.312348i
\(988\) 0 0
\(989\) − 6.96815i − 0.221574i
\(990\) 0 0
\(991\) 15.1966 0.482736 0.241368 0.970434i \(-0.422404\pi\)
0.241368 + 0.970434i \(0.422404\pi\)
\(992\) 0 0
\(993\) 12.4784 0.395990
\(994\) 0 0
\(995\) 30.5196i 0.967537i
\(996\) 0 0
\(997\) 42.5056i 1.34617i 0.739567 + 0.673083i \(0.235030\pi\)
−0.739567 + 0.673083i \(0.764970\pi\)
\(998\) 0 0
\(999\) −0.407183 −0.0128827
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 608.2.c.b.305.6 16
3.2 odd 2 5472.2.g.b.2737.6 16
4.3 odd 2 152.2.c.b.77.8 yes 16
8.3 odd 2 152.2.c.b.77.7 16
8.5 even 2 inner 608.2.c.b.305.11 16
12.11 even 2 1368.2.g.b.685.9 16
16.3 odd 4 4864.2.a.bo.1.3 8
16.5 even 4 4864.2.a.bp.1.3 8
16.11 odd 4 4864.2.a.bq.1.6 8
16.13 even 4 4864.2.a.bn.1.6 8
24.5 odd 2 5472.2.g.b.2737.11 16
24.11 even 2 1368.2.g.b.685.10 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.2.c.b.77.7 16 8.3 odd 2
152.2.c.b.77.8 yes 16 4.3 odd 2
608.2.c.b.305.6 16 1.1 even 1 trivial
608.2.c.b.305.11 16 8.5 even 2 inner
1368.2.g.b.685.9 16 12.11 even 2
1368.2.g.b.685.10 16 24.11 even 2
4864.2.a.bn.1.6 8 16.13 even 4
4864.2.a.bo.1.3 8 16.3 odd 4
4864.2.a.bp.1.3 8 16.5 even 4
4864.2.a.bq.1.6 8 16.11 odd 4
5472.2.g.b.2737.6 16 3.2 odd 2
5472.2.g.b.2737.11 16 24.5 odd 2