Properties

Label 4864.2.a.bp.1.3
Level $4864$
Weight $2$
Character 4864.1
Self dual yes
Analytic conductor $38.839$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4864,2,Mod(1,4864)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4864, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4864.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4864 = 2^{8} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4864.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,8,0,-4,0,12,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.8392355432\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 13x^{6} + 24x^{5} + 48x^{4} - 68x^{3} - 62x^{2} + 32x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 152)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-2.81542\) of defining polynomial
Character \(\chi\) \(=\) 4864.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.70663 q^{3} -1.66222 q^{5} -1.99556 q^{7} -0.0874066 q^{9} -2.08741 q^{11} +4.77322 q^{13} +2.83680 q^{15} +2.10657 q^{17} -1.00000 q^{19} +3.40569 q^{21} -4.84437 q^{23} -2.23703 q^{25} +5.26907 q^{27} -0.695946 q^{29} -9.77587 q^{31} +3.56244 q^{33} +3.31706 q^{35} +0.0772780 q^{37} -8.14614 q^{39} -10.7743 q^{41} +1.43840 q^{43} +0.145289 q^{45} +2.88133 q^{47} -3.01774 q^{49} -3.59513 q^{51} +9.00264 q^{53} +3.46973 q^{55} +1.70663 q^{57} -11.5253 q^{59} -8.82910 q^{61} +0.174425 q^{63} -7.93414 q^{65} -1.27859 q^{67} +8.26756 q^{69} -4.66655 q^{71} -4.44578 q^{73} +3.81779 q^{75} +4.16555 q^{77} -1.10044 q^{79} -8.73014 q^{81} -2.47419 q^{83} -3.50157 q^{85} +1.18772 q^{87} +15.8259 q^{89} -9.52526 q^{91} +16.6838 q^{93} +1.66222 q^{95} -13.9046 q^{97} +0.182453 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{5} - 4 q^{7} + 12 q^{9} - 4 q^{11} + 8 q^{13} - 4 q^{17} - 8 q^{19} + 16 q^{21} + 12 q^{25} + 28 q^{29} - 8 q^{31} + 12 q^{35} + 4 q^{37} + 4 q^{39} - 8 q^{41} + 4 q^{43} + 24 q^{45} - 12 q^{47}+ \cdots + 76 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.70663 −0.985325 −0.492662 0.870221i \(-0.663976\pi\)
−0.492662 + 0.870221i \(0.663976\pi\)
\(4\) 0 0
\(5\) −1.66222 −0.743367 −0.371683 0.928360i \(-0.621219\pi\)
−0.371683 + 0.928360i \(0.621219\pi\)
\(6\) 0 0
\(7\) −1.99556 −0.754251 −0.377125 0.926162i \(-0.623087\pi\)
−0.377125 + 0.926162i \(0.623087\pi\)
\(8\) 0 0
\(9\) −0.0874066 −0.0291355
\(10\) 0 0
\(11\) −2.08741 −0.629377 −0.314688 0.949195i \(-0.601900\pi\)
−0.314688 + 0.949195i \(0.601900\pi\)
\(12\) 0 0
\(13\) 4.77322 1.32385 0.661927 0.749568i \(-0.269739\pi\)
0.661927 + 0.749568i \(0.269739\pi\)
\(14\) 0 0
\(15\) 2.83680 0.732457
\(16\) 0 0
\(17\) 2.10657 0.510917 0.255459 0.966820i \(-0.417774\pi\)
0.255459 + 0.966820i \(0.417774\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 3.40569 0.743182
\(22\) 0 0
\(23\) −4.84437 −1.01012 −0.505061 0.863084i \(-0.668530\pi\)
−0.505061 + 0.863084i \(0.668530\pi\)
\(24\) 0 0
\(25\) −2.23703 −0.447406
\(26\) 0 0
\(27\) 5.26907 1.01403
\(28\) 0 0
\(29\) −0.695946 −0.129234 −0.0646170 0.997910i \(-0.520583\pi\)
−0.0646170 + 0.997910i \(0.520583\pi\)
\(30\) 0 0
\(31\) −9.77587 −1.75580 −0.877899 0.478846i \(-0.841055\pi\)
−0.877899 + 0.478846i \(0.841055\pi\)
\(32\) 0 0
\(33\) 3.56244 0.620140
\(34\) 0 0
\(35\) 3.31706 0.560685
\(36\) 0 0
\(37\) 0.0772780 0.0127044 0.00635221 0.999980i \(-0.497978\pi\)
0.00635221 + 0.999980i \(0.497978\pi\)
\(38\) 0 0
\(39\) −8.14614 −1.30443
\(40\) 0 0
\(41\) −10.7743 −1.68267 −0.841334 0.540516i \(-0.818229\pi\)
−0.841334 + 0.540516i \(0.818229\pi\)
\(42\) 0 0
\(43\) 1.43840 0.219354 0.109677 0.993967i \(-0.465018\pi\)
0.109677 + 0.993967i \(0.465018\pi\)
\(44\) 0 0
\(45\) 0.145289 0.0216584
\(46\) 0 0
\(47\) 2.88133 0.420285 0.210143 0.977671i \(-0.432607\pi\)
0.210143 + 0.977671i \(0.432607\pi\)
\(48\) 0 0
\(49\) −3.01774 −0.431106
\(50\) 0 0
\(51\) −3.59513 −0.503419
\(52\) 0 0
\(53\) 9.00264 1.23661 0.618304 0.785939i \(-0.287820\pi\)
0.618304 + 0.785939i \(0.287820\pi\)
\(54\) 0 0
\(55\) 3.46973 0.467858
\(56\) 0 0
\(57\) 1.70663 0.226049
\(58\) 0 0
\(59\) −11.5253 −1.50046 −0.750230 0.661177i \(-0.770057\pi\)
−0.750230 + 0.661177i \(0.770057\pi\)
\(60\) 0 0
\(61\) −8.82910 −1.13045 −0.565225 0.824937i \(-0.691211\pi\)
−0.565225 + 0.824937i \(0.691211\pi\)
\(62\) 0 0
\(63\) 0.174425 0.0219755
\(64\) 0 0
\(65\) −7.93414 −0.984109
\(66\) 0 0
\(67\) −1.27859 −0.156205 −0.0781023 0.996945i \(-0.524886\pi\)
−0.0781023 + 0.996945i \(0.524886\pi\)
\(68\) 0 0
\(69\) 8.26756 0.995297
\(70\) 0 0
\(71\) −4.66655 −0.553818 −0.276909 0.960896i \(-0.589310\pi\)
−0.276909 + 0.960896i \(0.589310\pi\)
\(72\) 0 0
\(73\) −4.44578 −0.520339 −0.260170 0.965563i \(-0.583779\pi\)
−0.260170 + 0.965563i \(0.583779\pi\)
\(74\) 0 0
\(75\) 3.81779 0.440840
\(76\) 0 0
\(77\) 4.16555 0.474708
\(78\) 0 0
\(79\) −1.10044 −0.123809 −0.0619044 0.998082i \(-0.519717\pi\)
−0.0619044 + 0.998082i \(0.519717\pi\)
\(80\) 0 0
\(81\) −8.73014 −0.970016
\(82\) 0 0
\(83\) −2.47419 −0.271578 −0.135789 0.990738i \(-0.543357\pi\)
−0.135789 + 0.990738i \(0.543357\pi\)
\(84\) 0 0
\(85\) −3.50157 −0.379799
\(86\) 0 0
\(87\) 1.18772 0.127337
\(88\) 0 0
\(89\) 15.8259 1.67755 0.838773 0.544481i \(-0.183273\pi\)
0.838773 + 0.544481i \(0.183273\pi\)
\(90\) 0 0
\(91\) −9.52526 −0.998518
\(92\) 0 0
\(93\) 16.6838 1.73003
\(94\) 0 0
\(95\) 1.66222 0.170540
\(96\) 0 0
\(97\) −13.9046 −1.41180 −0.705898 0.708313i \(-0.749456\pi\)
−0.705898 + 0.708313i \(0.749456\pi\)
\(98\) 0 0
\(99\) 0.182453 0.0183372
\(100\) 0 0
\(101\) 1.00493 0.0999945 0.0499973 0.998749i \(-0.484079\pi\)
0.0499973 + 0.998749i \(0.484079\pi\)
\(102\) 0 0
\(103\) 12.4581 1.22753 0.613767 0.789487i \(-0.289653\pi\)
0.613767 + 0.789487i \(0.289653\pi\)
\(104\) 0 0
\(105\) −5.66100 −0.552457
\(106\) 0 0
\(107\) −15.3004 −1.47915 −0.739573 0.673076i \(-0.764973\pi\)
−0.739573 + 0.673076i \(0.764973\pi\)
\(108\) 0 0
\(109\) 7.65850 0.733551 0.366775 0.930309i \(-0.380462\pi\)
0.366775 + 0.930309i \(0.380462\pi\)
\(110\) 0 0
\(111\) −0.131885 −0.0125180
\(112\) 0 0
\(113\) 17.3938 1.63627 0.818134 0.575028i \(-0.195009\pi\)
0.818134 + 0.575028i \(0.195009\pi\)
\(114\) 0 0
\(115\) 8.05240 0.750891
\(116\) 0 0
\(117\) −0.417211 −0.0385712
\(118\) 0 0
\(119\) −4.20378 −0.385360
\(120\) 0 0
\(121\) −6.64273 −0.603885
\(122\) 0 0
\(123\) 18.3878 1.65797
\(124\) 0 0
\(125\) 12.0295 1.07595
\(126\) 0 0
\(127\) −18.1488 −1.61045 −0.805225 0.592970i \(-0.797955\pi\)
−0.805225 + 0.592970i \(0.797955\pi\)
\(128\) 0 0
\(129\) −2.45482 −0.216135
\(130\) 0 0
\(131\) 9.70500 0.847930 0.423965 0.905679i \(-0.360638\pi\)
0.423965 + 0.905679i \(0.360638\pi\)
\(132\) 0 0
\(133\) 1.99556 0.173037
\(134\) 0 0
\(135\) −8.75834 −0.753798
\(136\) 0 0
\(137\) 20.2253 1.72797 0.863983 0.503521i \(-0.167962\pi\)
0.863983 + 0.503521i \(0.167962\pi\)
\(138\) 0 0
\(139\) 16.7746 1.42280 0.711401 0.702786i \(-0.248061\pi\)
0.711401 + 0.702786i \(0.248061\pi\)
\(140\) 0 0
\(141\) −4.91737 −0.414117
\(142\) 0 0
\(143\) −9.96366 −0.833203
\(144\) 0 0
\(145\) 1.15681 0.0960682
\(146\) 0 0
\(147\) 5.15017 0.424779
\(148\) 0 0
\(149\) 13.6533 1.11853 0.559263 0.828991i \(-0.311084\pi\)
0.559263 + 0.828991i \(0.311084\pi\)
\(150\) 0 0
\(151\) 6.77602 0.551425 0.275712 0.961240i \(-0.411086\pi\)
0.275712 + 0.961240i \(0.411086\pi\)
\(152\) 0 0
\(153\) −0.184128 −0.0148858
\(154\) 0 0
\(155\) 16.2496 1.30520
\(156\) 0 0
\(157\) 23.4178 1.86895 0.934473 0.356035i \(-0.115871\pi\)
0.934473 + 0.356035i \(0.115871\pi\)
\(158\) 0 0
\(159\) −15.3642 −1.21846
\(160\) 0 0
\(161\) 9.66724 0.761885
\(162\) 0 0
\(163\) 1.06973 0.0837875 0.0418938 0.999122i \(-0.486661\pi\)
0.0418938 + 0.999122i \(0.486661\pi\)
\(164\) 0 0
\(165\) −5.92155 −0.460992
\(166\) 0 0
\(167\) 13.6217 1.05408 0.527039 0.849841i \(-0.323302\pi\)
0.527039 + 0.849841i \(0.323302\pi\)
\(168\) 0 0
\(169\) 9.78367 0.752590
\(170\) 0 0
\(171\) 0.0874066 0.00668415
\(172\) 0 0
\(173\) −11.5684 −0.879527 −0.439763 0.898114i \(-0.644938\pi\)
−0.439763 + 0.898114i \(0.644938\pi\)
\(174\) 0 0
\(175\) 4.46413 0.337456
\(176\) 0 0
\(177\) 19.6694 1.47844
\(178\) 0 0
\(179\) −20.4983 −1.53211 −0.766057 0.642772i \(-0.777784\pi\)
−0.766057 + 0.642772i \(0.777784\pi\)
\(180\) 0 0
\(181\) 18.7745 1.39550 0.697750 0.716341i \(-0.254185\pi\)
0.697750 + 0.716341i \(0.254185\pi\)
\(182\) 0 0
\(183\) 15.0680 1.11386
\(184\) 0 0
\(185\) −0.128453 −0.00944404
\(186\) 0 0
\(187\) −4.39726 −0.321560
\(188\) 0 0
\(189\) −10.5147 −0.764835
\(190\) 0 0
\(191\) 14.0392 1.01584 0.507919 0.861405i \(-0.330415\pi\)
0.507919 + 0.861405i \(0.330415\pi\)
\(192\) 0 0
\(193\) −23.8700 −1.71820 −0.859099 0.511809i \(-0.828976\pi\)
−0.859099 + 0.511809i \(0.828976\pi\)
\(194\) 0 0
\(195\) 13.5407 0.969667
\(196\) 0 0
\(197\) 1.84890 0.131729 0.0658645 0.997829i \(-0.479020\pi\)
0.0658645 + 0.997829i \(0.479020\pi\)
\(198\) 0 0
\(199\) −18.3608 −1.30156 −0.650781 0.759266i \(-0.725558\pi\)
−0.650781 + 0.759266i \(0.725558\pi\)
\(200\) 0 0
\(201\) 2.18208 0.153912
\(202\) 0 0
\(203\) 1.38880 0.0974748
\(204\) 0 0
\(205\) 17.9093 1.25084
\(206\) 0 0
\(207\) 0.423430 0.0294304
\(208\) 0 0
\(209\) 2.08741 0.144389
\(210\) 0 0
\(211\) −15.5147 −1.06808 −0.534039 0.845460i \(-0.679326\pi\)
−0.534039 + 0.845460i \(0.679326\pi\)
\(212\) 0 0
\(213\) 7.96409 0.545690
\(214\) 0 0
\(215\) −2.39094 −0.163061
\(216\) 0 0
\(217\) 19.5083 1.32431
\(218\) 0 0
\(219\) 7.58731 0.512703
\(220\) 0 0
\(221\) 10.0551 0.676380
\(222\) 0 0
\(223\) 13.9260 0.932553 0.466276 0.884639i \(-0.345595\pi\)
0.466276 + 0.884639i \(0.345595\pi\)
\(224\) 0 0
\(225\) 0.195531 0.0130354
\(226\) 0 0
\(227\) 1.49624 0.0993088 0.0496544 0.998766i \(-0.484188\pi\)
0.0496544 + 0.998766i \(0.484188\pi\)
\(228\) 0 0
\(229\) 1.03706 0.0685310 0.0342655 0.999413i \(-0.489091\pi\)
0.0342655 + 0.999413i \(0.489091\pi\)
\(230\) 0 0
\(231\) −7.10905 −0.467741
\(232\) 0 0
\(233\) −4.93372 −0.323219 −0.161609 0.986855i \(-0.551668\pi\)
−0.161609 + 0.986855i \(0.551668\pi\)
\(234\) 0 0
\(235\) −4.78940 −0.312426
\(236\) 0 0
\(237\) 1.87804 0.121992
\(238\) 0 0
\(239\) 3.84533 0.248733 0.124367 0.992236i \(-0.460310\pi\)
0.124367 + 0.992236i \(0.460310\pi\)
\(240\) 0 0
\(241\) −1.41134 −0.0909123 −0.0454562 0.998966i \(-0.514474\pi\)
−0.0454562 + 0.998966i \(0.514474\pi\)
\(242\) 0 0
\(243\) −0.908064 −0.0582523
\(244\) 0 0
\(245\) 5.01614 0.320469
\(246\) 0 0
\(247\) −4.77322 −0.303713
\(248\) 0 0
\(249\) 4.22253 0.267592
\(250\) 0 0
\(251\) 8.24640 0.520508 0.260254 0.965540i \(-0.416194\pi\)
0.260254 + 0.965540i \(0.416194\pi\)
\(252\) 0 0
\(253\) 10.1122 0.635747
\(254\) 0 0
\(255\) 5.97590 0.374225
\(256\) 0 0
\(257\) 15.0726 0.940200 0.470100 0.882613i \(-0.344218\pi\)
0.470100 + 0.882613i \(0.344218\pi\)
\(258\) 0 0
\(259\) −0.154213 −0.00958232
\(260\) 0 0
\(261\) 0.0608303 0.00376530
\(262\) 0 0
\(263\) −9.49141 −0.585265 −0.292633 0.956225i \(-0.594531\pi\)
−0.292633 + 0.956225i \(0.594531\pi\)
\(264\) 0 0
\(265\) −14.9644 −0.919253
\(266\) 0 0
\(267\) −27.0091 −1.65293
\(268\) 0 0
\(269\) 3.98549 0.243000 0.121500 0.992591i \(-0.461230\pi\)
0.121500 + 0.992591i \(0.461230\pi\)
\(270\) 0 0
\(271\) 6.38427 0.387817 0.193908 0.981020i \(-0.437884\pi\)
0.193908 + 0.981020i \(0.437884\pi\)
\(272\) 0 0
\(273\) 16.2561 0.983865
\(274\) 0 0
\(275\) 4.66959 0.281587
\(276\) 0 0
\(277\) 15.1758 0.911823 0.455912 0.890025i \(-0.349313\pi\)
0.455912 + 0.890025i \(0.349313\pi\)
\(278\) 0 0
\(279\) 0.854475 0.0511561
\(280\) 0 0
\(281\) −14.9058 −0.889207 −0.444603 0.895728i \(-0.646655\pi\)
−0.444603 + 0.895728i \(0.646655\pi\)
\(282\) 0 0
\(283\) −14.9931 −0.891250 −0.445625 0.895220i \(-0.647019\pi\)
−0.445625 + 0.895220i \(0.647019\pi\)
\(284\) 0 0
\(285\) −2.83680 −0.168037
\(286\) 0 0
\(287\) 21.5008 1.26915
\(288\) 0 0
\(289\) −12.5624 −0.738963
\(290\) 0 0
\(291\) 23.7300 1.39108
\(292\) 0 0
\(293\) 21.6983 1.26763 0.633814 0.773485i \(-0.281488\pi\)
0.633814 + 0.773485i \(0.281488\pi\)
\(294\) 0 0
\(295\) 19.1575 1.11539
\(296\) 0 0
\(297\) −10.9987 −0.638208
\(298\) 0 0
\(299\) −23.1233 −1.33725
\(300\) 0 0
\(301\) −2.87042 −0.165448
\(302\) 0 0
\(303\) −1.71505 −0.0985270
\(304\) 0 0
\(305\) 14.6759 0.840339
\(306\) 0 0
\(307\) 7.81449 0.445996 0.222998 0.974819i \(-0.428416\pi\)
0.222998 + 0.974819i \(0.428416\pi\)
\(308\) 0 0
\(309\) −21.2614 −1.20952
\(310\) 0 0
\(311\) 12.8288 0.727455 0.363727 0.931505i \(-0.381504\pi\)
0.363727 + 0.931505i \(0.381504\pi\)
\(312\) 0 0
\(313\) 4.07578 0.230377 0.115188 0.993344i \(-0.463253\pi\)
0.115188 + 0.993344i \(0.463253\pi\)
\(314\) 0 0
\(315\) −0.289933 −0.0163358
\(316\) 0 0
\(317\) −2.26448 −0.127186 −0.0635931 0.997976i \(-0.520256\pi\)
−0.0635931 + 0.997976i \(0.520256\pi\)
\(318\) 0 0
\(319\) 1.45272 0.0813368
\(320\) 0 0
\(321\) 26.1122 1.45744
\(322\) 0 0
\(323\) −2.10657 −0.117212
\(324\) 0 0
\(325\) −10.6778 −0.592300
\(326\) 0 0
\(327\) −13.0702 −0.722786
\(328\) 0 0
\(329\) −5.74987 −0.317000
\(330\) 0 0
\(331\) −7.31171 −0.401888 −0.200944 0.979603i \(-0.564401\pi\)
−0.200944 + 0.979603i \(0.564401\pi\)
\(332\) 0 0
\(333\) −0.00675460 −0.000370150 0
\(334\) 0 0
\(335\) 2.12529 0.116117
\(336\) 0 0
\(337\) −6.00356 −0.327035 −0.163517 0.986540i \(-0.552284\pi\)
−0.163517 + 0.986540i \(0.552284\pi\)
\(338\) 0 0
\(339\) −29.6848 −1.61225
\(340\) 0 0
\(341\) 20.4062 1.10506
\(342\) 0 0
\(343\) 19.9910 1.07941
\(344\) 0 0
\(345\) −13.7425 −0.739871
\(346\) 0 0
\(347\) −6.66747 −0.357929 −0.178964 0.983856i \(-0.557275\pi\)
−0.178964 + 0.983856i \(0.557275\pi\)
\(348\) 0 0
\(349\) −35.5072 −1.90066 −0.950329 0.311248i \(-0.899253\pi\)
−0.950329 + 0.311248i \(0.899253\pi\)
\(350\) 0 0
\(351\) 25.1504 1.34243
\(352\) 0 0
\(353\) −27.8315 −1.48132 −0.740659 0.671881i \(-0.765487\pi\)
−0.740659 + 0.671881i \(0.765487\pi\)
\(354\) 0 0
\(355\) 7.75683 0.411690
\(356\) 0 0
\(357\) 7.17431 0.379705
\(358\) 0 0
\(359\) 10.6778 0.563551 0.281775 0.959480i \(-0.409077\pi\)
0.281775 + 0.959480i \(0.409077\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 11.3367 0.595023
\(364\) 0 0
\(365\) 7.38986 0.386803
\(366\) 0 0
\(367\) −16.8950 −0.881911 −0.440956 0.897529i \(-0.645360\pi\)
−0.440956 + 0.897529i \(0.645360\pi\)
\(368\) 0 0
\(369\) 0.941747 0.0490254
\(370\) 0 0
\(371\) −17.9653 −0.932713
\(372\) 0 0
\(373\) −33.4640 −1.73270 −0.866350 0.499438i \(-0.833540\pi\)
−0.866350 + 0.499438i \(0.833540\pi\)
\(374\) 0 0
\(375\) −20.5300 −1.06016
\(376\) 0 0
\(377\) −3.32191 −0.171087
\(378\) 0 0
\(379\) 37.0251 1.90185 0.950925 0.309423i \(-0.100136\pi\)
0.950925 + 0.309423i \(0.100136\pi\)
\(380\) 0 0
\(381\) 30.9734 1.58682
\(382\) 0 0
\(383\) 16.2264 0.829131 0.414566 0.910019i \(-0.363934\pi\)
0.414566 + 0.910019i \(0.363934\pi\)
\(384\) 0 0
\(385\) −6.92405 −0.352882
\(386\) 0 0
\(387\) −0.125726 −0.00639100
\(388\) 0 0
\(389\) 11.8131 0.598947 0.299473 0.954105i \(-0.403189\pi\)
0.299473 + 0.954105i \(0.403189\pi\)
\(390\) 0 0
\(391\) −10.2050 −0.516089
\(392\) 0 0
\(393\) −16.5629 −0.835486
\(394\) 0 0
\(395\) 1.82917 0.0920353
\(396\) 0 0
\(397\) 10.9654 0.550340 0.275170 0.961396i \(-0.411266\pi\)
0.275170 + 0.961396i \(0.411266\pi\)
\(398\) 0 0
\(399\) −3.40569 −0.170498
\(400\) 0 0
\(401\) 11.9479 0.596650 0.298325 0.954464i \(-0.403572\pi\)
0.298325 + 0.954464i \(0.403572\pi\)
\(402\) 0 0
\(403\) −46.6624 −2.32442
\(404\) 0 0
\(405\) 14.5114 0.721077
\(406\) 0 0
\(407\) −0.161311 −0.00799587
\(408\) 0 0
\(409\) 1.28997 0.0637848 0.0318924 0.999491i \(-0.489847\pi\)
0.0318924 + 0.999491i \(0.489847\pi\)
\(410\) 0 0
\(411\) −34.5172 −1.70261
\(412\) 0 0
\(413\) 22.9993 1.13172
\(414\) 0 0
\(415\) 4.11265 0.201882
\(416\) 0 0
\(417\) −28.6281 −1.40192
\(418\) 0 0
\(419\) 15.6802 0.766030 0.383015 0.923742i \(-0.374886\pi\)
0.383015 + 0.923742i \(0.374886\pi\)
\(420\) 0 0
\(421\) 26.2544 1.27956 0.639782 0.768557i \(-0.279025\pi\)
0.639782 + 0.768557i \(0.279025\pi\)
\(422\) 0 0
\(423\) −0.251847 −0.0122452
\(424\) 0 0
\(425\) −4.71245 −0.228587
\(426\) 0 0
\(427\) 17.6190 0.852643
\(428\) 0 0
\(429\) 17.0043 0.820975
\(430\) 0 0
\(431\) 33.4648 1.61194 0.805972 0.591954i \(-0.201643\pi\)
0.805972 + 0.591954i \(0.201643\pi\)
\(432\) 0 0
\(433\) 5.89119 0.283112 0.141556 0.989930i \(-0.454789\pi\)
0.141556 + 0.989930i \(0.454789\pi\)
\(434\) 0 0
\(435\) −1.97426 −0.0946584
\(436\) 0 0
\(437\) 4.84437 0.231738
\(438\) 0 0
\(439\) 25.9770 1.23982 0.619908 0.784674i \(-0.287170\pi\)
0.619908 + 0.784674i \(0.287170\pi\)
\(440\) 0 0
\(441\) 0.263770 0.0125605
\(442\) 0 0
\(443\) 11.0652 0.525722 0.262861 0.964834i \(-0.415334\pi\)
0.262861 + 0.964834i \(0.415334\pi\)
\(444\) 0 0
\(445\) −26.3062 −1.24703
\(446\) 0 0
\(447\) −23.3012 −1.10211
\(448\) 0 0
\(449\) 3.56950 0.168455 0.0842274 0.996447i \(-0.473158\pi\)
0.0842274 + 0.996447i \(0.473158\pi\)
\(450\) 0 0
\(451\) 22.4904 1.05903
\(452\) 0 0
\(453\) −11.5642 −0.543332
\(454\) 0 0
\(455\) 15.8331 0.742265
\(456\) 0 0
\(457\) 23.3258 1.09113 0.545567 0.838067i \(-0.316314\pi\)
0.545567 + 0.838067i \(0.316314\pi\)
\(458\) 0 0
\(459\) 11.0996 0.518087
\(460\) 0 0
\(461\) 8.16887 0.380462 0.190231 0.981739i \(-0.439076\pi\)
0.190231 + 0.981739i \(0.439076\pi\)
\(462\) 0 0
\(463\) 12.8015 0.594936 0.297468 0.954732i \(-0.403858\pi\)
0.297468 + 0.954732i \(0.403858\pi\)
\(464\) 0 0
\(465\) −27.7321 −1.28605
\(466\) 0 0
\(467\) −0.897425 −0.0415279 −0.0207639 0.999784i \(-0.506610\pi\)
−0.0207639 + 0.999784i \(0.506610\pi\)
\(468\) 0 0
\(469\) 2.55150 0.117817
\(470\) 0 0
\(471\) −39.9656 −1.84152
\(472\) 0 0
\(473\) −3.00253 −0.138056
\(474\) 0 0
\(475\) 2.23703 0.102642
\(476\) 0 0
\(477\) −0.786890 −0.0360292
\(478\) 0 0
\(479\) −12.9960 −0.593803 −0.296901 0.954908i \(-0.595953\pi\)
−0.296901 + 0.954908i \(0.595953\pi\)
\(480\) 0 0
\(481\) 0.368865 0.0168188
\(482\) 0 0
\(483\) −16.4984 −0.750704
\(484\) 0 0
\(485\) 23.1125 1.04948
\(486\) 0 0
\(487\) 12.0621 0.546588 0.273294 0.961931i \(-0.411887\pi\)
0.273294 + 0.961931i \(0.411887\pi\)
\(488\) 0 0
\(489\) −1.82563 −0.0825579
\(490\) 0 0
\(491\) 30.5337 1.37797 0.688983 0.724778i \(-0.258058\pi\)
0.688983 + 0.724778i \(0.258058\pi\)
\(492\) 0 0
\(493\) −1.46606 −0.0660279
\(494\) 0 0
\(495\) −0.303277 −0.0136313
\(496\) 0 0
\(497\) 9.31239 0.417718
\(498\) 0 0
\(499\) 40.2124 1.80015 0.900077 0.435731i \(-0.143510\pi\)
0.900077 + 0.435731i \(0.143510\pi\)
\(500\) 0 0
\(501\) −23.2472 −1.03861
\(502\) 0 0
\(503\) 35.7181 1.59259 0.796296 0.604907i \(-0.206790\pi\)
0.796296 + 0.604907i \(0.206790\pi\)
\(504\) 0 0
\(505\) −1.67042 −0.0743326
\(506\) 0 0
\(507\) −16.6971 −0.741545
\(508\) 0 0
\(509\) 35.3428 1.56654 0.783270 0.621681i \(-0.213550\pi\)
0.783270 + 0.621681i \(0.213550\pi\)
\(510\) 0 0
\(511\) 8.87183 0.392466
\(512\) 0 0
\(513\) −5.26907 −0.232635
\(514\) 0 0
\(515\) −20.7081 −0.912508
\(516\) 0 0
\(517\) −6.01450 −0.264518
\(518\) 0 0
\(519\) 19.7429 0.866619
\(520\) 0 0
\(521\) −2.50662 −0.109817 −0.0549086 0.998491i \(-0.517487\pi\)
−0.0549086 + 0.998491i \(0.517487\pi\)
\(522\) 0 0
\(523\) −9.95330 −0.435227 −0.217614 0.976035i \(-0.569827\pi\)
−0.217614 + 0.976035i \(0.569827\pi\)
\(524\) 0 0
\(525\) −7.61863 −0.332504
\(526\) 0 0
\(527\) −20.5935 −0.897068
\(528\) 0 0
\(529\) 0.467940 0.0203452
\(530\) 0 0
\(531\) 1.00738 0.0437167
\(532\) 0 0
\(533\) −51.4283 −2.22761
\(534\) 0 0
\(535\) 25.4326 1.09955
\(536\) 0 0
\(537\) 34.9831 1.50963
\(538\) 0 0
\(539\) 6.29925 0.271328
\(540\) 0 0
\(541\) −34.7061 −1.49213 −0.746065 0.665873i \(-0.768059\pi\)
−0.746065 + 0.665873i \(0.768059\pi\)
\(542\) 0 0
\(543\) −32.0412 −1.37502
\(544\) 0 0
\(545\) −12.7301 −0.545297
\(546\) 0 0
\(547\) 7.21429 0.308461 0.154230 0.988035i \(-0.450710\pi\)
0.154230 + 0.988035i \(0.450710\pi\)
\(548\) 0 0
\(549\) 0.771721 0.0329363
\(550\) 0 0
\(551\) 0.695946 0.0296483
\(552\) 0 0
\(553\) 2.19599 0.0933829
\(554\) 0 0
\(555\) 0.219222 0.00930545
\(556\) 0 0
\(557\) −4.27230 −0.181023 −0.0905116 0.995895i \(-0.528850\pi\)
−0.0905116 + 0.995895i \(0.528850\pi\)
\(558\) 0 0
\(559\) 6.86582 0.290393
\(560\) 0 0
\(561\) 7.50451 0.316840
\(562\) 0 0
\(563\) −23.9662 −1.01005 −0.505027 0.863103i \(-0.668518\pi\)
−0.505027 + 0.863103i \(0.668518\pi\)
\(564\) 0 0
\(565\) −28.9122 −1.21635
\(566\) 0 0
\(567\) 17.4215 0.731635
\(568\) 0 0
\(569\) −6.53074 −0.273783 −0.136891 0.990586i \(-0.543711\pi\)
−0.136891 + 0.990586i \(0.543711\pi\)
\(570\) 0 0
\(571\) 13.8125 0.578035 0.289017 0.957324i \(-0.406671\pi\)
0.289017 + 0.957324i \(0.406671\pi\)
\(572\) 0 0
\(573\) −23.9597 −1.00093
\(574\) 0 0
\(575\) 10.8370 0.451934
\(576\) 0 0
\(577\) −1.75601 −0.0731035 −0.0365517 0.999332i \(-0.511637\pi\)
−0.0365517 + 0.999332i \(0.511637\pi\)
\(578\) 0 0
\(579\) 40.7373 1.69298
\(580\) 0 0
\(581\) 4.93740 0.204838
\(582\) 0 0
\(583\) −18.7922 −0.778293
\(584\) 0 0
\(585\) 0.693496 0.0286725
\(586\) 0 0
\(587\) −22.1818 −0.915540 −0.457770 0.889071i \(-0.651352\pi\)
−0.457770 + 0.889071i \(0.651352\pi\)
\(588\) 0 0
\(589\) 9.77587 0.402808
\(590\) 0 0
\(591\) −3.15540 −0.129796
\(592\) 0 0
\(593\) −14.8347 −0.609186 −0.304593 0.952483i \(-0.598520\pi\)
−0.304593 + 0.952483i \(0.598520\pi\)
\(594\) 0 0
\(595\) 6.98760 0.286464
\(596\) 0 0
\(597\) 31.3351 1.28246
\(598\) 0 0
\(599\) −19.9337 −0.814468 −0.407234 0.913324i \(-0.633507\pi\)
−0.407234 + 0.913324i \(0.633507\pi\)
\(600\) 0 0
\(601\) −31.4765 −1.28395 −0.641976 0.766724i \(-0.721885\pi\)
−0.641976 + 0.766724i \(0.721885\pi\)
\(602\) 0 0
\(603\) 0.111757 0.00455110
\(604\) 0 0
\(605\) 11.0417 0.448908
\(606\) 0 0
\(607\) −25.8245 −1.04818 −0.524092 0.851662i \(-0.675595\pi\)
−0.524092 + 0.851662i \(0.675595\pi\)
\(608\) 0 0
\(609\) −2.37018 −0.0960443
\(610\) 0 0
\(611\) 13.7532 0.556396
\(612\) 0 0
\(613\) 0.844965 0.0341278 0.0170639 0.999854i \(-0.494568\pi\)
0.0170639 + 0.999854i \(0.494568\pi\)
\(614\) 0 0
\(615\) −30.5646 −1.23248
\(616\) 0 0
\(617\) 10.0344 0.403970 0.201985 0.979389i \(-0.435261\pi\)
0.201985 + 0.979389i \(0.435261\pi\)
\(618\) 0 0
\(619\) −29.2896 −1.17725 −0.588625 0.808406i \(-0.700331\pi\)
−0.588625 + 0.808406i \(0.700331\pi\)
\(620\) 0 0
\(621\) −25.5253 −1.02430
\(622\) 0 0
\(623\) −31.5816 −1.26529
\(624\) 0 0
\(625\) −8.81055 −0.352422
\(626\) 0 0
\(627\) −3.56244 −0.142270
\(628\) 0 0
\(629\) 0.162791 0.00649091
\(630\) 0 0
\(631\) −1.02437 −0.0407796 −0.0203898 0.999792i \(-0.506491\pi\)
−0.0203898 + 0.999792i \(0.506491\pi\)
\(632\) 0 0
\(633\) 26.4779 1.05240
\(634\) 0 0
\(635\) 30.1673 1.19715
\(636\) 0 0
\(637\) −14.4043 −0.570721
\(638\) 0 0
\(639\) 0.407887 0.0161358
\(640\) 0 0
\(641\) −31.8367 −1.25747 −0.628737 0.777618i \(-0.716428\pi\)
−0.628737 + 0.777618i \(0.716428\pi\)
\(642\) 0 0
\(643\) 34.2996 1.35264 0.676322 0.736606i \(-0.263573\pi\)
0.676322 + 0.736606i \(0.263573\pi\)
\(644\) 0 0
\(645\) 4.08045 0.160668
\(646\) 0 0
\(647\) 9.45559 0.371738 0.185869 0.982575i \(-0.440490\pi\)
0.185869 + 0.982575i \(0.440490\pi\)
\(648\) 0 0
\(649\) 24.0579 0.944355
\(650\) 0 0
\(651\) −33.2936 −1.30488
\(652\) 0 0
\(653\) −6.33451 −0.247888 −0.123944 0.992289i \(-0.539554\pi\)
−0.123944 + 0.992289i \(0.539554\pi\)
\(654\) 0 0
\(655\) −16.1318 −0.630323
\(656\) 0 0
\(657\) 0.388590 0.0151604
\(658\) 0 0
\(659\) −7.22355 −0.281390 −0.140695 0.990053i \(-0.544934\pi\)
−0.140695 + 0.990053i \(0.544934\pi\)
\(660\) 0 0
\(661\) −0.529621 −0.0205999 −0.0102999 0.999947i \(-0.503279\pi\)
−0.0102999 + 0.999947i \(0.503279\pi\)
\(662\) 0 0
\(663\) −17.1604 −0.666454
\(664\) 0 0
\(665\) −3.31706 −0.128630
\(666\) 0 0
\(667\) 3.37142 0.130542
\(668\) 0 0
\(669\) −23.7665 −0.918867
\(670\) 0 0
\(671\) 18.4299 0.711479
\(672\) 0 0
\(673\) 41.7434 1.60909 0.804544 0.593893i \(-0.202410\pi\)
0.804544 + 0.593893i \(0.202410\pi\)
\(674\) 0 0
\(675\) −11.7871 −0.453684
\(676\) 0 0
\(677\) −33.4165 −1.28430 −0.642151 0.766578i \(-0.721958\pi\)
−0.642151 + 0.766578i \(0.721958\pi\)
\(678\) 0 0
\(679\) 27.7474 1.06485
\(680\) 0 0
\(681\) −2.55353 −0.0978514
\(682\) 0 0
\(683\) −30.1765 −1.15467 −0.577336 0.816507i \(-0.695908\pi\)
−0.577336 + 0.816507i \(0.695908\pi\)
\(684\) 0 0
\(685\) −33.6189 −1.28451
\(686\) 0 0
\(687\) −1.76988 −0.0675252
\(688\) 0 0
\(689\) 42.9716 1.63709
\(690\) 0 0
\(691\) −17.6002 −0.669544 −0.334772 0.942299i \(-0.608659\pi\)
−0.334772 + 0.942299i \(0.608659\pi\)
\(692\) 0 0
\(693\) −0.364096 −0.0138309
\(694\) 0 0
\(695\) −27.8830 −1.05766
\(696\) 0 0
\(697\) −22.6968 −0.859704
\(698\) 0 0
\(699\) 8.42005 0.318475
\(700\) 0 0
\(701\) 30.6993 1.15950 0.579748 0.814796i \(-0.303151\pi\)
0.579748 + 0.814796i \(0.303151\pi\)
\(702\) 0 0
\(703\) −0.0772780 −0.00291459
\(704\) 0 0
\(705\) 8.17374 0.307841
\(706\) 0 0
\(707\) −2.00540 −0.0754210
\(708\) 0 0
\(709\) −8.79437 −0.330279 −0.165140 0.986270i \(-0.552807\pi\)
−0.165140 + 0.986270i \(0.552807\pi\)
\(710\) 0 0
\(711\) 0.0961853 0.00360723
\(712\) 0 0
\(713\) 47.3579 1.77357
\(714\) 0 0
\(715\) 16.5618 0.619375
\(716\) 0 0
\(717\) −6.56256 −0.245083
\(718\) 0 0
\(719\) −12.5991 −0.469867 −0.234933 0.972011i \(-0.575487\pi\)
−0.234933 + 0.972011i \(0.575487\pi\)
\(720\) 0 0
\(721\) −24.8609 −0.925869
\(722\) 0 0
\(723\) 2.40864 0.0895781
\(724\) 0 0
\(725\) 1.55685 0.0578200
\(726\) 0 0
\(727\) −39.7756 −1.47519 −0.737597 0.675241i \(-0.764040\pi\)
−0.737597 + 0.675241i \(0.764040\pi\)
\(728\) 0 0
\(729\) 27.7402 1.02741
\(730\) 0 0
\(731\) 3.03009 0.112072
\(732\) 0 0
\(733\) 5.50154 0.203204 0.101602 0.994825i \(-0.467603\pi\)
0.101602 + 0.994825i \(0.467603\pi\)
\(734\) 0 0
\(735\) −8.56071 −0.315766
\(736\) 0 0
\(737\) 2.66894 0.0983115
\(738\) 0 0
\(739\) 52.6937 1.93837 0.969185 0.246335i \(-0.0792263\pi\)
0.969185 + 0.246335i \(0.0792263\pi\)
\(740\) 0 0
\(741\) 8.14614 0.299256
\(742\) 0 0
\(743\) −6.61647 −0.242735 −0.121367 0.992608i \(-0.538728\pi\)
−0.121367 + 0.992608i \(0.538728\pi\)
\(744\) 0 0
\(745\) −22.6948 −0.831474
\(746\) 0 0
\(747\) 0.216261 0.00791256
\(748\) 0 0
\(749\) 30.5329 1.11565
\(750\) 0 0
\(751\) 39.9062 1.45620 0.728099 0.685472i \(-0.240404\pi\)
0.728099 + 0.685472i \(0.240404\pi\)
\(752\) 0 0
\(753\) −14.0736 −0.512869
\(754\) 0 0
\(755\) −11.2632 −0.409911
\(756\) 0 0
\(757\) 34.2645 1.24537 0.622683 0.782475i \(-0.286043\pi\)
0.622683 + 0.782475i \(0.286043\pi\)
\(758\) 0 0
\(759\) −17.2578 −0.626417
\(760\) 0 0
\(761\) 12.4757 0.452243 0.226122 0.974099i \(-0.427395\pi\)
0.226122 + 0.974099i \(0.427395\pi\)
\(762\) 0 0
\(763\) −15.2830 −0.553281
\(764\) 0 0
\(765\) 0.306060 0.0110656
\(766\) 0 0
\(767\) −55.0126 −1.98639
\(768\) 0 0
\(769\) 3.32384 0.119861 0.0599304 0.998203i \(-0.480912\pi\)
0.0599304 + 0.998203i \(0.480912\pi\)
\(770\) 0 0
\(771\) −25.7233 −0.926402
\(772\) 0 0
\(773\) −14.4248 −0.518824 −0.259412 0.965767i \(-0.583529\pi\)
−0.259412 + 0.965767i \(0.583529\pi\)
\(774\) 0 0
\(775\) 21.8689 0.785555
\(776\) 0 0
\(777\) 0.263185 0.00944170
\(778\) 0 0
\(779\) 10.7743 0.386030
\(780\) 0 0
\(781\) 9.74099 0.348560
\(782\) 0 0
\(783\) −3.66699 −0.131047
\(784\) 0 0
\(785\) −38.9255 −1.38931
\(786\) 0 0
\(787\) −38.6403 −1.37738 −0.688689 0.725057i \(-0.741813\pi\)
−0.688689 + 0.725057i \(0.741813\pi\)
\(788\) 0 0
\(789\) 16.1983 0.576676
\(790\) 0 0
\(791\) −34.7103 −1.23416
\(792\) 0 0
\(793\) −42.1433 −1.49655
\(794\) 0 0
\(795\) 25.5387 0.905763
\(796\) 0 0
\(797\) −30.9316 −1.09565 −0.547826 0.836592i \(-0.684544\pi\)
−0.547826 + 0.836592i \(0.684544\pi\)
\(798\) 0 0
\(799\) 6.06971 0.214731
\(800\) 0 0
\(801\) −1.38329 −0.0488762
\(802\) 0 0
\(803\) 9.28015 0.327490
\(804\) 0 0
\(805\) −16.0691 −0.566360
\(806\) 0 0
\(807\) −6.80177 −0.239434
\(808\) 0 0
\(809\) −56.7269 −1.99441 −0.997206 0.0747056i \(-0.976198\pi\)
−0.997206 + 0.0747056i \(0.976198\pi\)
\(810\) 0 0
\(811\) −4.91800 −0.172694 −0.0863472 0.996265i \(-0.527519\pi\)
−0.0863472 + 0.996265i \(0.527519\pi\)
\(812\) 0 0
\(813\) −10.8956 −0.382125
\(814\) 0 0
\(815\) −1.77812 −0.0622849
\(816\) 0 0
\(817\) −1.43840 −0.0503233
\(818\) 0 0
\(819\) 0.832570 0.0290924
\(820\) 0 0
\(821\) 19.0797 0.665886 0.332943 0.942947i \(-0.391958\pi\)
0.332943 + 0.942947i \(0.391958\pi\)
\(822\) 0 0
\(823\) −19.6263 −0.684131 −0.342066 0.939676i \(-0.611127\pi\)
−0.342066 + 0.939676i \(0.611127\pi\)
\(824\) 0 0
\(825\) −7.96928 −0.277455
\(826\) 0 0
\(827\) 28.0107 0.974029 0.487014 0.873394i \(-0.338086\pi\)
0.487014 + 0.873394i \(0.338086\pi\)
\(828\) 0 0
\(829\) −23.1932 −0.805533 −0.402766 0.915303i \(-0.631951\pi\)
−0.402766 + 0.915303i \(0.631951\pi\)
\(830\) 0 0
\(831\) −25.8995 −0.898442
\(832\) 0 0
\(833\) −6.35707 −0.220259
\(834\) 0 0
\(835\) −22.6422 −0.783567
\(836\) 0 0
\(837\) −51.5097 −1.78044
\(838\) 0 0
\(839\) 27.6363 0.954110 0.477055 0.878873i \(-0.341704\pi\)
0.477055 + 0.878873i \(0.341704\pi\)
\(840\) 0 0
\(841\) −28.5157 −0.983299
\(842\) 0 0
\(843\) 25.4388 0.876157
\(844\) 0 0
\(845\) −16.2626 −0.559450
\(846\) 0 0
\(847\) 13.2560 0.455481
\(848\) 0 0
\(849\) 25.5878 0.878171
\(850\) 0 0
\(851\) −0.374363 −0.0128330
\(852\) 0 0
\(853\) −53.0502 −1.81640 −0.908202 0.418532i \(-0.862545\pi\)
−0.908202 + 0.418532i \(0.862545\pi\)
\(854\) 0 0
\(855\) −0.145289 −0.00496877
\(856\) 0 0
\(857\) 8.06832 0.275609 0.137804 0.990459i \(-0.455996\pi\)
0.137804 + 0.990459i \(0.455996\pi\)
\(858\) 0 0
\(859\) 10.1806 0.347357 0.173679 0.984802i \(-0.444435\pi\)
0.173679 + 0.984802i \(0.444435\pi\)
\(860\) 0 0
\(861\) −36.6940 −1.25053
\(862\) 0 0
\(863\) 45.7074 1.55590 0.777949 0.628327i \(-0.216260\pi\)
0.777949 + 0.628327i \(0.216260\pi\)
\(864\) 0 0
\(865\) 19.2292 0.653811
\(866\) 0 0
\(867\) 21.4394 0.728119
\(868\) 0 0
\(869\) 2.29706 0.0779223
\(870\) 0 0
\(871\) −6.10299 −0.206792
\(872\) 0 0
\(873\) 1.21535 0.0411334
\(874\) 0 0
\(875\) −24.0056 −0.811539
\(876\) 0 0
\(877\) −8.41970 −0.284313 −0.142157 0.989844i \(-0.545404\pi\)
−0.142157 + 0.989844i \(0.545404\pi\)
\(878\) 0 0
\(879\) −37.0310 −1.24903
\(880\) 0 0
\(881\) 8.33625 0.280855 0.140428 0.990091i \(-0.455152\pi\)
0.140428 + 0.990091i \(0.455152\pi\)
\(882\) 0 0
\(883\) −26.9797 −0.907941 −0.453970 0.891017i \(-0.649993\pi\)
−0.453970 + 0.891017i \(0.649993\pi\)
\(884\) 0 0
\(885\) −32.6948 −1.09902
\(886\) 0 0
\(887\) −25.8570 −0.868193 −0.434097 0.900866i \(-0.642932\pi\)
−0.434097 + 0.900866i \(0.642932\pi\)
\(888\) 0 0
\(889\) 36.2171 1.21468
\(890\) 0 0
\(891\) 18.2234 0.610505
\(892\) 0 0
\(893\) −2.88133 −0.0964200
\(894\) 0 0
\(895\) 34.0726 1.13892
\(896\) 0 0
\(897\) 39.4629 1.31763
\(898\) 0 0
\(899\) 6.80348 0.226909
\(900\) 0 0
\(901\) 18.9647 0.631805
\(902\) 0 0
\(903\) 4.89875 0.163020
\(904\) 0 0
\(905\) −31.2074 −1.03737
\(906\) 0 0
\(907\) 21.7649 0.722690 0.361345 0.932432i \(-0.382318\pi\)
0.361345 + 0.932432i \(0.382318\pi\)
\(908\) 0 0
\(909\) −0.0878377 −0.00291339
\(910\) 0 0
\(911\) 13.3098 0.440974 0.220487 0.975390i \(-0.429235\pi\)
0.220487 + 0.975390i \(0.429235\pi\)
\(912\) 0 0
\(913\) 5.16464 0.170925
\(914\) 0 0
\(915\) −25.0464 −0.828007
\(916\) 0 0
\(917\) −19.3669 −0.639552
\(918\) 0 0
\(919\) −29.7421 −0.981103 −0.490551 0.871412i \(-0.663205\pi\)
−0.490551 + 0.871412i \(0.663205\pi\)
\(920\) 0 0
\(921\) −13.3365 −0.439451
\(922\) 0 0
\(923\) −22.2745 −0.733174
\(924\) 0 0
\(925\) −0.172873 −0.00568403
\(926\) 0 0
\(927\) −1.08892 −0.0357648
\(928\) 0 0
\(929\) −30.3181 −0.994705 −0.497352 0.867549i \(-0.665694\pi\)
−0.497352 + 0.867549i \(0.665694\pi\)
\(930\) 0 0
\(931\) 3.01774 0.0989024
\(932\) 0 0
\(933\) −21.8941 −0.716779
\(934\) 0 0
\(935\) 7.30921 0.239037
\(936\) 0 0
\(937\) 8.81465 0.287962 0.143981 0.989580i \(-0.454010\pi\)
0.143981 + 0.989580i \(0.454010\pi\)
\(938\) 0 0
\(939\) −6.95586 −0.226996
\(940\) 0 0
\(941\) 42.2936 1.37873 0.689366 0.724413i \(-0.257889\pi\)
0.689366 + 0.724413i \(0.257889\pi\)
\(942\) 0 0
\(943\) 52.1949 1.69970
\(944\) 0 0
\(945\) 17.4778 0.568553
\(946\) 0 0
\(947\) 30.2387 0.982626 0.491313 0.870983i \(-0.336517\pi\)
0.491313 + 0.870983i \(0.336517\pi\)
\(948\) 0 0
\(949\) −21.2207 −0.688853
\(950\) 0 0
\(951\) 3.86464 0.125320
\(952\) 0 0
\(953\) 1.52937 0.0495411 0.0247706 0.999693i \(-0.492114\pi\)
0.0247706 + 0.999693i \(0.492114\pi\)
\(954\) 0 0
\(955\) −23.3362 −0.755141
\(956\) 0 0
\(957\) −2.47926 −0.0801432
\(958\) 0 0
\(959\) −40.3609 −1.30332
\(960\) 0 0
\(961\) 64.5676 2.08283
\(962\) 0 0
\(963\) 1.33736 0.0430957
\(964\) 0 0
\(965\) 39.6771 1.27725
\(966\) 0 0
\(967\) −3.67723 −0.118252 −0.0591259 0.998251i \(-0.518831\pi\)
−0.0591259 + 0.998251i \(0.518831\pi\)
\(968\) 0 0
\(969\) 3.59513 0.115492
\(970\) 0 0
\(971\) 5.89852 0.189293 0.0946463 0.995511i \(-0.469828\pi\)
0.0946463 + 0.995511i \(0.469828\pi\)
\(972\) 0 0
\(973\) −33.4747 −1.07315
\(974\) 0 0
\(975\) 18.2232 0.583608
\(976\) 0 0
\(977\) −19.5003 −0.623871 −0.311935 0.950103i \(-0.600977\pi\)
−0.311935 + 0.950103i \(0.600977\pi\)
\(978\) 0 0
\(979\) −33.0352 −1.05581
\(980\) 0 0
\(981\) −0.669403 −0.0213724
\(982\) 0 0
\(983\) −2.43384 −0.0776274 −0.0388137 0.999246i \(-0.512358\pi\)
−0.0388137 + 0.999246i \(0.512358\pi\)
\(984\) 0 0
\(985\) −3.07328 −0.0979229
\(986\) 0 0
\(987\) 9.81291 0.312348
\(988\) 0 0
\(989\) −6.96815 −0.221574
\(990\) 0 0
\(991\) 15.1966 0.482736 0.241368 0.970434i \(-0.422404\pi\)
0.241368 + 0.970434i \(0.422404\pi\)
\(992\) 0 0
\(993\) 12.4784 0.395990
\(994\) 0 0
\(995\) 30.5196 0.967537
\(996\) 0 0
\(997\) −42.5056 −1.34617 −0.673083 0.739567i \(-0.735030\pi\)
−0.673083 + 0.739567i \(0.735030\pi\)
\(998\) 0 0
\(999\) 0.407183 0.0128827
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4864.2.a.bp.1.3 8
4.3 odd 2 4864.2.a.bq.1.6 8
8.3 odd 2 4864.2.a.bo.1.3 8
8.5 even 2 4864.2.a.bn.1.6 8
16.3 odd 4 152.2.c.b.77.8 yes 16
16.5 even 4 608.2.c.b.305.11 16
16.11 odd 4 152.2.c.b.77.7 16
16.13 even 4 608.2.c.b.305.6 16
48.5 odd 4 5472.2.g.b.2737.11 16
48.11 even 4 1368.2.g.b.685.10 16
48.29 odd 4 5472.2.g.b.2737.6 16
48.35 even 4 1368.2.g.b.685.9 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.2.c.b.77.7 16 16.11 odd 4
152.2.c.b.77.8 yes 16 16.3 odd 4
608.2.c.b.305.6 16 16.13 even 4
608.2.c.b.305.11 16 16.5 even 4
1368.2.g.b.685.9 16 48.35 even 4
1368.2.g.b.685.10 16 48.11 even 4
4864.2.a.bn.1.6 8 8.5 even 2
4864.2.a.bo.1.3 8 8.3 odd 2
4864.2.a.bp.1.3 8 1.1 even 1 trivial
4864.2.a.bq.1.6 8 4.3 odd 2
5472.2.g.b.2737.6 16 48.29 odd 4
5472.2.g.b.2737.11 16 48.5 odd 4