Properties

Label 608.2.b.c.303.9
Level $608$
Weight $2$
Character 608.303
Analytic conductor $4.855$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [608,2,Mod(303,608)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(608, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("608.303"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 608 = 2^{5} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 608.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.85490444289\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.319794774016000000.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2x^{10} + 2x^{8} + 8x^{4} - 32x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 152)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 303.9
Root \(-1.17117 - 0.792696i\) of defining polynomial
Character \(\chi\) \(=\) 608.303
Dual form 608.2.b.c.303.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.26152i q^{3} -3.51876i q^{5} -2.23607i q^{7} +1.40857 q^{9} -2.89511 q^{11} -6.30281 q^{13} +4.43898 q^{15} -4.79021 q^{17} +(-0.895107 - 4.26600i) q^{19} +2.82084 q^{21} -0.524069i q^{23} -7.38164 q^{25} +5.56149i q^{27} +0.415427 q^{29} -1.20271 q^{31} -3.65223i q^{33} -7.86818 q^{35} +5.88738 q^{37} -7.95110i q^{39} -4.87978i q^{41} +10.6853 q^{43} -4.95642i q^{45} -4.27737i q^{47} +2.00000 q^{49} -6.04294i q^{51} +6.05711 q^{53} +10.1872i q^{55} +(5.38164 - 1.12919i) q^{57} -8.08453i q^{59} -8.38042i q^{61} -3.14966i q^{63} +22.1780i q^{65} +9.79353i q^{67} +0.661123 q^{69} -10.2002 q^{71} +7.76328 q^{73} -9.31208i q^{75} +6.47365i q^{77} +7.33578 q^{79} -2.79021 q^{81} -2.00000 q^{83} +16.8556i q^{85} +0.524069i q^{87} -12.1842i q^{89} +14.0935i q^{91} -1.51724i q^{93} +(-15.0110 + 3.14966i) q^{95} +2.19044i q^{97} -4.07796 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 8 q^{9} + 12 q^{17} + 24 q^{19} - 44 q^{25} - 40 q^{35} + 24 q^{43} + 24 q^{49} + 20 q^{57} + 4 q^{73} + 36 q^{81} - 24 q^{83} - 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/608\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(191\) \(229\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.26152i 0.728338i 0.931333 + 0.364169i \(0.118647\pi\)
−0.931333 + 0.364169i \(0.881353\pi\)
\(4\) 0 0
\(5\) 3.51876i 1.57364i −0.617185 0.786818i \(-0.711727\pi\)
0.617185 0.786818i \(-0.288273\pi\)
\(6\) 0 0
\(7\) 2.23607i 0.845154i −0.906327 0.422577i \(-0.861126\pi\)
0.906327 0.422577i \(-0.138874\pi\)
\(8\) 0 0
\(9\) 1.40857 0.469524
\(10\) 0 0
\(11\) −2.89511 −0.872907 −0.436454 0.899727i \(-0.643766\pi\)
−0.436454 + 0.899727i \(0.643766\pi\)
\(12\) 0 0
\(13\) −6.30281 −1.74808 −0.874042 0.485851i \(-0.838510\pi\)
−0.874042 + 0.485851i \(0.838510\pi\)
\(14\) 0 0
\(15\) 4.43898 1.14614
\(16\) 0 0
\(17\) −4.79021 −1.16180 −0.580899 0.813976i \(-0.697299\pi\)
−0.580899 + 0.813976i \(0.697299\pi\)
\(18\) 0 0
\(19\) −0.895107 4.26600i −0.205352 0.978688i
\(20\) 0 0
\(21\) 2.82084 0.615558
\(22\) 0 0
\(23\) 0.524069i 0.109276i −0.998506 0.0546380i \(-0.982600\pi\)
0.998506 0.0546380i \(-0.0174005\pi\)
\(24\) 0 0
\(25\) −7.38164 −1.47633
\(26\) 0 0
\(27\) 5.56149i 1.07031i
\(28\) 0 0
\(29\) 0.415427 0.0771429 0.0385715 0.999256i \(-0.487719\pi\)
0.0385715 + 0.999256i \(0.487719\pi\)
\(30\) 0 0
\(31\) −1.20271 −0.216013 −0.108006 0.994150i \(-0.534447\pi\)
−0.108006 + 0.994150i \(0.534447\pi\)
\(32\) 0 0
\(33\) 3.65223i 0.635772i
\(34\) 0 0
\(35\) −7.86818 −1.32996
\(36\) 0 0
\(37\) 5.88738 0.967879 0.483939 0.875101i \(-0.339205\pi\)
0.483939 + 0.875101i \(0.339205\pi\)
\(38\) 0 0
\(39\) 7.95110i 1.27320i
\(40\) 0 0
\(41\) 4.87978i 0.762093i −0.924556 0.381047i \(-0.875564\pi\)
0.924556 0.381047i \(-0.124436\pi\)
\(42\) 0 0
\(43\) 10.6853 1.62950 0.814748 0.579815i \(-0.196875\pi\)
0.814748 + 0.579815i \(0.196875\pi\)
\(44\) 0 0
\(45\) 4.95642i 0.738859i
\(46\) 0 0
\(47\) 4.27737i 0.623919i −0.950095 0.311960i \(-0.899015\pi\)
0.950095 0.311960i \(-0.100985\pi\)
\(48\) 0 0
\(49\) 2.00000 0.285714
\(50\) 0 0
\(51\) 6.04294i 0.846181i
\(52\) 0 0
\(53\) 6.05711 0.832008 0.416004 0.909363i \(-0.363430\pi\)
0.416004 + 0.909363i \(0.363430\pi\)
\(54\) 0 0
\(55\) 10.1872i 1.37364i
\(56\) 0 0
\(57\) 5.38164 1.12919i 0.712816 0.149565i
\(58\) 0 0
\(59\) 8.08453i 1.05252i −0.850325 0.526258i \(-0.823595\pi\)
0.850325 0.526258i \(-0.176405\pi\)
\(60\) 0 0
\(61\) 8.38042i 1.07300i −0.843900 0.536501i \(-0.819746\pi\)
0.843900 0.536501i \(-0.180254\pi\)
\(62\) 0 0
\(63\) 3.14966i 0.396820i
\(64\) 0 0
\(65\) 22.1780i 2.75085i
\(66\) 0 0
\(67\) 9.79353i 1.19647i 0.801321 + 0.598235i \(0.204131\pi\)
−0.801321 + 0.598235i \(0.795869\pi\)
\(68\) 0 0
\(69\) 0.661123 0.0795899
\(70\) 0 0
\(71\) −10.2002 −1.21054 −0.605270 0.796020i \(-0.706935\pi\)
−0.605270 + 0.796020i \(0.706935\pi\)
\(72\) 0 0
\(73\) 7.76328 0.908624 0.454312 0.890843i \(-0.349885\pi\)
0.454312 + 0.890843i \(0.349885\pi\)
\(74\) 0 0
\(75\) 9.31208i 1.07527i
\(76\) 0 0
\(77\) 6.47365i 0.737741i
\(78\) 0 0
\(79\) 7.33578 0.825340 0.412670 0.910881i \(-0.364596\pi\)
0.412670 + 0.910881i \(0.364596\pi\)
\(80\) 0 0
\(81\) −2.79021 −0.310024
\(82\) 0 0
\(83\) −2.00000 −0.219529 −0.109764 0.993958i \(-0.535010\pi\)
−0.109764 + 0.993958i \(0.535010\pi\)
\(84\) 0 0
\(85\) 16.8556i 1.82825i
\(86\) 0 0
\(87\) 0.524069i 0.0561861i
\(88\) 0 0
\(89\) 12.1842i 1.29153i −0.763538 0.645763i \(-0.776539\pi\)
0.763538 0.645763i \(-0.223461\pi\)
\(90\) 0 0
\(91\) 14.0935i 1.47740i
\(92\) 0 0
\(93\) 1.51724i 0.157330i
\(94\) 0 0
\(95\) −15.0110 + 3.14966i −1.54010 + 0.323148i
\(96\) 0 0
\(97\) 2.19044i 0.222406i 0.993798 + 0.111203i \(0.0354703\pi\)
−0.993798 + 0.111203i \(0.964530\pi\)
\(98\) 0 0
\(99\) −4.07796 −0.409851
\(100\) 0 0
\(101\) 1.51724i 0.150971i 0.997147 + 0.0754853i \(0.0240506\pi\)
−0.997147 + 0.0754853i \(0.975949\pi\)
\(102\) 0 0
\(103\) 0.830855 0.0818666 0.0409333 0.999162i \(-0.486967\pi\)
0.0409333 + 0.999162i \(0.486967\pi\)
\(104\) 0 0
\(105\) 9.92585i 0.968664i
\(106\) 0 0
\(107\) 0.780070i 0.0754122i −0.999289 0.0377061i \(-0.987995\pi\)
0.999289 0.0377061i \(-0.0120051\pi\)
\(108\) 0 0
\(109\) −6.05711 −0.580166 −0.290083 0.957002i \(-0.593683\pi\)
−0.290083 + 0.957002i \(0.593683\pi\)
\(110\) 0 0
\(111\) 7.42704i 0.704943i
\(112\) 0 0
\(113\) 3.58429i 0.337181i 0.985686 + 0.168591i \(0.0539216\pi\)
−0.985686 + 0.168591i \(0.946078\pi\)
\(114\) 0 0
\(115\) −1.84407 −0.171961
\(116\) 0 0
\(117\) −8.87795 −0.820767
\(118\) 0 0
\(119\) 10.7112i 0.981898i
\(120\) 0 0
\(121\) −2.61836 −0.238033
\(122\) 0 0
\(123\) 6.15593 0.555061
\(124\) 0 0
\(125\) 8.38042i 0.749567i
\(126\) 0 0
\(127\) −17.0446 −1.51246 −0.756231 0.654305i \(-0.772961\pi\)
−0.756231 + 0.654305i \(0.772961\pi\)
\(128\) 0 0
\(129\) 13.4797i 1.18682i
\(130\) 0 0
\(131\) 11.7122 1.02330 0.511652 0.859193i \(-0.329034\pi\)
0.511652 + 0.859193i \(0.329034\pi\)
\(132\) 0 0
\(133\) −9.53907 + 2.00152i −0.827143 + 0.173554i
\(134\) 0 0
\(135\) 19.5695 1.68428
\(136\) 0 0
\(137\) 0.946141 0.0808343 0.0404171 0.999183i \(-0.487131\pi\)
0.0404171 + 0.999183i \(0.487131\pi\)
\(138\) 0 0
\(139\) 0.841247 0.0713537 0.0356768 0.999363i \(-0.488641\pi\)
0.0356768 + 0.999363i \(0.488641\pi\)
\(140\) 0 0
\(141\) 5.39599 0.454424
\(142\) 0 0
\(143\) 18.2473 1.52592
\(144\) 0 0
\(145\) 1.46179i 0.121395i
\(146\) 0 0
\(147\) 2.52304i 0.208097i
\(148\) 0 0
\(149\) 11.3353i 0.928625i −0.885671 0.464313i \(-0.846301\pi\)
0.885671 0.464313i \(-0.153699\pi\)
\(150\) 0 0
\(151\) 9.36934 0.762466 0.381233 0.924479i \(-0.375500\pi\)
0.381233 + 0.924479i \(0.375500\pi\)
\(152\) 0 0
\(153\) −6.74736 −0.545491
\(154\) 0 0
\(155\) 4.23203i 0.339925i
\(156\) 0 0
\(157\) 17.4194i 1.39022i 0.718902 + 0.695112i \(0.244645\pi\)
−0.718902 + 0.695112i \(0.755355\pi\)
\(158\) 0 0
\(159\) 7.64115i 0.605983i
\(160\) 0 0
\(161\) −1.17185 −0.0923551
\(162\) 0 0
\(163\) 20.3437 1.59344 0.796721 0.604347i \(-0.206566\pi\)
0.796721 + 0.604347i \(0.206566\pi\)
\(164\) 0 0
\(165\) −12.8513 −1.00047
\(166\) 0 0
\(167\) −13.8083 −1.06852 −0.534260 0.845320i \(-0.679410\pi\)
−0.534260 + 0.845320i \(0.679410\pi\)
\(168\) 0 0
\(169\) 26.7254 2.05580
\(170\) 0 0
\(171\) −1.26082 6.00897i −0.0964174 0.459517i
\(172\) 0 0
\(173\) 2.89680 0.220240 0.110120 0.993918i \(-0.464876\pi\)
0.110120 + 0.993918i \(0.464876\pi\)
\(174\) 0 0
\(175\) 16.5059i 1.24773i
\(176\) 0 0
\(177\) 10.1988 0.766588
\(178\) 0 0
\(179\) 10.6415i 0.795386i 0.917519 + 0.397693i \(0.130189\pi\)
−0.917519 + 0.397693i \(0.869811\pi\)
\(180\) 0 0
\(181\) −2.40541 −0.178793 −0.0893965 0.995996i \(-0.528494\pi\)
−0.0893965 + 0.995996i \(0.528494\pi\)
\(182\) 0 0
\(183\) 10.5720 0.781508
\(184\) 0 0
\(185\) 20.7162i 1.52309i
\(186\) 0 0
\(187\) 13.8682 1.01414
\(188\) 0 0
\(189\) 12.4359 0.904577
\(190\) 0 0
\(191\) 10.0526i 0.727383i −0.931520 0.363691i \(-0.881516\pi\)
0.931520 0.363691i \(-0.118484\pi\)
\(192\) 0 0
\(193\) 15.0399i 1.08259i −0.840832 0.541297i \(-0.817934\pi\)
0.840832 0.541297i \(-0.182066\pi\)
\(194\) 0 0
\(195\) −27.9780 −2.00355
\(196\) 0 0
\(197\) 13.8059i 0.983632i −0.870699 0.491816i \(-0.836333\pi\)
0.870699 0.491816i \(-0.163667\pi\)
\(198\) 0 0
\(199\) 7.36682i 0.522220i 0.965309 + 0.261110i \(0.0840885\pi\)
−0.965309 + 0.261110i \(0.915911\pi\)
\(200\) 0 0
\(201\) −12.3547 −0.871434
\(202\) 0 0
\(203\) 0.928924i 0.0651977i
\(204\) 0 0
\(205\) −17.1707 −1.19926
\(206\) 0 0
\(207\) 0.738189i 0.0513077i
\(208\) 0 0
\(209\) 2.59143 + 12.3505i 0.179253 + 0.854304i
\(210\) 0 0
\(211\) 15.6536i 1.07764i −0.842421 0.538821i \(-0.818870\pi\)
0.842421 0.538821i \(-0.181130\pi\)
\(212\) 0 0
\(213\) 12.8677i 0.881683i
\(214\) 0 0
\(215\) 37.5990i 2.56423i
\(216\) 0 0
\(217\) 2.68933i 0.182564i
\(218\) 0 0
\(219\) 9.79353i 0.661785i
\(220\) 0 0
\(221\) 30.1918 2.03092
\(222\) 0 0
\(223\) 11.4029 0.763595 0.381797 0.924246i \(-0.375305\pi\)
0.381797 + 0.924246i \(0.375305\pi\)
\(224\) 0 0
\(225\) −10.3976 −0.693171
\(226\) 0 0
\(227\) 14.4261i 0.957494i −0.877953 0.478747i \(-0.841091\pi\)
0.877953 0.478747i \(-0.158909\pi\)
\(228\) 0 0
\(229\) 18.8419i 1.24511i 0.782576 + 0.622555i \(0.213905\pi\)
−0.782576 + 0.622555i \(0.786095\pi\)
\(230\) 0 0
\(231\) −8.16663 −0.537325
\(232\) 0 0
\(233\) 5.19878 0.340584 0.170292 0.985394i \(-0.445529\pi\)
0.170292 + 0.985394i \(0.445529\pi\)
\(234\) 0 0
\(235\) −15.0510 −0.981821
\(236\) 0 0
\(237\) 9.25422i 0.601126i
\(238\) 0 0
\(239\) 12.2285i 0.790995i −0.918467 0.395497i \(-0.870572\pi\)
0.918467 0.395497i \(-0.129428\pi\)
\(240\) 0 0
\(241\) 29.9134i 1.92689i 0.267899 + 0.963447i \(0.413671\pi\)
−0.267899 + 0.963447i \(0.586329\pi\)
\(242\) 0 0
\(243\) 13.1646i 0.844508i
\(244\) 0 0
\(245\) 7.03751i 0.449610i
\(246\) 0 0
\(247\) 5.64168 + 26.8878i 0.358972 + 1.71083i
\(248\) 0 0
\(249\) 2.52304i 0.159891i
\(250\) 0 0
\(251\) −21.3947 −1.35042 −0.675212 0.737624i \(-0.735948\pi\)
−0.675212 + 0.737624i \(0.735948\pi\)
\(252\) 0 0
\(253\) 1.51724i 0.0953879i
\(254\) 0 0
\(255\) −21.2636 −1.33158
\(256\) 0 0
\(257\) 13.5781i 0.846977i 0.905901 + 0.423489i \(0.139195\pi\)
−0.905901 + 0.423489i \(0.860805\pi\)
\(258\) 0 0
\(259\) 13.1646i 0.818007i
\(260\) 0 0
\(261\) 0.585159 0.0362204
\(262\) 0 0
\(263\) 12.0939i 0.745744i 0.927883 + 0.372872i \(0.121627\pi\)
−0.927883 + 0.372872i \(0.878373\pi\)
\(264\) 0 0
\(265\) 21.3135i 1.30928i
\(266\) 0 0
\(267\) 15.3706 0.940668
\(268\) 0 0
\(269\) 21.2379 1.29490 0.647448 0.762110i \(-0.275836\pi\)
0.647448 + 0.762110i \(0.275836\pi\)
\(270\) 0 0
\(271\) 16.1163i 0.978997i −0.872004 0.489499i \(-0.837180\pi\)
0.872004 0.489499i \(-0.162820\pi\)
\(272\) 0 0
\(273\) −17.7792 −1.07605
\(274\) 0 0
\(275\) 21.3706 1.28870
\(276\) 0 0
\(277\) 3.98785i 0.239607i −0.992798 0.119803i \(-0.961774\pi\)
0.992798 0.119803i \(-0.0382264\pi\)
\(278\) 0 0
\(279\) −1.69410 −0.101423
\(280\) 0 0
\(281\) 0.630302i 0.0376007i −0.999823 0.0188003i \(-0.994015\pi\)
0.999823 0.0188003i \(-0.00598468\pi\)
\(282\) 0 0
\(283\) −31.0290 −1.84448 −0.922242 0.386613i \(-0.873645\pi\)
−0.922242 + 0.386613i \(0.873645\pi\)
\(284\) 0 0
\(285\) −3.97336 18.9367i −0.235361 1.12171i
\(286\) 0 0
\(287\) −10.9115 −0.644086
\(288\) 0 0
\(289\) 5.94614 0.349773
\(290\) 0 0
\(291\) −2.76328 −0.161987
\(292\) 0 0
\(293\) −30.6832 −1.79253 −0.896265 0.443519i \(-0.853730\pi\)
−0.896265 + 0.443519i \(0.853730\pi\)
\(294\) 0 0
\(295\) −28.4475 −1.65628
\(296\) 0 0
\(297\) 16.1011i 0.934282i
\(298\) 0 0
\(299\) 3.30311i 0.191024i
\(300\) 0 0
\(301\) 23.8931i 1.37718i
\(302\) 0 0
\(303\) −1.91402 −0.109958
\(304\) 0 0
\(305\) −29.4886 −1.68851
\(306\) 0 0
\(307\) 15.6876i 0.895339i −0.894199 0.447670i \(-0.852254\pi\)
0.894199 0.447670i \(-0.147746\pi\)
\(308\) 0 0
\(309\) 1.04814i 0.0596265i
\(310\) 0 0
\(311\) 28.3998i 1.61040i −0.593001 0.805202i \(-0.702057\pi\)
0.593001 0.805202i \(-0.297943\pi\)
\(312\) 0 0
\(313\) −5.53757 −0.313002 −0.156501 0.987678i \(-0.550021\pi\)
−0.156501 + 0.987678i \(0.550021\pi\)
\(314\) 0 0
\(315\) −11.0829 −0.624450
\(316\) 0 0
\(317\) −11.9445 −0.670869 −0.335435 0.942063i \(-0.608883\pi\)
−0.335435 + 0.942063i \(0.608883\pi\)
\(318\) 0 0
\(319\) −1.20271 −0.0673386
\(320\) 0 0
\(321\) 0.984073 0.0549256
\(322\) 0 0
\(323\) 4.28775 + 20.4351i 0.238577 + 1.13704i
\(324\) 0 0
\(325\) 46.5250 2.58075
\(326\) 0 0
\(327\) 7.64115i 0.422557i
\(328\) 0 0
\(329\) −9.56450 −0.527308
\(330\) 0 0
\(331\) 15.5378i 0.854037i −0.904243 0.427019i \(-0.859564\pi\)
0.904243 0.427019i \(-0.140436\pi\)
\(332\) 0 0
\(333\) 8.29279 0.454442
\(334\) 0 0
\(335\) 34.4610 1.88281
\(336\) 0 0
\(337\) 29.4825i 1.60601i 0.595970 + 0.803007i \(0.296768\pi\)
−0.595970 + 0.803007i \(0.703232\pi\)
\(338\) 0 0
\(339\) −4.52164 −0.245582
\(340\) 0 0
\(341\) 3.48196 0.188559
\(342\) 0 0
\(343\) 20.1246i 1.08663i
\(344\) 0 0
\(345\) 2.32633i 0.125245i
\(346\) 0 0
\(347\) 19.3465 1.03858 0.519288 0.854599i \(-0.326197\pi\)
0.519288 + 0.854599i \(0.326197\pi\)
\(348\) 0 0
\(349\) 12.4630i 0.667131i 0.942727 + 0.333565i \(0.108252\pi\)
−0.942727 + 0.333565i \(0.891748\pi\)
\(350\) 0 0
\(351\) 35.0530i 1.87099i
\(352\) 0 0
\(353\) 9.22571 0.491035 0.245518 0.969392i \(-0.421042\pi\)
0.245518 + 0.969392i \(0.421042\pi\)
\(354\) 0 0
\(355\) 35.8920i 1.90495i
\(356\) 0 0
\(357\) −13.5124 −0.715154
\(358\) 0 0
\(359\) 18.8765i 0.996262i 0.867102 + 0.498131i \(0.165980\pi\)
−0.867102 + 0.498131i \(0.834020\pi\)
\(360\) 0 0
\(361\) −17.3976 + 7.63705i −0.915662 + 0.401950i
\(362\) 0 0
\(363\) 3.30311i 0.173368i
\(364\) 0 0
\(365\) 27.3171i 1.42984i
\(366\) 0 0
\(367\) 20.7230i 1.08173i 0.841109 + 0.540866i \(0.181903\pi\)
−0.841109 + 0.540866i \(0.818097\pi\)
\(368\) 0 0
\(369\) 6.87351i 0.357821i
\(370\) 0 0
\(371\) 13.5441i 0.703175i
\(372\) 0 0
\(373\) −4.23686 −0.219376 −0.109688 0.993966i \(-0.534985\pi\)
−0.109688 + 0.993966i \(0.534985\pi\)
\(374\) 0 0
\(375\) −10.5720 −0.545938
\(376\) 0 0
\(377\) −2.61836 −0.134852
\(378\) 0 0
\(379\) 8.91154i 0.457755i 0.973455 + 0.228877i \(0.0735055\pi\)
−0.973455 + 0.228877i \(0.926494\pi\)
\(380\) 0 0
\(381\) 21.5021i 1.10158i
\(382\) 0 0
\(383\) 24.3480 1.24412 0.622062 0.782968i \(-0.286295\pi\)
0.622062 + 0.782968i \(0.286295\pi\)
\(384\) 0 0
\(385\) 22.7792 1.16094
\(386\) 0 0
\(387\) 15.0510 0.765087
\(388\) 0 0
\(389\) 3.04966i 0.154624i −0.997007 0.0773119i \(-0.975366\pi\)
0.997007 0.0773119i \(-0.0246337\pi\)
\(390\) 0 0
\(391\) 2.51040i 0.126957i
\(392\) 0 0
\(393\) 14.7752i 0.745311i
\(394\) 0 0
\(395\) 25.8128i 1.29878i
\(396\) 0 0
\(397\) 14.6389i 0.734704i 0.930082 + 0.367352i \(0.119736\pi\)
−0.930082 + 0.367352i \(0.880264\pi\)
\(398\) 0 0
\(399\) −2.52495 12.0337i −0.126406 0.602439i
\(400\) 0 0
\(401\) 28.6859i 1.43251i −0.697841 0.716253i \(-0.745856\pi\)
0.697841 0.716253i \(-0.254144\pi\)
\(402\) 0 0
\(403\) 7.58043 0.377608
\(404\) 0 0
\(405\) 9.81808i 0.487864i
\(406\) 0 0
\(407\) −17.0446 −0.844869
\(408\) 0 0
\(409\) 16.0028i 0.791286i −0.918404 0.395643i \(-0.870522\pi\)
0.918404 0.395643i \(-0.129478\pi\)
\(410\) 0 0
\(411\) 1.19357i 0.0588747i
\(412\) 0 0
\(413\) −18.0776 −0.889539
\(414\) 0 0
\(415\) 7.03751i 0.345458i
\(416\) 0 0
\(417\) 1.06125i 0.0519696i
\(418\) 0 0
\(419\) −1.68814 −0.0824712 −0.0412356 0.999149i \(-0.513129\pi\)
−0.0412356 + 0.999149i \(0.513129\pi\)
\(420\) 0 0
\(421\) 15.9178 0.775788 0.387894 0.921704i \(-0.373203\pi\)
0.387894 + 0.921704i \(0.373203\pi\)
\(422\) 0 0
\(423\) 6.02499i 0.292945i
\(424\) 0 0
\(425\) 35.3596 1.71519
\(426\) 0 0
\(427\) −18.7392 −0.906852
\(428\) 0 0
\(429\) 23.0193i 1.11138i
\(430\) 0 0
\(431\) −12.2661 −0.590839 −0.295420 0.955368i \(-0.595459\pi\)
−0.295420 + 0.955368i \(0.595459\pi\)
\(432\) 0 0
\(433\) 22.2764i 1.07053i −0.844683 0.535267i \(-0.820211\pi\)
0.844683 0.535267i \(-0.179789\pi\)
\(434\) 0 0
\(435\) 1.84407 0.0884165
\(436\) 0 0
\(437\) −2.23568 + 0.469098i −0.106947 + 0.0224400i
\(438\) 0 0
\(439\) 38.1887 1.82265 0.911323 0.411692i \(-0.135062\pi\)
0.911323 + 0.411692i \(0.135062\pi\)
\(440\) 0 0
\(441\) 2.81714 0.134150
\(442\) 0 0
\(443\) −9.55632 −0.454035 −0.227017 0.973891i \(-0.572897\pi\)
−0.227017 + 0.973891i \(0.572897\pi\)
\(444\) 0 0
\(445\) −42.8734 −2.03239
\(446\) 0 0
\(447\) 14.2997 0.676353
\(448\) 0 0
\(449\) 4.08318i 0.192697i −0.995348 0.0963485i \(-0.969284\pi\)
0.995348 0.0963485i \(-0.0307163\pi\)
\(450\) 0 0
\(451\) 14.1275i 0.665237i
\(452\) 0 0
\(453\) 11.8196i 0.555333i
\(454\) 0 0
\(455\) 49.5916 2.32489
\(456\) 0 0
\(457\) 31.4996 1.47349 0.736745 0.676170i \(-0.236362\pi\)
0.736745 + 0.676170i \(0.236362\pi\)
\(458\) 0 0
\(459\) 26.6407i 1.24348i
\(460\) 0 0
\(461\) 11.6044i 0.540471i −0.962794 0.270236i \(-0.912898\pi\)
0.962794 0.270236i \(-0.0871016\pi\)
\(462\) 0 0
\(463\) 33.7855i 1.57015i 0.619403 + 0.785073i \(0.287375\pi\)
−0.619403 + 0.785073i \(0.712625\pi\)
\(464\) 0 0
\(465\) −5.33879 −0.247580
\(466\) 0 0
\(467\) −30.6853 −1.41995 −0.709974 0.704228i \(-0.751293\pi\)
−0.709974 + 0.704228i \(0.751293\pi\)
\(468\) 0 0
\(469\) 21.8990 1.01120
\(470\) 0 0
\(471\) −21.9750 −1.01255
\(472\) 0 0
\(473\) −30.9351 −1.42240
\(474\) 0 0
\(475\) 6.60736 + 31.4901i 0.303166 + 1.44487i
\(476\) 0 0
\(477\) 8.53187 0.390648
\(478\) 0 0
\(479\) 30.4463i 1.39113i 0.718464 + 0.695564i \(0.244846\pi\)
−0.718464 + 0.695564i \(0.755154\pi\)
\(480\) 0 0
\(481\) −37.1070 −1.69193
\(482\) 0 0
\(483\) 1.47832i 0.0672657i
\(484\) 0 0
\(485\) 7.70763 0.349986
\(486\) 0 0
\(487\) −5.15029 −0.233382 −0.116691 0.993168i \(-0.537229\pi\)
−0.116691 + 0.993168i \(0.537229\pi\)
\(488\) 0 0
\(489\) 25.6640i 1.16056i
\(490\) 0 0
\(491\) −20.3437 −0.918099 −0.459049 0.888411i \(-0.651810\pi\)
−0.459049 + 0.888411i \(0.651810\pi\)
\(492\) 0 0
\(493\) −1.98999 −0.0896245
\(494\) 0 0
\(495\) 14.3494i 0.644956i
\(496\) 0 0
\(497\) 22.8083i 1.02309i
\(498\) 0 0
\(499\) 18.5776 0.831648 0.415824 0.909445i \(-0.363493\pi\)
0.415824 + 0.909445i \(0.363493\pi\)
\(500\) 0 0
\(501\) 17.4194i 0.778243i
\(502\) 0 0
\(503\) 28.6741i 1.27852i 0.768993 + 0.639258i \(0.220758\pi\)
−0.768993 + 0.639258i \(0.779242\pi\)
\(504\) 0 0
\(505\) 5.33879 0.237573
\(506\) 0 0
\(507\) 33.7145i 1.49731i
\(508\) 0 0
\(509\) −26.8729 −1.19112 −0.595561 0.803310i \(-0.703070\pi\)
−0.595561 + 0.803310i \(0.703070\pi\)
\(510\) 0 0
\(511\) 17.3592i 0.767927i
\(512\) 0 0
\(513\) 23.7254 4.97813i 1.04750 0.219790i
\(514\) 0 0
\(515\) 2.92358i 0.128828i
\(516\) 0 0
\(517\) 12.3835i 0.544624i
\(518\) 0 0
\(519\) 3.65437i 0.160409i
\(520\) 0 0
\(521\) 19.3528i 0.847862i −0.905695 0.423931i \(-0.860650\pi\)
0.905695 0.423931i \(-0.139350\pi\)
\(522\) 0 0
\(523\) 33.6806i 1.47275i −0.676575 0.736374i \(-0.736536\pi\)
0.676575 0.736374i \(-0.263464\pi\)
\(524\) 0 0
\(525\) −20.8224 −0.908766
\(526\) 0 0
\(527\) 5.76122 0.250963
\(528\) 0 0
\(529\) 22.7254 0.988059
\(530\) 0 0
\(531\) 11.3876i 0.494181i
\(532\) 0 0
\(533\) 30.7563i 1.33220i
\(534\) 0 0
\(535\) −2.74488 −0.118671
\(536\) 0 0
\(537\) −13.4245 −0.579310
\(538\) 0 0
\(539\) −5.79021 −0.249402
\(540\) 0 0
\(541\) 17.2043i 0.739669i 0.929098 + 0.369834i \(0.120586\pi\)
−0.929098 + 0.369834i \(0.879414\pi\)
\(542\) 0 0
\(543\) 3.03447i 0.130222i
\(544\) 0 0
\(545\) 21.3135i 0.912970i
\(546\) 0 0
\(547\) 12.4185i 0.530976i −0.964114 0.265488i \(-0.914467\pi\)
0.964114 0.265488i \(-0.0855330\pi\)
\(548\) 0 0
\(549\) 11.8044i 0.503800i
\(550\) 0 0
\(551\) −0.371852 1.77221i −0.0158414 0.0754989i
\(552\) 0 0
\(553\) 16.4033i 0.697539i
\(554\) 0 0
\(555\) 26.1339 1.10932
\(556\) 0 0
\(557\) 23.8931i 1.01238i 0.862421 + 0.506192i \(0.168947\pi\)
−0.862421 + 0.506192i \(0.831053\pi\)
\(558\) 0 0
\(559\) −67.3475 −2.84850
\(560\) 0 0
\(561\) 17.4950i 0.738638i
\(562\) 0 0
\(563\) 5.26287i 0.221804i 0.993831 + 0.110902i \(0.0353739\pi\)
−0.993831 + 0.110902i \(0.964626\pi\)
\(564\) 0 0
\(565\) 12.6122 0.530600
\(566\) 0 0
\(567\) 6.23911i 0.262018i
\(568\) 0 0
\(569\) 42.6949i 1.78986i −0.446202 0.894932i \(-0.647224\pi\)
0.446202 0.894932i \(-0.352776\pi\)
\(570\) 0 0
\(571\) 16.0539 0.671833 0.335917 0.941892i \(-0.390954\pi\)
0.335917 + 0.941892i \(0.390954\pi\)
\(572\) 0 0
\(573\) 12.6816 0.529780
\(574\) 0 0
\(575\) 3.86849i 0.161327i
\(576\) 0 0
\(577\) 8.58043 0.357208 0.178604 0.983921i \(-0.442842\pi\)
0.178604 + 0.983921i \(0.442842\pi\)
\(578\) 0 0
\(579\) 18.9731 0.788494
\(580\) 0 0
\(581\) 4.47214i 0.185535i
\(582\) 0 0
\(583\) −17.5360 −0.726266
\(584\) 0 0
\(585\) 31.2393i 1.29159i
\(586\) 0 0
\(587\) 32.9213 1.35881 0.679404 0.733764i \(-0.262238\pi\)
0.679404 + 0.733764i \(0.262238\pi\)
\(588\) 0 0
\(589\) 1.07655 + 5.13075i 0.0443585 + 0.211409i
\(590\) 0 0
\(591\) 17.4164 0.716416
\(592\) 0 0
\(593\) 12.9731 0.532740 0.266370 0.963871i \(-0.414176\pi\)
0.266370 + 0.963871i \(0.414176\pi\)
\(594\) 0 0
\(595\) 37.6902 1.54515
\(596\) 0 0
\(597\) −9.29338 −0.380353
\(598\) 0 0
\(599\) −12.9775 −0.530245 −0.265122 0.964215i \(-0.585412\pi\)
−0.265122 + 0.964215i \(0.585412\pi\)
\(600\) 0 0
\(601\) 0.135889i 0.00554301i −0.999996 0.00277150i \(-0.999118\pi\)
0.999996 0.00277150i \(-0.000882198\pi\)
\(602\) 0 0
\(603\) 13.7949i 0.561771i
\(604\) 0 0
\(605\) 9.21336i 0.374576i
\(606\) 0 0
\(607\) 31.1052 1.26252 0.631261 0.775571i \(-0.282538\pi\)
0.631261 + 0.775571i \(0.282538\pi\)
\(608\) 0 0
\(609\) 1.17185 0.0474860
\(610\) 0 0
\(611\) 26.9595i 1.09066i
\(612\) 0 0
\(613\) 21.4073i 0.864633i −0.901722 0.432316i \(-0.857696\pi\)
0.901722 0.432316i \(-0.142304\pi\)
\(614\) 0 0
\(615\) 21.6612i 0.873464i
\(616\) 0 0
\(617\) −1.30650 −0.0525978 −0.0262989 0.999654i \(-0.508372\pi\)
−0.0262989 + 0.999654i \(0.508372\pi\)
\(618\) 0 0
\(619\) 33.9780 1.36569 0.682845 0.730563i \(-0.260742\pi\)
0.682845 + 0.730563i \(0.260742\pi\)
\(620\) 0 0
\(621\) 2.91461 0.116959
\(622\) 0 0
\(623\) −27.2448 −1.09154
\(624\) 0 0
\(625\) −7.41957 −0.296783
\(626\) 0 0
\(627\) −15.5804 + 3.26914i −0.622222 + 0.130557i
\(628\) 0 0
\(629\) −28.2018 −1.12448
\(630\) 0 0
\(631\) 7.50136i 0.298625i −0.988790 0.149312i \(-0.952294\pi\)
0.988790 0.149312i \(-0.0477060\pi\)
\(632\) 0 0
\(633\) 19.7474 0.784887
\(634\) 0 0
\(635\) 59.9757i 2.38006i
\(636\) 0 0
\(637\) −12.6056 −0.499452
\(638\) 0 0
\(639\) −14.3677 −0.568378
\(640\) 0 0
\(641\) 1.22755i 0.0484852i 0.999706 + 0.0242426i \(0.00771741\pi\)
−0.999706 + 0.0242426i \(0.992283\pi\)
\(642\) 0 0
\(643\) −24.4755 −0.965221 −0.482610 0.875835i \(-0.660311\pi\)
−0.482610 + 0.875835i \(0.660311\pi\)
\(644\) 0 0
\(645\) 47.4319 1.86763
\(646\) 0 0
\(647\) 0.598399i 0.0235255i −0.999931 0.0117627i \(-0.996256\pi\)
0.999931 0.0117627i \(-0.00374428\pi\)
\(648\) 0 0
\(649\) 23.4056i 0.918749i
\(650\) 0 0
\(651\) −3.39264 −0.132968
\(652\) 0 0
\(653\) 34.6646i 1.35653i 0.734818 + 0.678265i \(0.237268\pi\)
−0.734818 + 0.678265i \(0.762732\pi\)
\(654\) 0 0
\(655\) 41.2125i 1.61031i
\(656\) 0 0
\(657\) 10.9351 0.426620
\(658\) 0 0
\(659\) 11.5705i 0.450721i −0.974275 0.225361i \(-0.927644\pi\)
0.974275 0.225361i \(-0.0723560\pi\)
\(660\) 0 0
\(661\) 10.3699 0.403343 0.201672 0.979453i \(-0.435363\pi\)
0.201672 + 0.979453i \(0.435363\pi\)
\(662\) 0 0
\(663\) 38.0875i 1.47920i
\(664\) 0 0
\(665\) 7.04286 + 33.5657i 0.273110 + 1.30162i
\(666\) 0 0
\(667\) 0.217713i 0.00842987i
\(668\) 0 0
\(669\) 14.3850i 0.556155i
\(670\) 0 0
\(671\) 24.2622i 0.936632i
\(672\) 0 0
\(673\) 9.16231i 0.353181i −0.984284 0.176591i \(-0.943493\pi\)
0.984284 0.176591i \(-0.0565068\pi\)
\(674\) 0 0
\(675\) 41.0530i 1.58013i
\(676\) 0 0
\(677\) 30.1852 1.16011 0.580055 0.814577i \(-0.303031\pi\)
0.580055 + 0.814577i \(0.303031\pi\)
\(678\) 0 0
\(679\) 4.89798 0.187967
\(680\) 0 0
\(681\) 18.1988 0.697379
\(682\) 0 0
\(683\) 21.2151i 0.811775i −0.913923 0.405887i \(-0.866963\pi\)
0.913923 0.405887i \(-0.133037\pi\)
\(684\) 0 0
\(685\) 3.32924i 0.127204i
\(686\) 0 0
\(687\) −23.7694 −0.906860
\(688\) 0 0
\(689\) −38.1768 −1.45442
\(690\) 0 0
\(691\) 9.52447 0.362328 0.181164 0.983453i \(-0.442014\pi\)
0.181164 + 0.983453i \(0.442014\pi\)
\(692\) 0 0
\(693\) 9.11860i 0.346387i
\(694\) 0 0
\(695\) 2.96014i 0.112285i
\(696\) 0 0
\(697\) 23.3752i 0.885398i
\(698\) 0 0
\(699\) 6.55836i 0.248060i
\(700\) 0 0
\(701\) 28.7291i 1.08508i −0.840029 0.542541i \(-0.817462\pi\)
0.840029 0.542541i \(-0.182538\pi\)
\(702\) 0 0
\(703\) −5.26983 25.1156i −0.198755 0.947252i
\(704\) 0 0
\(705\) 18.9872i 0.715098i
\(706\) 0 0
\(707\) 3.39264 0.127594
\(708\) 0 0
\(709\) 16.3713i 0.614837i −0.951574 0.307419i \(-0.900535\pi\)
0.951574 0.307419i \(-0.0994652\pi\)
\(710\) 0 0
\(711\) 10.3330 0.387517
\(712\) 0 0
\(713\) 0.630302i 0.0236050i
\(714\) 0 0
\(715\) 64.2078i 2.40123i
\(716\) 0 0
\(717\) 15.4265 0.576111
\(718\) 0 0
\(719\) 7.75634i 0.289263i −0.989486 0.144631i \(-0.953800\pi\)
0.989486 0.144631i \(-0.0461996\pi\)
\(720\) 0 0
\(721\) 1.85785i 0.0691899i
\(722\) 0 0
\(723\) −37.7364 −1.40343
\(724\) 0 0
\(725\) −3.06654 −0.113888
\(726\) 0 0
\(727\) 34.3892i 1.27542i 0.770275 + 0.637712i \(0.220119\pi\)
−0.770275 + 0.637712i \(0.779881\pi\)
\(728\) 0 0
\(729\) −24.9780 −0.925111
\(730\) 0 0
\(731\) −51.1850 −1.89314
\(732\) 0 0
\(733\) 42.5350i 1.57107i −0.618819 0.785533i \(-0.712389\pi\)
0.618819 0.785533i \(-0.287611\pi\)
\(734\) 0 0
\(735\) 8.87795 0.327468
\(736\) 0 0
\(737\) 28.3533i 1.04441i
\(738\) 0 0
\(739\) −8.23389 −0.302889 −0.151444 0.988466i \(-0.548392\pi\)
−0.151444 + 0.988466i \(0.548392\pi\)
\(740\) 0 0
\(741\) −33.9194 + 7.11709i −1.24606 + 0.261453i
\(742\) 0 0
\(743\) −0.459003 −0.0168392 −0.00841960 0.999965i \(-0.502680\pi\)
−0.00841960 + 0.999965i \(0.502680\pi\)
\(744\) 0 0
\(745\) −39.8862 −1.46132
\(746\) 0 0
\(747\) −2.81714 −0.103074
\(748\) 0 0
\(749\) −1.74429 −0.0637350
\(750\) 0 0
\(751\) −4.47136 −0.163162 −0.0815812 0.996667i \(-0.525997\pi\)
−0.0815812 + 0.996667i \(0.525997\pi\)
\(752\) 0 0
\(753\) 26.9899i 0.983565i
\(754\) 0 0
\(755\) 32.9684i 1.19984i
\(756\) 0 0
\(757\) 21.8764i 0.795111i 0.917578 + 0.397556i \(0.130141\pi\)
−0.917578 + 0.397556i \(0.869859\pi\)
\(758\) 0 0
\(759\) −1.91402 −0.0694746
\(760\) 0 0
\(761\) 13.2416 0.480009 0.240005 0.970772i \(-0.422851\pi\)
0.240005 + 0.970772i \(0.422851\pi\)
\(762\) 0 0
\(763\) 13.5441i 0.490330i
\(764\) 0 0
\(765\) 23.7423i 0.858405i
\(766\) 0 0
\(767\) 50.9552i 1.83989i
\(768\) 0 0
\(769\) −4.84407 −0.174682 −0.0873409 0.996178i \(-0.527837\pi\)
−0.0873409 + 0.996178i \(0.527837\pi\)
\(770\) 0 0
\(771\) −17.1290 −0.616886
\(772\) 0 0
\(773\) −40.0525 −1.44059 −0.720294 0.693669i \(-0.755993\pi\)
−0.720294 + 0.693669i \(0.755993\pi\)
\(774\) 0 0
\(775\) 8.87795 0.318905
\(776\) 0 0
\(777\) 16.6074 0.595786
\(778\) 0 0
\(779\) −20.8171 + 4.36792i −0.745852 + 0.156497i
\(780\) 0 0
\(781\) 29.5307 1.05669
\(782\) 0 0
\(783\) 2.31040i 0.0825669i
\(784\) 0 0
\(785\) 61.2948 2.18770
\(786\) 0 0
\(787\) 1.18061i 0.0420842i 0.999779 + 0.0210421i \(0.00669840\pi\)
−0.999779 + 0.0210421i \(0.993302\pi\)
\(788\) 0 0
\(789\) −15.2567 −0.543154
\(790\) 0 0
\(791\) 8.01471 0.284970
\(792\) 0 0
\(793\) 52.8201i 1.87570i
\(794\) 0 0
\(795\) 26.8874 0.953596
\(796\) 0 0
\(797\) 47.0231 1.66564 0.832821 0.553542i \(-0.186724\pi\)
0.832821 + 0.553542i \(0.186724\pi\)
\(798\) 0 0
\(799\) 20.4895i 0.724868i
\(800\) 0 0
\(801\) 17.1624i 0.606402i
\(802\) 0 0
\(803\) −22.4755 −0.793144
\(804\) 0 0
\(805\) 4.12347i 0.145333i
\(806\) 0 0
\(807\) 26.7920i 0.943122i
\(808\) 0 0
\(809\) −22.8923 −0.804850 −0.402425 0.915453i \(-0.631833\pi\)
−0.402425 + 0.915453i \(0.631833\pi\)
\(810\) 0 0
\(811\) 7.45423i 0.261753i 0.991399 + 0.130877i \(0.0417792\pi\)
−0.991399 + 0.130877i \(0.958221\pi\)
\(812\) 0 0
\(813\) 20.3310 0.713041
\(814\) 0 0
\(815\) 71.5845i 2.50750i
\(816\) 0 0
\(817\) −9.56450 45.5836i −0.334619 1.59477i
\(818\) 0 0
\(819\) 19.8517i 0.693675i
\(820\) 0 0
\(821\) 51.2254i 1.78778i 0.448288 + 0.893889i \(0.352034\pi\)
−0.448288 + 0.893889i \(0.647966\pi\)
\(822\) 0 0
\(823\) 35.1273i 1.22446i −0.790679 0.612231i \(-0.790272\pi\)
0.790679 0.612231i \(-0.209728\pi\)
\(824\) 0 0
\(825\) 26.9595i 0.938608i
\(826\) 0 0
\(827\) 20.5839i 0.715773i 0.933765 + 0.357886i \(0.116503\pi\)
−0.933765 + 0.357886i \(0.883497\pi\)
\(828\) 0 0
\(829\) 25.0415 0.869727 0.434863 0.900496i \(-0.356797\pi\)
0.434863 + 0.900496i \(0.356797\pi\)
\(830\) 0 0
\(831\) 5.03075 0.174515
\(832\) 0 0
\(833\) −9.58043 −0.331942
\(834\) 0 0
\(835\) 48.5881i 1.68146i
\(836\) 0 0
\(837\) 6.68885i 0.231200i
\(838\) 0 0
\(839\) 40.2222 1.38863 0.694313 0.719673i \(-0.255708\pi\)
0.694313 + 0.719673i \(0.255708\pi\)
\(840\) 0 0
\(841\) −28.8274 −0.994049
\(842\) 0 0
\(843\) 0.795137 0.0273860
\(844\) 0 0
\(845\) 94.0400i 3.23507i
\(846\) 0 0
\(847\) 5.85483i 0.201174i
\(848\) 0 0
\(849\) 39.1437i 1.34341i
\(850\) 0 0
\(851\) 3.08539i 0.105766i
\(852\) 0 0
\(853\) 29.2390i 1.00113i −0.865700 0.500563i \(-0.833126\pi\)
0.865700 0.500563i \(-0.166874\pi\)
\(854\) 0 0
\(855\) −21.1441 + 4.43652i −0.723113 + 0.151726i
\(856\) 0 0
\(857\) 34.2639i 1.17043i −0.810877 0.585217i \(-0.801010\pi\)
0.810877 0.585217i \(-0.198990\pi\)
\(858\) 0 0
\(859\) −1.50246 −0.0512633 −0.0256317 0.999671i \(-0.508160\pi\)
−0.0256317 + 0.999671i \(0.508160\pi\)
\(860\) 0 0
\(861\) 13.7651i 0.469112i
\(862\) 0 0
\(863\) 53.5392 1.82249 0.911247 0.411860i \(-0.135121\pi\)
0.911247 + 0.411860i \(0.135121\pi\)
\(864\) 0 0
\(865\) 10.1931i 0.346577i
\(866\) 0 0
\(867\) 7.50117i 0.254753i
\(868\) 0 0
\(869\) −21.2379 −0.720445
\(870\) 0 0
\(871\) 61.7267i 2.09153i
\(872\) 0 0
\(873\) 3.08539i 0.104425i
\(874\) 0 0
\(875\) 18.7392 0.633500
\(876\) 0 0
\(877\) −7.96451 −0.268943 −0.134471 0.990917i \(-0.542934\pi\)
−0.134471 + 0.990917i \(0.542934\pi\)
\(878\) 0 0
\(879\) 38.7074i 1.30557i
\(880\) 0 0
\(881\) −0.779210 −0.0262523 −0.0131261 0.999914i \(-0.504178\pi\)
−0.0131261 + 0.999914i \(0.504178\pi\)
\(882\) 0 0
\(883\) −4.42167 −0.148801 −0.0744006 0.997228i \(-0.523704\pi\)
−0.0744006 + 0.997228i \(0.523704\pi\)
\(884\) 0 0
\(885\) 35.8870i 1.20633i
\(886\) 0 0
\(887\) −15.3505 −0.515419 −0.257709 0.966222i \(-0.582968\pi\)
−0.257709 + 0.966222i \(0.582968\pi\)
\(888\) 0 0
\(889\) 38.1129i 1.27826i
\(890\) 0 0
\(891\) 8.07796 0.270622
\(892\) 0 0
\(893\) −18.2473 + 3.82871i −0.610622 + 0.128123i
\(894\) 0 0
\(895\) 37.4450 1.25165
\(896\) 0 0
\(897\) −4.16693 −0.139130
\(898\) 0 0
\(899\) −0.499637 −0.0166638
\(900\) 0 0
\(901\) −29.0148 −0.966625
\(902\) 0 0
\(903\) 30.1416 1.00305
\(904\) 0 0
\(905\) 8.46406i 0.281355i
\(906\) 0 0
\(907\) 21.6756i 0.719726i −0.933005 0.359863i \(-0.882823\pi\)
0.933005 0.359863i \(-0.117177\pi\)
\(908\) 0 0
\(909\) 2.13714i 0.0708843i
\(910\) 0 0
\(911\) −20.9922 −0.695502 −0.347751 0.937587i \(-0.613054\pi\)
−0.347751 + 0.937587i \(0.613054\pi\)
\(912\) 0 0
\(913\) 5.79021 0.191628
\(914\) 0 0
\(915\) 37.2005i 1.22981i
\(916\) 0 0
\(917\) 26.1894i 0.864850i
\(918\) 0 0
\(919\) 12.7719i 0.421306i −0.977561 0.210653i \(-0.932441\pi\)
0.977561 0.210653i \(-0.0675591\pi\)
\(920\) 0 0
\(921\) 19.7902 0.652110
\(922\) 0 0
\(923\) 64.2899 2.11613
\(924\) 0 0
\(925\) −43.4585 −1.42891
\(926\) 0 0
\(927\) 1.17032 0.0384383
\(928\) 0 0
\(929\) −9.11800 −0.299152 −0.149576 0.988750i \(-0.547791\pi\)
−0.149576 + 0.988750i \(0.547791\pi\)
\(930\) 0 0
\(931\) −1.79021 8.53201i −0.0586719 0.279625i
\(932\) 0 0
\(933\) 35.8268 1.17292
\(934\) 0 0
\(935\) 48.7987i 1.59589i
\(936\) 0 0
\(937\) 6.18286 0.201985 0.100993 0.994887i \(-0.467798\pi\)
0.100993 + 0.994887i \(0.467798\pi\)
\(938\) 0 0
\(939\) 6.98575i 0.227971i
\(940\) 0 0
\(941\) 18.9084 0.616397 0.308198 0.951322i \(-0.400274\pi\)
0.308198 + 0.951322i \(0.400274\pi\)
\(942\) 0 0
\(943\) −2.55734 −0.0832785
\(944\) 0 0
\(945\) 43.7588i 1.42347i
\(946\) 0 0
\(947\) 33.2409 1.08018 0.540092 0.841606i \(-0.318389\pi\)
0.540092 + 0.841606i \(0.318389\pi\)
\(948\) 0 0
\(949\) −48.9305 −1.58835
\(950\) 0 0
\(951\) 15.0682i 0.488620i
\(952\) 0 0
\(953\) 43.2269i 1.40026i 0.714018 + 0.700128i \(0.246874\pi\)
−0.714018 + 0.700128i \(0.753126\pi\)
\(954\) 0 0
\(955\) −35.3727 −1.14463
\(956\) 0 0
\(957\) 1.51724i 0.0490453i
\(958\) 0 0
\(959\) 2.11564i 0.0683174i
\(960\) 0 0
\(961\) −29.5535 −0.953339
\(962\) 0 0
\(963\) 1.09878i 0.0354078i
\(964\) 0 0
\(965\) −52.9216 −1.70361
\(966\) 0 0
\(967\) 24.5774i 0.790356i −0.918605 0.395178i \(-0.870683\pi\)
0.918605 0.395178i \(-0.129317\pi\)
\(968\) 0 0
\(969\) −25.7792 + 5.40908i −0.828148 + 0.173765i
\(970\) 0 0
\(971\) 31.4083i 1.00794i −0.863721 0.503970i \(-0.831872\pi\)
0.863721 0.503970i \(-0.168128\pi\)
\(972\) 0 0
\(973\) 1.88109i 0.0603049i
\(974\) 0 0
\(975\) 58.6922i 1.87965i
\(976\) 0 0
\(977\) 36.9532i 1.18224i 0.806584 + 0.591120i \(0.201314\pi\)
−0.806584 + 0.591120i \(0.798686\pi\)
\(978\) 0 0
\(979\) 35.2747i 1.12738i
\(980\) 0 0
\(981\) −8.53187 −0.272402
\(982\) 0 0
\(983\) −31.1924 −0.994882 −0.497441 0.867498i \(-0.665727\pi\)
−0.497441 + 0.867498i \(0.665727\pi\)
\(984\) 0 0
\(985\) −48.5797 −1.54788
\(986\) 0 0
\(987\) 12.0658i 0.384058i
\(988\) 0 0
\(989\) 5.59985i 0.178065i
\(990\) 0 0
\(991\) 44.0827 1.40033 0.700166 0.713980i \(-0.253109\pi\)
0.700166 + 0.713980i \(0.253109\pi\)
\(992\) 0 0
\(993\) 19.6013 0.622028
\(994\) 0 0
\(995\) 25.9220 0.821784
\(996\) 0 0
\(997\) 20.9382i 0.663119i −0.943434 0.331560i \(-0.892425\pi\)
0.943434 0.331560i \(-0.107575\pi\)
\(998\) 0 0
\(999\) 32.7426i 1.03593i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 608.2.b.c.303.9 12
3.2 odd 2 5472.2.e.e.5167.11 12
4.3 odd 2 152.2.b.c.75.10 yes 12
8.3 odd 2 inner 608.2.b.c.303.10 12
8.5 even 2 152.2.b.c.75.4 yes 12
12.11 even 2 1368.2.e.e.379.3 12
19.18 odd 2 inner 608.2.b.c.303.3 12
24.5 odd 2 1368.2.e.e.379.9 12
24.11 even 2 5472.2.e.e.5167.2 12
57.56 even 2 5472.2.e.e.5167.12 12
76.75 even 2 152.2.b.c.75.3 12
152.37 odd 2 152.2.b.c.75.9 yes 12
152.75 even 2 inner 608.2.b.c.303.4 12
228.227 odd 2 1368.2.e.e.379.10 12
456.227 odd 2 5472.2.e.e.5167.1 12
456.341 even 2 1368.2.e.e.379.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.2.b.c.75.3 12 76.75 even 2
152.2.b.c.75.4 yes 12 8.5 even 2
152.2.b.c.75.9 yes 12 152.37 odd 2
152.2.b.c.75.10 yes 12 4.3 odd 2
608.2.b.c.303.3 12 19.18 odd 2 inner
608.2.b.c.303.4 12 152.75 even 2 inner
608.2.b.c.303.9 12 1.1 even 1 trivial
608.2.b.c.303.10 12 8.3 odd 2 inner
1368.2.e.e.379.3 12 12.11 even 2
1368.2.e.e.379.4 12 456.341 even 2
1368.2.e.e.379.9 12 24.5 odd 2
1368.2.e.e.379.10 12 228.227 odd 2
5472.2.e.e.5167.1 12 456.227 odd 2
5472.2.e.e.5167.2 12 24.11 even 2
5472.2.e.e.5167.11 12 3.2 odd 2
5472.2.e.e.5167.12 12 57.56 even 2