Properties

Label 152.2.b.c.75.9
Level $152$
Weight $2$
Character 152.75
Analytic conductor $1.214$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [152,2,Mod(75,152)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(152, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("152.75"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 152 = 2^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 152.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.21372611072\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.319794774016000000.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2x^{10} + 2x^{8} + 8x^{4} - 32x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 75.9
Root \(1.17117 - 0.792696i\) of defining polynomial
Character \(\chi\) \(=\) 152.75
Dual form 152.2.b.c.75.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.17117 - 0.792696i) q^{2} +1.26152i q^{3} +(0.743268 - 1.85676i) q^{4} +3.51876i q^{5} +(1.00000 + 1.47745i) q^{6} -2.23607i q^{7} +(-0.601353 - 2.76376i) q^{8} +1.40857 q^{9} +(2.78930 + 4.12105i) q^{10} +2.89511 q^{11} +(2.34234 + 0.937646i) q^{12} -6.30281 q^{13} +(-1.77252 - 2.61881i) q^{14} -4.43898 q^{15} +(-2.89511 - 2.76014i) q^{16} -4.79021 q^{17} +(1.64967 - 1.11657i) q^{18} +(0.895107 - 4.26600i) q^{19} +(6.53348 + 2.61538i) q^{20} +2.82084 q^{21} +(3.39066 - 2.29494i) q^{22} -0.524069i q^{23} +(3.48654 - 0.758618i) q^{24} -7.38164 q^{25} +(-7.38164 + 4.99621i) q^{26} +5.56149i q^{27} +(-4.15184 - 1.66200i) q^{28} +0.415427 q^{29} +(-5.19878 + 3.51876i) q^{30} +1.20271 q^{31} +(-5.57860 - 0.937646i) q^{32} +3.65223i q^{33} +(-5.61014 + 3.79718i) q^{34} +7.86818 q^{35} +(1.04695 - 2.61538i) q^{36} +5.88738 q^{37} +(-2.33332 - 5.70575i) q^{38} -7.95110i q^{39} +(9.72500 - 2.11602i) q^{40} +4.87978i q^{41} +(3.30368 - 2.23607i) q^{42} -10.6853 q^{43} +(2.15184 - 5.37551i) q^{44} +4.95642i q^{45} +(-0.415427 - 0.613773i) q^{46} -4.27737i q^{47} +(3.48196 - 3.65223i) q^{48} +2.00000 q^{49} +(-8.64514 + 5.85139i) q^{50} -6.04294i q^{51} +(-4.68467 + 11.7028i) q^{52} +6.05711 q^{53} +(4.40857 + 6.51344i) q^{54} +10.1872i q^{55} +(-6.17996 + 1.34467i) q^{56} +(5.38164 + 1.12919i) q^{57} +(0.486535 - 0.329307i) q^{58} -8.08453i q^{59} +(-3.29935 + 8.24211i) q^{60} +8.38042i q^{61} +(1.40857 - 0.953380i) q^{62} -3.14966i q^{63} +(-7.27675 + 3.32399i) q^{64} -22.1780i q^{65} +(2.89511 + 4.27737i) q^{66} +9.79353i q^{67} +(-3.56041 + 8.89427i) q^{68} +0.661123 q^{69} +(9.21495 - 6.23707i) q^{70} +10.2002 q^{71} +(-0.847049 - 3.89295i) q^{72} +7.76328 q^{73} +(6.89511 - 4.66690i) q^{74} -9.31208i q^{75} +(-7.25564 - 4.83278i) q^{76} -6.47365i q^{77} +(-6.30281 - 9.31208i) q^{78} -7.33578 q^{79} +(9.71225 - 10.1872i) q^{80} -2.79021 q^{81} +(3.86818 + 5.71504i) q^{82} +2.00000 q^{83} +(2.09664 - 5.23762i) q^{84} -16.8556i q^{85} +(-12.5143 + 8.47020i) q^{86} +0.524069i q^{87} +(-1.74098 - 8.00138i) q^{88} +12.1842i q^{89} +(3.92893 + 5.80480i) q^{90} +14.0935i q^{91} +(-0.973070 - 0.389524i) q^{92} +1.51724i q^{93} +(-3.39066 - 5.00952i) q^{94} +(15.0110 + 3.14966i) q^{95} +(1.18286 - 7.03751i) q^{96} -2.19044i q^{97} +(2.34234 - 1.58539i) q^{98} +4.07796 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{4} + 12 q^{6} - 8 q^{9} + 12 q^{17} - 24 q^{19} + 4 q^{20} + 32 q^{24} - 44 q^{25} - 44 q^{26} - 20 q^{28} + 32 q^{30} + 40 q^{35} - 52 q^{36} + 4 q^{38} - 20 q^{42} - 24 q^{43} - 4 q^{44} + 24 q^{49}+ \cdots + 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/152\mathbb{Z}\right)^\times\).

\(n\) \(39\) \(77\) \(97\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.17117 0.792696i 0.828141 0.560520i
\(3\) 1.26152i 0.728338i 0.931333 + 0.364169i \(0.118647\pi\)
−0.931333 + 0.364169i \(0.881353\pi\)
\(4\) 0.743268 1.85676i 0.371634 0.928379i
\(5\) 3.51876i 1.57364i 0.617185 + 0.786818i \(0.288273\pi\)
−0.617185 + 0.786818i \(0.711727\pi\)
\(6\) 1.00000 + 1.47745i 0.408248 + 0.603166i
\(7\) 2.23607i 0.845154i −0.906327 0.422577i \(-0.861126\pi\)
0.906327 0.422577i \(-0.138874\pi\)
\(8\) −0.601353 2.76376i −0.212611 0.977137i
\(9\) 1.40857 0.469524
\(10\) 2.78930 + 4.12105i 0.882055 + 1.30319i
\(11\) 2.89511 0.872907 0.436454 0.899727i \(-0.356234\pi\)
0.436454 + 0.899727i \(0.356234\pi\)
\(12\) 2.34234 + 0.937646i 0.676174 + 0.270675i
\(13\) −6.30281 −1.74808 −0.874042 0.485851i \(-0.838510\pi\)
−0.874042 + 0.485851i \(0.838510\pi\)
\(14\) −1.77252 2.61881i −0.473726 0.699907i
\(15\) −4.43898 −1.14614
\(16\) −2.89511 2.76014i −0.723777 0.690034i
\(17\) −4.79021 −1.16180 −0.580899 0.813976i \(-0.697299\pi\)
−0.580899 + 0.813976i \(0.697299\pi\)
\(18\) 1.64967 1.11657i 0.388832 0.263178i
\(19\) 0.895107 4.26600i 0.205352 0.978688i
\(20\) 6.53348 + 2.61538i 1.46093 + 0.584816i
\(21\) 2.82084 0.615558
\(22\) 3.39066 2.29494i 0.722890 0.489282i
\(23\) 0.524069i 0.109276i −0.998506 0.0546380i \(-0.982600\pi\)
0.998506 0.0546380i \(-0.0174005\pi\)
\(24\) 3.48654 0.758618i 0.711686 0.154852i
\(25\) −7.38164 −1.47633
\(26\) −7.38164 + 4.99621i −1.44766 + 0.979836i
\(27\) 5.56149i 1.07031i
\(28\) −4.15184 1.66200i −0.784624 0.314088i
\(29\) 0.415427 0.0771429 0.0385715 0.999256i \(-0.487719\pi\)
0.0385715 + 0.999256i \(0.487719\pi\)
\(30\) −5.19878 + 3.51876i −0.949164 + 0.642434i
\(31\) 1.20271 0.216013 0.108006 0.994150i \(-0.465553\pi\)
0.108006 + 0.994150i \(0.465553\pi\)
\(32\) −5.57860 0.937646i −0.986167 0.165754i
\(33\) 3.65223i 0.635772i
\(34\) −5.61014 + 3.79718i −0.962132 + 0.651211i
\(35\) 7.86818 1.32996
\(36\) 1.04695 2.61538i 0.174491 0.435896i
\(37\) 5.88738 0.967879 0.483939 0.875101i \(-0.339205\pi\)
0.483939 + 0.875101i \(0.339205\pi\)
\(38\) −2.33332 5.70575i −0.378515 0.925595i
\(39\) 7.95110i 1.27320i
\(40\) 9.72500 2.11602i 1.53766 0.334571i
\(41\) 4.87978i 0.762093i 0.924556 + 0.381047i \(0.124436\pi\)
−0.924556 + 0.381047i \(0.875564\pi\)
\(42\) 3.30368 2.23607i 0.509769 0.345033i
\(43\) −10.6853 −1.62950 −0.814748 0.579815i \(-0.803125\pi\)
−0.814748 + 0.579815i \(0.803125\pi\)
\(44\) 2.15184 5.37551i 0.324402 0.810389i
\(45\) 4.95642i 0.738859i
\(46\) −0.415427 0.613773i −0.0612514 0.0904959i
\(47\) 4.27737i 0.623919i −0.950095 0.311960i \(-0.899015\pi\)
0.950095 0.311960i \(-0.100985\pi\)
\(48\) 3.48196 3.65223i 0.502578 0.527154i
\(49\) 2.00000 0.285714
\(50\) −8.64514 + 5.85139i −1.22261 + 0.827512i
\(51\) 6.04294i 0.846181i
\(52\) −4.68467 + 11.7028i −0.649647 + 1.62288i
\(53\) 6.05711 0.832008 0.416004 0.909363i \(-0.363430\pi\)
0.416004 + 0.909363i \(0.363430\pi\)
\(54\) 4.40857 + 6.51344i 0.599931 + 0.886367i
\(55\) 10.1872i 1.37364i
\(56\) −6.17996 + 1.34467i −0.825832 + 0.179689i
\(57\) 5.38164 + 1.12919i 0.712816 + 0.149565i
\(58\) 0.486535 0.329307i 0.0638852 0.0432402i
\(59\) 8.08453i 1.05252i −0.850325 0.526258i \(-0.823595\pi\)
0.850325 0.526258i \(-0.176405\pi\)
\(60\) −3.29935 + 8.24211i −0.425944 + 1.06405i
\(61\) 8.38042i 1.07300i 0.843900 + 0.536501i \(0.180254\pi\)
−0.843900 + 0.536501i \(0.819746\pi\)
\(62\) 1.40857 0.953380i 0.178889 0.121079i
\(63\) 3.14966i 0.396820i
\(64\) −7.27675 + 3.32399i −0.909594 + 0.415499i
\(65\) 22.1780i 2.75085i
\(66\) 2.89511 + 4.27737i 0.356363 + 0.526508i
\(67\) 9.79353i 1.19647i 0.801321 + 0.598235i \(0.204131\pi\)
−0.801321 + 0.598235i \(0.795869\pi\)
\(68\) −3.56041 + 8.89427i −0.431763 + 1.07859i
\(69\) 0.661123 0.0795899
\(70\) 9.21495 6.23707i 1.10140 0.745472i
\(71\) 10.2002 1.21054 0.605270 0.796020i \(-0.293065\pi\)
0.605270 + 0.796020i \(0.293065\pi\)
\(72\) −0.847049 3.89295i −0.0998257 0.458789i
\(73\) 7.76328 0.908624 0.454312 0.890843i \(-0.349885\pi\)
0.454312 + 0.890843i \(0.349885\pi\)
\(74\) 6.89511 4.66690i 0.801540 0.542516i
\(75\) 9.31208i 1.07527i
\(76\) −7.25564 4.83278i −0.832278 0.554358i
\(77\) 6.47365i 0.737741i
\(78\) −6.30281 9.31208i −0.713652 1.05439i
\(79\) −7.33578 −0.825340 −0.412670 0.910881i \(-0.635404\pi\)
−0.412670 + 0.910881i \(0.635404\pi\)
\(80\) 9.71225 10.1872i 1.08586 1.13896i
\(81\) −2.79021 −0.310024
\(82\) 3.86818 + 5.71504i 0.427169 + 0.631120i
\(83\) 2.00000 0.219529 0.109764 0.993958i \(-0.464990\pi\)
0.109764 + 0.993958i \(0.464990\pi\)
\(84\) 2.09664 5.23762i 0.228762 0.571471i
\(85\) 16.8556i 1.82825i
\(86\) −12.5143 + 8.47020i −1.34945 + 0.913366i
\(87\) 0.524069i 0.0561861i
\(88\) −1.74098 8.00138i −0.185589 0.852950i
\(89\) 12.1842i 1.29153i 0.763538 + 0.645763i \(0.223461\pi\)
−0.763538 + 0.645763i \(0.776539\pi\)
\(90\) 3.92893 + 5.80480i 0.414146 + 0.611879i
\(91\) 14.0935i 1.47740i
\(92\) −0.973070 0.389524i −0.101450 0.0406107i
\(93\) 1.51724i 0.157330i
\(94\) −3.39066 5.00952i −0.349719 0.516693i
\(95\) 15.0110 + 3.14966i 1.54010 + 0.323148i
\(96\) 1.18286 7.03751i 0.120725 0.718263i
\(97\) 2.19044i 0.222406i −0.993798 0.111203i \(-0.964530\pi\)
0.993798 0.111203i \(-0.0354703\pi\)
\(98\) 2.34234 1.58539i 0.236612 0.160149i
\(99\) 4.07796 0.409851
\(100\) −5.48654 + 13.7059i −0.548654 + 1.37059i
\(101\) 1.51724i 0.150971i −0.997147 0.0754853i \(-0.975949\pi\)
0.997147 0.0754853i \(-0.0240506\pi\)
\(102\) −4.79021 7.07730i −0.474302 0.700757i
\(103\) −0.830855 −0.0818666 −0.0409333 0.999162i \(-0.513033\pi\)
−0.0409333 + 0.999162i \(0.513033\pi\)
\(104\) 3.79021 + 17.4194i 0.371661 + 1.70812i
\(105\) 9.92585i 0.968664i
\(106\) 7.09389 4.80144i 0.689020 0.466357i
\(107\) 0.780070i 0.0754122i −0.999289 0.0377061i \(-0.987995\pi\)
0.999289 0.0377061i \(-0.0120051\pi\)
\(108\) 10.3264 + 4.13368i 0.993654 + 0.397763i
\(109\) −6.05711 −0.580166 −0.290083 0.957002i \(-0.593683\pi\)
−0.290083 + 0.957002i \(0.593683\pi\)
\(110\) 8.07533 + 11.9309i 0.769952 + 1.13757i
\(111\) 7.42704i 0.704943i
\(112\) −6.17185 + 6.47365i −0.583185 + 0.611703i
\(113\) 3.58429i 0.337181i −0.985686 0.168591i \(-0.946078\pi\)
0.985686 0.168591i \(-0.0539216\pi\)
\(114\) 7.19791 2.94353i 0.674146 0.275687i
\(115\) 1.84407 0.171961
\(116\) 0.308774 0.771349i 0.0286689 0.0716179i
\(117\) −8.87795 −0.820767
\(118\) −6.40857 9.46834i −0.589957 0.871631i
\(119\) 10.7112i 0.981898i
\(120\) 2.66939 + 12.2683i 0.243681 + 1.11993i
\(121\) −2.61836 −0.238033
\(122\) 6.64312 + 9.81487i 0.601440 + 0.888597i
\(123\) −6.15593 −0.555061
\(124\) 0.893933 2.23314i 0.0802775 0.200542i
\(125\) 8.38042i 0.749567i
\(126\) −2.49672 3.68878i −0.222426 0.328623i
\(127\) 17.0446 1.51246 0.756231 0.654305i \(-0.227039\pi\)
0.756231 + 0.654305i \(0.227039\pi\)
\(128\) −5.88738 + 9.66120i −0.520376 + 0.853938i
\(129\) 13.4797i 1.18682i
\(130\) −17.5804 25.9742i −1.54191 2.27809i
\(131\) −11.7122 −1.02330 −0.511652 0.859193i \(-0.670966\pi\)
−0.511652 + 0.859193i \(0.670966\pi\)
\(132\) 6.78131 + 2.71458i 0.590237 + 0.236274i
\(133\) −9.53907 2.00152i −0.827143 0.173554i
\(134\) 7.76328 + 11.4699i 0.670646 + 0.990845i
\(135\) −19.5695 −1.68428
\(136\) 2.88061 + 13.2390i 0.247010 + 1.13524i
\(137\) 0.946141 0.0808343 0.0404171 0.999183i \(-0.487131\pi\)
0.0404171 + 0.999183i \(0.487131\pi\)
\(138\) 0.774286 0.524069i 0.0659116 0.0446117i
\(139\) −0.841247 −0.0713537 −0.0356768 0.999363i \(-0.511359\pi\)
−0.0356768 + 0.999363i \(0.511359\pi\)
\(140\) 5.84816 14.6093i 0.494260 1.23471i
\(141\) 5.39599 0.454424
\(142\) 11.9461 8.08565i 1.00250 0.678533i
\(143\) −18.2473 −1.52592
\(144\) −4.07796 3.88785i −0.339830 0.323988i
\(145\) 1.46179i 0.121395i
\(146\) 9.09211 6.15392i 0.752468 0.509302i
\(147\) 2.52304i 0.208097i
\(148\) 4.37590 10.9314i 0.359697 0.898559i
\(149\) 11.3353i 0.928625i 0.885671 + 0.464313i \(0.153699\pi\)
−0.885671 + 0.464313i \(0.846301\pi\)
\(150\) −7.38164 10.9060i −0.602709 0.890471i
\(151\) −9.36934 −0.762466 −0.381233 0.924479i \(-0.624500\pi\)
−0.381233 + 0.924479i \(0.624500\pi\)
\(152\) −12.3285 + 0.0915151i −0.999972 + 0.00742286i
\(153\) −6.74736 −0.545491
\(154\) −5.13164 7.58174i −0.413519 0.610954i
\(155\) 4.23203i 0.339925i
\(156\) −14.7633 5.90980i −1.18201 0.473163i
\(157\) 17.4194i 1.39022i −0.718902 0.695112i \(-0.755355\pi\)
0.718902 0.695112i \(-0.244645\pi\)
\(158\) −8.59143 + 5.81504i −0.683497 + 0.462620i
\(159\) 7.64115i 0.605983i
\(160\) 3.29935 19.6297i 0.260836 1.55187i
\(161\) −1.17185 −0.0923551
\(162\) −3.26781 + 2.21179i −0.256743 + 0.173775i
\(163\) −20.3437 −1.59344 −0.796721 0.604347i \(-0.793434\pi\)
−0.796721 + 0.604347i \(0.793434\pi\)
\(164\) 9.06057 + 3.62698i 0.707511 + 0.283220i
\(165\) −12.8513 −1.00047
\(166\) 2.34234 1.58539i 0.181800 0.123050i
\(167\) 13.8083 1.06852 0.534260 0.845320i \(-0.320590\pi\)
0.534260 + 0.845320i \(0.320590\pi\)
\(168\) −1.69632 7.79613i −0.130874 0.601484i
\(169\) 26.7254 2.05580
\(170\) −13.3614 19.7407i −1.02477 1.51404i
\(171\) 1.26082 6.00897i 0.0964174 0.459517i
\(172\) −7.94205 + 19.8401i −0.605576 + 1.51279i
\(173\) 2.89680 0.220240 0.110120 0.993918i \(-0.464876\pi\)
0.110120 + 0.993918i \(0.464876\pi\)
\(174\) 0.415427 + 0.613773i 0.0314935 + 0.0465300i
\(175\) 16.5059i 1.24773i
\(176\) −8.38164 7.99089i −0.631790 0.602336i
\(177\) 10.1988 0.766588
\(178\) 9.65839 + 14.2698i 0.723927 + 1.06957i
\(179\) 10.6415i 0.795386i 0.917519 + 0.397693i \(0.130189\pi\)
−0.917519 + 0.397693i \(0.869811\pi\)
\(180\) 9.20287 + 3.68395i 0.685942 + 0.274585i
\(181\) −2.40541 −0.178793 −0.0893965 0.995996i \(-0.528494\pi\)
−0.0893965 + 0.995996i \(0.528494\pi\)
\(182\) 11.1719 + 16.5059i 0.828113 + 1.22350i
\(183\) −10.5720 −0.781508
\(184\) −1.44840 + 0.315151i −0.106778 + 0.0232332i
\(185\) 20.7162i 1.52309i
\(186\) 1.20271 + 1.77694i 0.0881867 + 0.130291i
\(187\) −13.8682 −1.01414
\(188\) −7.94205 3.17923i −0.579234 0.231869i
\(189\) 12.4359 0.904577
\(190\) 20.0771 8.21039i 1.45655 0.595644i
\(191\) 10.0526i 0.727383i −0.931520 0.363691i \(-0.881516\pi\)
0.931520 0.363691i \(-0.118484\pi\)
\(192\) −4.19328 9.17975i −0.302624 0.662492i
\(193\) 15.0399i 1.08259i 0.840832 + 0.541297i \(0.182066\pi\)
−0.840832 + 0.541297i \(0.817934\pi\)
\(194\) −1.73635 2.56538i −0.124663 0.184183i
\(195\) 27.9780 2.00355
\(196\) 1.48654 3.71352i 0.106181 0.265251i
\(197\) 13.8059i 0.983632i 0.870699 + 0.491816i \(0.163667\pi\)
−0.870699 + 0.491816i \(0.836333\pi\)
\(198\) 4.77598 3.23258i 0.339414 0.229730i
\(199\) 7.36682i 0.522220i 0.965309 + 0.261110i \(0.0840885\pi\)
−0.965309 + 0.261110i \(0.915911\pi\)
\(200\) 4.43898 + 20.4011i 0.313883 + 1.44258i
\(201\) −12.3547 −0.871434
\(202\) −1.20271 1.77694i −0.0846222 0.125025i
\(203\) 0.928924i 0.0651977i
\(204\) −11.2203 4.49152i −0.785577 0.314470i
\(205\) −17.1707 −1.19926
\(206\) −0.973070 + 0.658615i −0.0677970 + 0.0458879i
\(207\) 0.738189i 0.0513077i
\(208\) 18.2473 + 17.3966i 1.26522 + 1.20624i
\(209\) 2.59143 12.3505i 0.179253 0.854304i
\(210\) 7.86818 + 11.6248i 0.542956 + 0.802190i
\(211\) 15.6536i 1.07764i −0.842421 0.538821i \(-0.818870\pi\)
0.842421 0.538821i \(-0.181130\pi\)
\(212\) 4.50205 11.2466i 0.309202 0.772419i
\(213\) 12.8677i 0.881683i
\(214\) −0.618358 0.913593i −0.0422701 0.0624519i
\(215\) 37.5990i 2.56423i
\(216\) 15.3706 3.34442i 1.04584 0.227559i
\(217\) 2.68933i 0.182564i
\(218\) −7.09389 + 4.80144i −0.480459 + 0.325195i
\(219\) 9.79353i 0.661785i
\(220\) 18.9151 + 7.57180i 1.27526 + 0.510490i
\(221\) 30.1918 2.03092
\(222\) 5.88738 + 8.69830i 0.395135 + 0.583792i
\(223\) −11.4029 −0.763595 −0.381797 0.924246i \(-0.624695\pi\)
−0.381797 + 0.924246i \(0.624695\pi\)
\(224\) −2.09664 + 12.4741i −0.140088 + 0.833463i
\(225\) −10.3976 −0.693171
\(226\) −2.84125 4.19780i −0.188997 0.279233i
\(227\) 14.4261i 0.957494i −0.877953 0.478747i \(-0.841091\pi\)
0.877953 0.478747i \(-0.158909\pi\)
\(228\) 6.09664 9.15312i 0.403760 0.606180i
\(229\) 18.8419i 1.24511i −0.782576 0.622555i \(-0.786095\pi\)
0.782576 0.622555i \(-0.213905\pi\)
\(230\) 2.15972 1.46179i 0.142408 0.0963874i
\(231\) 8.16663 0.537325
\(232\) −0.249819 1.14814i −0.0164014 0.0753792i
\(233\) 5.19878 0.340584 0.170292 0.985394i \(-0.445529\pi\)
0.170292 + 0.985394i \(0.445529\pi\)
\(234\) −10.3976 + 7.03751i −0.679710 + 0.460057i
\(235\) 15.0510 0.981821
\(236\) −15.0110 6.00897i −0.977134 0.391151i
\(237\) 9.25422i 0.601126i
\(238\) 8.49075 + 12.5447i 0.550374 + 0.813150i
\(239\) 12.2285i 0.790995i −0.918467 0.395497i \(-0.870572\pi\)
0.918467 0.395497i \(-0.129428\pi\)
\(240\) 12.8513 + 12.2522i 0.829548 + 0.790875i
\(241\) 29.9134i 1.92689i −0.267899 0.963447i \(-0.586329\pi\)
0.267899 0.963447i \(-0.413671\pi\)
\(242\) −3.06654 + 2.07556i −0.197124 + 0.133422i
\(243\) 13.1646i 0.844508i
\(244\) 15.5604 + 6.22889i 0.996153 + 0.398764i
\(245\) 7.03751i 0.449610i
\(246\) −7.20962 + 4.87978i −0.459669 + 0.311123i
\(247\) −5.64168 + 26.8878i −0.358972 + 1.71083i
\(248\) −0.723252 3.32399i −0.0459265 0.211074i
\(249\) 2.52304i 0.159891i
\(250\) −6.64312 9.81487i −0.420148 0.620747i
\(251\) 21.3947 1.35042 0.675212 0.737624i \(-0.264052\pi\)
0.675212 + 0.737624i \(0.264052\pi\)
\(252\) −5.84816 2.34104i −0.368400 0.147472i
\(253\) 1.51724i 0.0953879i
\(254\) 19.9621 13.5112i 1.25253 0.847766i
\(255\) 21.2636 1.33158
\(256\) 0.763283 + 15.9818i 0.0477052 + 0.998861i
\(257\) 13.5781i 0.846977i −0.905901 0.423489i \(-0.860805\pi\)
0.905901 0.423489i \(-0.139195\pi\)
\(258\) −10.6853 15.7870i −0.665239 0.982857i
\(259\) 13.1646i 0.818007i
\(260\) −41.1793 16.4842i −2.55383 1.02231i
\(261\) 0.585159 0.0362204
\(262\) −13.7170 + 9.28425i −0.847440 + 0.573583i
\(263\) 12.0939i 0.745744i 0.927883 + 0.372872i \(0.121627\pi\)
−0.927883 + 0.372872i \(0.878373\pi\)
\(264\) 10.0939 2.19628i 0.621236 0.135172i
\(265\) 21.3135i 1.30928i
\(266\) −12.7584 + 5.21747i −0.782271 + 0.319903i
\(267\) −15.3706 −0.940668
\(268\) 18.1842 + 7.27921i 1.11078 + 0.444649i
\(269\) 21.2379 1.29490 0.647448 0.762110i \(-0.275836\pi\)
0.647448 + 0.762110i \(0.275836\pi\)
\(270\) −22.9192 + 15.5127i −1.39482 + 0.944072i
\(271\) 16.1163i 0.978997i −0.872004 0.489499i \(-0.837180\pi\)
0.872004 0.489499i \(-0.162820\pi\)
\(272\) 13.8682 + 13.2216i 0.840882 + 0.801680i
\(273\) −17.7792 −1.07605
\(274\) 1.10809 0.750002i 0.0669421 0.0453093i
\(275\) −21.3706 −1.28870
\(276\) 0.491391 1.22755i 0.0295783 0.0738896i
\(277\) 3.98785i 0.239607i 0.992798 + 0.119803i \(0.0382264\pi\)
−0.992798 + 0.119803i \(0.961774\pi\)
\(278\) −0.985242 + 0.666853i −0.0590909 + 0.0399952i
\(279\) 1.69410 0.101423
\(280\) −4.73155 21.7458i −0.282764 1.29956i
\(281\) 0.630302i 0.0376007i 0.999823 + 0.0188003i \(0.00598468\pi\)
−0.999823 + 0.0188003i \(0.994015\pi\)
\(282\) 6.31960 4.27737i 0.376327 0.254714i
\(283\) 31.0290 1.84448 0.922242 0.386613i \(-0.126355\pi\)
0.922242 + 0.386613i \(0.126355\pi\)
\(284\) 7.58148 18.9393i 0.449878 1.12384i
\(285\) −3.97336 + 18.9367i −0.235361 + 1.12171i
\(286\) −21.3706 + 14.4645i −1.26367 + 0.855307i
\(287\) 10.9115 0.644086
\(288\) −7.85786 1.32074i −0.463029 0.0778254i
\(289\) 5.94614 0.349773
\(290\) 1.15875 + 1.71200i 0.0680443 + 0.100532i
\(291\) 2.76328 0.161987
\(292\) 5.77020 14.4145i 0.337675 0.843547i
\(293\) −30.6832 −1.79253 −0.896265 0.443519i \(-0.853730\pi\)
−0.896265 + 0.443519i \(0.853730\pi\)
\(294\) 2.00000 + 2.95490i 0.116642 + 0.172333i
\(295\) 28.4475 1.65628
\(296\) −3.54039 16.2713i −0.205781 0.945750i
\(297\) 16.1011i 0.934282i
\(298\) 8.98545 + 13.2756i 0.520513 + 0.769032i
\(299\) 3.30311i 0.191024i
\(300\) −17.2903 6.92137i −0.998255 0.399605i
\(301\) 23.8931i 1.37718i
\(302\) −10.9731 + 7.42704i −0.631429 + 0.427378i
\(303\) 1.91402 0.109958
\(304\) −14.3662 + 9.87992i −0.823957 + 0.566652i
\(305\) −29.4886 −1.68851
\(306\) −7.90229 + 5.34860i −0.451744 + 0.305759i
\(307\) 15.6876i 0.895339i −0.894199 0.447670i \(-0.852254\pi\)
0.894199 0.447670i \(-0.147746\pi\)
\(308\) −12.0200 4.81166i −0.684904 0.274170i
\(309\) 1.04814i 0.0596265i
\(310\) 3.35471 + 4.95642i 0.190535 + 0.281506i
\(311\) 28.3998i 1.61040i −0.593001 0.805202i \(-0.702057\pi\)
0.593001 0.805202i \(-0.297943\pi\)
\(312\) −21.9750 + 4.78142i −1.24409 + 0.270695i
\(313\) −5.53757 −0.313002 −0.156501 0.987678i \(-0.550021\pi\)
−0.156501 + 0.987678i \(0.550021\pi\)
\(314\) −13.8083 20.4011i −0.779248 1.15130i
\(315\) 11.0829 0.624450
\(316\) −5.45245 + 13.6208i −0.306724 + 0.766228i
\(317\) −11.9445 −0.670869 −0.335435 0.942063i \(-0.608883\pi\)
−0.335435 + 0.942063i \(0.608883\pi\)
\(318\) 6.05711 + 8.94907i 0.339666 + 0.501839i
\(319\) 1.20271 0.0673386
\(320\) −11.6963 25.6051i −0.653844 1.43137i
\(321\) 0.984073 0.0549256
\(322\) −1.37244 + 0.928924i −0.0764830 + 0.0517669i
\(323\) −4.28775 + 20.4351i −0.238577 + 1.13704i
\(324\) −2.07387 + 5.18075i −0.115215 + 0.287820i
\(325\) 46.5250 2.58075
\(326\) −23.8259 + 16.1264i −1.31959 + 0.893157i
\(327\) 7.64115i 0.422557i
\(328\) 13.4865 2.93447i 0.744669 0.162029i
\(329\) −9.56450 −0.527308
\(330\) −15.0510 + 10.1872i −0.828532 + 0.560785i
\(331\) 15.5378i 0.854037i −0.904243 0.427019i \(-0.859564\pi\)
0.904243 0.427019i \(-0.140436\pi\)
\(332\) 1.48654 3.71352i 0.0815842 0.203806i
\(333\) 8.29279 0.454442
\(334\) 16.1719 10.9458i 0.884885 0.598927i
\(335\) −34.4610 −1.88281
\(336\) −8.16663 7.78591i −0.445526 0.424756i
\(337\) 29.4825i 1.60601i −0.595970 0.803007i \(-0.703232\pi\)
0.595970 0.803007i \(-0.296768\pi\)
\(338\) 31.2999 21.1851i 1.70249 1.15232i
\(339\) 4.52164 0.245582
\(340\) −31.2968 12.5282i −1.69731 0.679438i
\(341\) 3.48196 0.188559
\(342\) −3.28665 8.03696i −0.177722 0.434589i
\(343\) 20.1246i 1.08663i
\(344\) 6.42565 + 29.5317i 0.346448 + 1.59224i
\(345\) 2.32633i 0.125245i
\(346\) 3.39264 2.29628i 0.182390 0.123449i
\(347\) −19.3465 −1.03858 −0.519288 0.854599i \(-0.673803\pi\)
−0.519288 + 0.854599i \(0.673803\pi\)
\(348\) 0.973070 + 0.389524i 0.0521621 + 0.0208807i
\(349\) 12.4630i 0.667131i −0.942727 0.333565i \(-0.891748\pi\)
0.942727 0.333565i \(-0.108252\pi\)
\(350\) 13.0841 + 19.3311i 0.699375 + 1.03329i
\(351\) 35.0530i 1.87099i
\(352\) −16.1507 2.71458i −0.860833 0.144688i
\(353\) 9.22571 0.491035 0.245518 0.969392i \(-0.421042\pi\)
0.245518 + 0.969392i \(0.421042\pi\)
\(354\) 11.9445 8.08453i 0.634842 0.429688i
\(355\) 35.8920i 1.90495i
\(356\) 22.6232 + 9.05615i 1.19903 + 0.479975i
\(357\) −13.5124 −0.715154
\(358\) 8.43550 + 12.4630i 0.445830 + 0.658691i
\(359\) 18.8765i 0.996262i 0.867102 + 0.498131i \(0.165980\pi\)
−0.867102 + 0.498131i \(0.834020\pi\)
\(360\) 13.6984 2.98056i 0.721967 0.157089i
\(361\) −17.3976 7.63705i −0.915662 0.401950i
\(362\) −2.81714 + 1.90676i −0.148066 + 0.100217i
\(363\) 3.30311i 0.173368i
\(364\) 26.1682 + 10.4752i 1.37159 + 0.549052i
\(365\) 27.3171i 1.42984i
\(366\) −12.3816 + 8.38042i −0.647199 + 0.438051i
\(367\) 20.7230i 1.08173i 0.841109 + 0.540866i \(0.181903\pi\)
−0.841109 + 0.540866i \(0.818097\pi\)
\(368\) −1.44650 + 1.51724i −0.0754042 + 0.0790914i
\(369\) 6.87351i 0.357821i
\(370\) 16.4217 + 24.2622i 0.853722 + 1.26133i
\(371\) 13.5441i 0.703175i
\(372\) 2.81714 + 1.12771i 0.146062 + 0.0584692i
\(373\) −4.23686 −0.219376 −0.109688 0.993966i \(-0.534985\pi\)
−0.109688 + 0.993966i \(0.534985\pi\)
\(374\) −16.2420 + 10.9932i −0.839852 + 0.568447i
\(375\) 10.5720 0.545938
\(376\) −11.8216 + 2.57221i −0.609654 + 0.132652i
\(377\) −2.61836 −0.134852
\(378\) 14.5645 9.85787i 0.749117 0.507034i
\(379\) 8.91154i 0.457755i 0.973455 + 0.228877i \(0.0735055\pi\)
−0.973455 + 0.228877i \(0.926494\pi\)
\(380\) 17.0054 25.5308i 0.872357 1.30970i
\(381\) 21.5021i 1.10158i
\(382\) −7.96867 11.7733i −0.407713 0.602375i
\(383\) −24.3480 −1.24412 −0.622062 0.782968i \(-0.713705\pi\)
−0.622062 + 0.782968i \(0.713705\pi\)
\(384\) −12.1878 7.42704i −0.621955 0.379009i
\(385\) 22.7792 1.16094
\(386\) 11.9220 + 17.6142i 0.606816 + 0.896540i
\(387\) −15.0510 −0.765087
\(388\) −4.06712 1.62808i −0.206477 0.0826535i
\(389\) 3.04966i 0.154624i 0.997007 + 0.0773119i \(0.0246337\pi\)
−0.997007 + 0.0773119i \(0.975366\pi\)
\(390\) 32.7669 22.1780i 1.65922 1.12303i
\(391\) 2.51040i 0.126957i
\(392\) −1.20271 5.52752i −0.0607459 0.279182i
\(393\) 14.7752i 0.745311i
\(394\) 10.9439 + 16.1691i 0.551346 + 0.814586i
\(395\) 25.8128i 1.29878i
\(396\) 3.03102 7.57180i 0.152314 0.380497i
\(397\) 14.6389i 0.734704i −0.930082 0.367352i \(-0.880264\pi\)
0.930082 0.367352i \(-0.119736\pi\)
\(398\) 5.83964 + 8.62778i 0.292715 + 0.432472i
\(399\) 2.52495 12.0337i 0.126406 0.602439i
\(400\) 21.3706 + 20.3743i 1.06853 + 1.01872i
\(401\) 28.6859i 1.43251i 0.697841 + 0.716253i \(0.254144\pi\)
−0.697841 + 0.716253i \(0.745856\pi\)
\(402\) −14.4694 + 9.79353i −0.721670 + 0.488457i
\(403\) −7.58043 −0.377608
\(404\) −2.81714 1.12771i −0.140158 0.0561058i
\(405\) 9.81808i 0.487864i
\(406\) −0.736354 1.08793i −0.0365446 0.0539929i
\(407\) 17.0446 0.844869
\(408\) −16.7012 + 3.63394i −0.826835 + 0.179907i
\(409\) 16.0028i 0.791286i 0.918404 + 0.395643i \(0.129478\pi\)
−0.918404 + 0.395643i \(0.870522\pi\)
\(410\) −20.1098 + 13.6112i −0.993153 + 0.672208i
\(411\) 1.19357i 0.0588747i
\(412\) −0.617548 + 1.54270i −0.0304244 + 0.0760032i
\(413\) −18.0776 −0.889539
\(414\) −0.585159 0.864543i −0.0287590 0.0424900i
\(415\) 7.03751i 0.345458i
\(416\) 35.1609 + 5.90980i 1.72390 + 0.289752i
\(417\) 1.06125i 0.0519696i
\(418\) −6.75522 16.5188i −0.330408 0.807959i
\(419\) 1.68814 0.0824712 0.0412356 0.999149i \(-0.486871\pi\)
0.0412356 + 0.999149i \(0.486871\pi\)
\(420\) 18.4299 + 7.37756i 0.899288 + 0.359988i
\(421\) 15.9178 0.775788 0.387894 0.921704i \(-0.373203\pi\)
0.387894 + 0.921704i \(0.373203\pi\)
\(422\) −12.4086 18.3330i −0.604040 0.892438i
\(423\) 6.02499i 0.292945i
\(424\) −3.64246 16.7404i −0.176894 0.812986i
\(425\) 35.3596 1.71519
\(426\) 10.2002 + 15.0703i 0.494201 + 0.730157i
\(427\) 18.7392 0.906852
\(428\) −1.44840 0.579801i −0.0700112 0.0280257i
\(429\) 23.0193i 1.11138i
\(430\) −29.8046 44.0348i −1.43730 2.12355i
\(431\) 12.2661 0.590839 0.295420 0.955368i \(-0.404541\pi\)
0.295420 + 0.955368i \(0.404541\pi\)
\(432\) 15.3505 16.1011i 0.738551 0.774665i
\(433\) 22.2764i 1.07053i 0.844683 + 0.535267i \(0.179789\pi\)
−0.844683 + 0.535267i \(0.820211\pi\)
\(434\) −2.13182 3.14966i −0.102331 0.151189i
\(435\) −1.84407 −0.0884165
\(436\) −4.50205 + 11.2466i −0.215609 + 0.538614i
\(437\) −2.23568 0.469098i −0.106947 0.0224400i
\(438\) 7.76328 + 11.4699i 0.370944 + 0.548051i
\(439\) −38.1887 −1.82265 −0.911323 0.411692i \(-0.864938\pi\)
−0.911323 + 0.411692i \(0.864938\pi\)
\(440\) 28.1549 6.12609i 1.34223 0.292050i
\(441\) 2.81714 0.134150
\(442\) 35.3596 23.9329i 1.68189 1.13837i
\(443\) 9.55632 0.454035 0.227017 0.973891i \(-0.427103\pi\)
0.227017 + 0.973891i \(0.427103\pi\)
\(444\) 13.7902 + 5.52027i 0.654455 + 0.261981i
\(445\) −42.8734 −2.03239
\(446\) −13.3547 + 9.03903i −0.632364 + 0.428010i
\(447\) −14.2997 −0.676353
\(448\) 7.43268 + 16.2713i 0.351161 + 0.768747i
\(449\) 4.08318i 0.192697i 0.995348 + 0.0963485i \(0.0307163\pi\)
−0.995348 + 0.0963485i \(0.969284\pi\)
\(450\) −12.1773 + 8.24211i −0.574043 + 0.388537i
\(451\) 14.1275i 0.665237i
\(452\) −6.65515 2.66408i −0.313032 0.125308i
\(453\) 11.8196i 0.555333i
\(454\) −11.4355 16.8954i −0.536695 0.792939i
\(455\) −49.5916 −2.32489
\(456\) −0.115448 15.5526i −0.00540635 0.728318i
\(457\) 31.4996 1.47349 0.736745 0.676170i \(-0.236362\pi\)
0.736745 + 0.676170i \(0.236362\pi\)
\(458\) −14.9359 22.0671i −0.697909 1.03113i
\(459\) 26.6407i 1.24348i
\(460\) 1.37064 3.42400i 0.0639064 0.159645i
\(461\) 11.6044i 0.540471i 0.962794 + 0.270236i \(0.0871016\pi\)
−0.962794 + 0.270236i \(0.912898\pi\)
\(462\) 9.56450 6.47365i 0.444981 0.301182i
\(463\) 33.7855i 1.57015i 0.619403 + 0.785073i \(0.287375\pi\)
−0.619403 + 0.785073i \(0.712625\pi\)
\(464\) −1.20271 1.14664i −0.0558343 0.0532313i
\(465\) −5.33879 −0.247580
\(466\) 6.08865 4.12105i 0.282051 0.190904i
\(467\) 30.6853 1.41995 0.709974 0.704228i \(-0.248707\pi\)
0.709974 + 0.704228i \(0.248707\pi\)
\(468\) −6.59869 + 16.4842i −0.305025 + 0.761983i
\(469\) 21.8990 1.01120
\(470\) 17.6273 11.9309i 0.813086 0.550331i
\(471\) 21.9750 1.01255
\(472\) −22.3437 + 4.86166i −1.02845 + 0.223776i
\(473\) −30.9351 −1.42240
\(474\) −7.33578 10.8382i −0.336944 0.497817i
\(475\) −6.60736 + 31.4901i −0.303166 + 1.44487i
\(476\) 19.8882 + 7.96132i 0.911574 + 0.364906i
\(477\) 8.53187 0.390648
\(478\) −9.69346 14.3216i −0.443369 0.655055i
\(479\) 30.4463i 1.39113i 0.718464 + 0.695564i \(0.244846\pi\)
−0.718464 + 0.695564i \(0.755154\pi\)
\(480\) 24.7633 + 4.16219i 1.13028 + 0.189977i
\(481\) −37.1070 −1.69193
\(482\) −23.7122 35.0337i −1.08006 1.59574i
\(483\) 1.47832i 0.0672657i
\(484\) −1.94614 + 4.86166i −0.0884609 + 0.220985i
\(485\) 7.70763 0.349986
\(486\) 10.4355 + 15.4179i 0.473364 + 0.699371i
\(487\) 5.15029 0.233382 0.116691 0.993168i \(-0.462771\pi\)
0.116691 + 0.993168i \(0.462771\pi\)
\(488\) 23.1615 5.03959i 1.04847 0.228132i
\(489\) 25.6640i 1.16056i
\(490\) 5.57860 + 8.24211i 0.252016 + 0.372340i
\(491\) 20.3437 0.918099 0.459049 0.888411i \(-0.348190\pi\)
0.459049 + 0.888411i \(0.348190\pi\)
\(492\) −4.57550 + 11.4301i −0.206280 + 0.515307i
\(493\) −1.98999 −0.0896245
\(494\) 14.7065 + 35.9622i 0.661675 + 1.61802i
\(495\) 14.3494i 0.644956i
\(496\) −3.48196 3.31964i −0.156345 0.149056i
\(497\) 22.8083i 1.02309i
\(498\) 2.00000 + 2.95490i 0.0896221 + 0.132412i
\(499\) −18.5776 −0.831648 −0.415824 0.909445i \(-0.636507\pi\)
−0.415824 + 0.909445i \(0.636507\pi\)
\(500\) −15.5604 6.22889i −0.695883 0.278564i
\(501\) 17.4194i 0.778243i
\(502\) 25.0568 16.9595i 1.11834 0.756940i
\(503\) 28.6741i 1.27852i 0.768993 + 0.639258i \(0.220758\pi\)
−0.768993 + 0.639258i \(0.779242\pi\)
\(504\) −8.70491 + 1.89406i −0.387748 + 0.0843681i
\(505\) 5.33879 0.237573
\(506\) −1.20271 1.77694i −0.0534668 0.0789946i
\(507\) 33.7145i 1.49731i
\(508\) 12.6687 31.6477i 0.562082 1.40414i
\(509\) −26.8729 −1.19112 −0.595561 0.803310i \(-0.703070\pi\)
−0.595561 + 0.803310i \(0.703070\pi\)
\(510\) 24.9033 16.8556i 1.10274 0.746378i
\(511\) 17.3592i 0.767927i
\(512\) 13.5626 + 18.1123i 0.599389 + 0.800458i
\(513\) 23.7254 + 4.97813i 1.04750 + 0.219790i
\(514\) −10.7633 15.9022i −0.474748 0.701416i
\(515\) 2.92358i 0.128828i
\(516\) −25.0286 10.0190i −1.10182 0.441064i
\(517\) 12.3835i 0.544624i
\(518\) −10.4355 15.4179i −0.458510 0.677425i
\(519\) 3.65437i 0.160409i
\(520\) −61.2948 + 13.3368i −2.68795 + 0.584859i
\(521\) 19.3528i 0.847862i 0.905695 + 0.423931i \(0.139350\pi\)
−0.905695 + 0.423931i \(0.860650\pi\)
\(522\) 0.685320 0.463853i 0.0299956 0.0203023i
\(523\) 33.6806i 1.47275i −0.676575 0.736374i \(-0.736536\pi\)
0.676575 0.736374i \(-0.263464\pi\)
\(524\) −8.70534 + 21.7468i −0.380294 + 0.950014i
\(525\) −20.8224 −0.908766
\(526\) 9.58681 + 14.1640i 0.418005 + 0.617581i
\(527\) −5.76122 −0.250963
\(528\) 10.0807 10.5736i 0.438704 0.460157i
\(529\) 22.7254 0.988059
\(530\) 16.8951 + 24.9617i 0.733877 + 1.08427i
\(531\) 11.3876i 0.494181i
\(532\) −10.8064 + 16.2241i −0.468518 + 0.703404i
\(533\) 30.7563i 1.33220i
\(534\) −18.0016 + 12.1842i −0.779005 + 0.527263i
\(535\) 2.74488 0.118671
\(536\) 27.0670 5.88937i 1.16911 0.254382i
\(537\) −13.4245 −0.579310
\(538\) 24.8731 16.8352i 1.07236 0.725815i
\(539\) 5.79021 0.249402
\(540\) −14.5454 + 36.3359i −0.625935 + 1.56365i
\(541\) 17.2043i 0.739669i −0.929098 0.369834i \(-0.879414\pi\)
0.929098 0.369834i \(-0.120586\pi\)
\(542\) −12.7753 18.8749i −0.548748 0.810747i
\(543\) 3.03447i 0.130222i
\(544\) 26.7227 + 4.49152i 1.14573 + 0.192572i
\(545\) 21.3135i 0.912970i
\(546\) −20.8224 + 14.0935i −0.891118 + 0.603146i
\(547\) 12.4185i 0.530976i −0.964114 0.265488i \(-0.914467\pi\)
0.964114 0.265488i \(-0.0855330\pi\)
\(548\) 0.703236 1.75676i 0.0300407 0.0750449i
\(549\) 11.8044i 0.503800i
\(550\) −25.0286 + 16.9404i −1.06722 + 0.722342i
\(551\) 0.371852 1.77221i 0.0158414 0.0754989i
\(552\) −0.397569 1.82719i −0.0169216 0.0777702i
\(553\) 16.4033i 0.697539i
\(554\) 3.16115 + 4.67045i 0.134305 + 0.198428i
\(555\) −26.1339 −1.10932
\(556\) −0.625272 + 1.56199i −0.0265174 + 0.0662433i
\(557\) 23.8931i 1.01238i −0.862421 0.506192i \(-0.831053\pi\)
0.862421 0.506192i \(-0.168947\pi\)
\(558\) 1.98407 1.34290i 0.0839925 0.0568497i
\(559\) 67.3475 2.84850
\(560\) −22.7792 21.7172i −0.962597 0.917721i
\(561\) 17.4950i 0.738638i
\(562\) 0.499637 + 0.738189i 0.0210759 + 0.0311386i
\(563\) 5.26287i 0.221804i 0.993831 + 0.110902i \(0.0353739\pi\)
−0.993831 + 0.110902i \(0.964626\pi\)
\(564\) 4.01066 10.0190i 0.168879 0.421878i
\(565\) 12.6122 0.530600
\(566\) 36.3402 24.5966i 1.52749 1.03387i
\(567\) 6.23911i 0.262018i
\(568\) −6.13392 28.1909i −0.257374 1.18286i
\(569\) 42.6949i 1.78986i 0.446202 + 0.894932i \(0.352776\pi\)
−0.446202 + 0.894932i \(0.647224\pi\)
\(570\) 10.3576 + 25.3277i 0.433830 + 1.06086i
\(571\) −16.0539 −0.671833 −0.335917 0.941892i \(-0.609046\pi\)
−0.335917 + 0.941892i \(0.609046\pi\)
\(572\) −13.5626 + 33.8808i −0.567082 + 1.41663i
\(573\) 12.6816 0.529780
\(574\) 12.7792 8.64951i 0.533394 0.361023i
\(575\) 3.86849i 0.161327i
\(576\) −10.2498 + 4.68208i −0.427076 + 0.195087i
\(577\) 8.58043 0.357208 0.178604 0.983921i \(-0.442842\pi\)
0.178604 + 0.983921i \(0.442842\pi\)
\(578\) 6.96393 4.71348i 0.289661 0.196055i
\(579\) −18.9731 −0.788494
\(580\) 2.71419 + 1.08650i 0.112700 + 0.0451144i
\(581\) 4.47214i 0.185535i
\(582\) 3.23627 2.19044i 0.134148 0.0907968i
\(583\) 17.5360 0.726266
\(584\) −4.66848 21.4559i −0.193183 0.887850i
\(585\) 31.2393i 1.29159i
\(586\) −35.9351 + 24.3224i −1.48447 + 1.00475i
\(587\) −32.9213 −1.35881 −0.679404 0.733764i \(-0.737762\pi\)
−0.679404 + 0.733764i \(0.737762\pi\)
\(588\) 4.68467 + 1.87529i 0.193193 + 0.0773357i
\(589\) 1.07655 5.13075i 0.0443585 0.211409i
\(590\) 33.3168 22.5502i 1.37163 0.928377i
\(591\) −17.4164 −0.716416
\(592\) −17.0446 16.2500i −0.700528 0.667870i
\(593\) 12.9731 0.532740 0.266370 0.963871i \(-0.414176\pi\)
0.266370 + 0.963871i \(0.414176\pi\)
\(594\) 12.7633 + 18.8571i 0.523684 + 0.773717i
\(595\) −37.6902 −1.54515
\(596\) 21.0469 + 8.42517i 0.862116 + 0.345109i
\(597\) −9.29338 −0.380353
\(598\) 2.61836 + 3.86849i 0.107073 + 0.158194i
\(599\) 12.9775 0.530245 0.265122 0.964215i \(-0.414588\pi\)
0.265122 + 0.964215i \(0.414588\pi\)
\(600\) −25.7364 + 5.59985i −1.05068 + 0.228613i
\(601\) 0.135889i 0.00554301i 0.999996 + 0.00277150i \(0.000882198\pi\)
−0.999996 + 0.00277150i \(0.999118\pi\)
\(602\) 18.9400 + 27.9828i 0.771935 + 1.14049i
\(603\) 13.7949i 0.561771i
\(604\) −6.96393 + 17.3966i −0.283358 + 0.707858i
\(605\) 9.21336i 0.374576i
\(606\) 2.24164 1.51724i 0.0910604 0.0616335i
\(607\) −31.1052 −1.26252 −0.631261 0.775571i \(-0.717462\pi\)
−0.631261 + 0.775571i \(0.717462\pi\)
\(608\) −8.99344 + 22.9590i −0.364732 + 0.931112i
\(609\) 1.17185 0.0474860
\(610\) −34.5361 + 23.3755i −1.39833 + 0.946447i
\(611\) 26.9595i 1.09066i
\(612\) −5.01509 + 12.5282i −0.202723 + 0.506423i
\(613\) 21.4073i 0.864633i 0.901722 + 0.432316i \(0.142304\pi\)
−0.901722 + 0.432316i \(0.857696\pi\)
\(614\) −12.4355 18.3728i −0.501856 0.741467i
\(615\) 21.6612i 0.873464i
\(616\) −17.8916 + 3.89295i −0.720874 + 0.156852i
\(617\) −1.30650 −0.0525978 −0.0262989 0.999654i \(-0.508372\pi\)
−0.0262989 + 0.999654i \(0.508372\pi\)
\(618\) −0.830855 1.22755i −0.0334219 0.0493792i
\(619\) −33.9780 −1.36569 −0.682845 0.730563i \(-0.739258\pi\)
−0.682845 + 0.730563i \(0.739258\pi\)
\(620\) 7.85786 + 3.14553i 0.315579 + 0.126328i
\(621\) 2.91461 0.116959
\(622\) −22.5124 33.2609i −0.902664 1.33364i
\(623\) 27.2448 1.09154
\(624\) −21.9461 + 23.0193i −0.878549 + 0.921509i
\(625\) −7.41957 −0.296783
\(626\) −6.48542 + 4.38961i −0.259210 + 0.175444i
\(627\) 15.5804 + 3.26914i 0.622222 + 0.130557i
\(628\) −32.3437 12.9473i −1.29065 0.516654i
\(629\) −28.2018 −1.12448
\(630\) 12.9799 8.78536i 0.517132 0.350017i
\(631\) 7.50136i 0.298625i −0.988790 0.149312i \(-0.952294\pi\)
0.988790 0.149312i \(-0.0477060\pi\)
\(632\) 4.41140 + 20.2743i 0.175476 + 0.806470i
\(633\) 19.7474 0.784887
\(634\) −13.9890 + 9.46834i −0.555574 + 0.376036i
\(635\) 59.9757i 2.38006i
\(636\) 14.1878 + 5.67942i 0.562582 + 0.225204i
\(637\) −12.6056 −0.499452
\(638\) 1.40857 0.953380i 0.0557659 0.0377447i
\(639\) 14.3677 0.568378
\(640\) −33.9954 20.7162i −1.34379 0.818881i
\(641\) 1.22755i 0.0484852i −0.999706 0.0242426i \(-0.992283\pi\)
0.999706 0.0242426i \(-0.00771741\pi\)
\(642\) 1.15251 0.780070i 0.0454861 0.0307869i
\(643\) 24.4755 0.965221 0.482610 0.875835i \(-0.339689\pi\)
0.482610 + 0.875835i \(0.339689\pi\)
\(644\) −0.871002 + 2.17585i −0.0343223 + 0.0857406i
\(645\) 47.4319 1.86763
\(646\) 11.1771 + 27.3318i 0.439757 + 1.07535i
\(647\) 0.598399i 0.0235255i −0.999931 0.0117627i \(-0.996256\pi\)
0.999931 0.0117627i \(-0.00374428\pi\)
\(648\) 1.67790 + 7.71148i 0.0659143 + 0.302936i
\(649\) 23.4056i 0.918749i
\(650\) 54.4886 36.8802i 2.13722 1.44656i
\(651\) 3.39264 0.132968
\(652\) −15.1208 + 37.7734i −0.592177 + 1.47932i
\(653\) 34.6646i 1.35653i −0.734818 0.678265i \(-0.762732\pi\)
0.734818 0.678265i \(-0.237268\pi\)
\(654\) −6.05711 8.94907i −0.236852 0.349936i
\(655\) 41.2125i 1.61031i
\(656\) 13.4689 14.1275i 0.525870 0.551585i
\(657\) 10.9351 0.426620
\(658\) −11.2016 + 7.58174i −0.436685 + 0.295567i
\(659\) 11.5705i 0.450721i −0.974275 0.225361i \(-0.927644\pi\)
0.974275 0.225361i \(-0.0723560\pi\)
\(660\) −9.55196 + 23.8618i −0.371810 + 0.928818i
\(661\) 10.3699 0.403343 0.201672 0.979453i \(-0.435363\pi\)
0.201672 + 0.979453i \(0.435363\pi\)
\(662\) −12.3168 18.1974i −0.478705 0.707263i
\(663\) 38.0875i 1.47920i
\(664\) −1.20271 5.52752i −0.0466741 0.214509i
\(665\) 7.04286 33.5657i 0.273110 1.30162i
\(666\) 9.71225 6.57366i 0.376342 0.254724i
\(667\) 0.217713i 0.00842987i
\(668\) 10.2633 25.6387i 0.397098 0.991992i
\(669\) 14.3850i 0.556155i
\(670\) −40.3596 + 27.3171i −1.55923 + 1.05535i
\(671\) 24.2622i 0.936632i
\(672\) −15.7364 2.64495i −0.607043 0.102031i
\(673\) 9.16231i 0.353181i 0.984284 + 0.176591i \(0.0565068\pi\)
−0.984284 + 0.176591i \(0.943493\pi\)
\(674\) −23.3706 34.5289i −0.900203 1.33001i
\(675\) 41.0530i 1.58013i
\(676\) 19.8641 49.6225i 0.764003 1.90856i
\(677\) 30.1852 1.16011 0.580055 0.814577i \(-0.303031\pi\)
0.580055 + 0.814577i \(0.303031\pi\)
\(678\) 5.29560 3.58429i 0.203376 0.137654i
\(679\) −4.89798 −0.187967
\(680\) −46.5848 + 10.1362i −1.78645 + 0.388704i
\(681\) 18.1988 0.697379
\(682\) 4.07796 2.76014i 0.156153 0.105691i
\(683\) 21.2151i 0.811775i −0.913923 0.405887i \(-0.866963\pi\)
0.913923 0.405887i \(-0.133037\pi\)
\(684\) −10.2201 6.80731i −0.390775 0.260284i
\(685\) 3.32924i 0.127204i
\(686\) −15.9527 23.5693i −0.609077 0.899880i
\(687\) 23.7694 0.906860
\(688\) 30.9351 + 29.4929i 1.17939 + 1.12441i
\(689\) −38.1768 −1.45442
\(690\) 1.84407 + 2.72452i 0.0702026 + 0.103721i
\(691\) −9.52447 −0.362328 −0.181164 0.983453i \(-0.557986\pi\)
−0.181164 + 0.983453i \(0.557986\pi\)
\(692\) 2.15310 5.37867i 0.0818486 0.204466i
\(693\) 9.11860i 0.346387i
\(694\) −22.6580 + 15.3359i −0.860087 + 0.582143i
\(695\) 2.96014i 0.112285i
\(696\) 1.44840 0.315151i 0.0549016 0.0119458i
\(697\) 23.3752i 0.885398i
\(698\) −9.87939 14.5963i −0.373940 0.552478i
\(699\) 6.55836i 0.248060i
\(700\) 30.6474 + 12.2683i 1.15836 + 0.463697i
\(701\) 28.7291i 1.08508i 0.840029 + 0.542541i \(0.182538\pi\)
−0.840029 + 0.542541i \(0.817462\pi\)
\(702\) −27.7864 41.0530i −1.04873 1.54944i
\(703\) 5.26983 25.1156i 0.198755 0.947252i
\(704\) −21.0670 + 9.62332i −0.793991 + 0.362692i
\(705\) 18.9872i 0.715098i
\(706\) 10.8049 7.31318i 0.406646 0.275235i
\(707\) −3.39264 −0.127594
\(708\) 7.58043 18.9367i 0.284890 0.711684i
\(709\) 16.3713i 0.614837i 0.951574 + 0.307419i \(0.0994652\pi\)
−0.951574 + 0.307419i \(0.900535\pi\)
\(710\) 28.4514 + 42.0356i 1.06776 + 1.57757i
\(711\) −10.3330 −0.387517
\(712\) 33.6743 7.32703i 1.26200 0.274592i
\(713\) 0.630302i 0.0236050i
\(714\) −15.8253 + 10.7112i −0.592248 + 0.400858i
\(715\) 64.2078i 2.40123i
\(716\) 19.7588 + 7.90951i 0.738420 + 0.295592i
\(717\) 15.4265 0.576111
\(718\) 14.9633 + 22.1075i 0.558425 + 0.825045i
\(719\) 7.75634i 0.289263i −0.989486 0.144631i \(-0.953800\pi\)
0.989486 0.144631i \(-0.0461996\pi\)
\(720\) 13.6804 14.3494i 0.509838 0.534769i
\(721\) 1.85785i 0.0691899i
\(722\) −26.4293 + 4.84670i −0.983598 + 0.180376i
\(723\) 37.7364 1.40343
\(724\) −1.78787 + 4.46627i −0.0664455 + 0.165988i
\(725\) −3.06654 −0.113888
\(726\) −2.61836 3.86849i −0.0971764 0.143573i
\(727\) 34.3892i 1.27542i 0.770275 + 0.637712i \(0.220119\pi\)
−0.770275 + 0.637712i \(0.779881\pi\)
\(728\) 38.9511 8.47517i 1.44362 0.314111i
\(729\) −24.9780 −0.925111
\(730\) 21.6541 + 31.9929i 0.801456 + 1.18411i
\(731\) 51.1850 1.89314
\(732\) −7.85786 + 19.6297i −0.290435 + 0.725536i
\(733\) 42.5350i 1.57107i 0.618819 + 0.785533i \(0.287611\pi\)
−0.618819 + 0.785533i \(0.712389\pi\)
\(734\) 16.4270 + 24.2701i 0.606333 + 0.895827i
\(735\) −8.87795 −0.327468
\(736\) −0.491391 + 2.92358i −0.0181129 + 0.107764i
\(737\) 28.3533i 1.04441i
\(738\) 5.44860 + 8.05004i 0.200566 + 0.296326i
\(739\) 8.23389 0.302889 0.151444 0.988466i \(-0.451608\pi\)
0.151444 + 0.988466i \(0.451608\pi\)
\(740\) 38.4651 + 15.3977i 1.41400 + 0.566031i
\(741\) −33.9194 7.11709i −1.24606 0.261453i
\(742\) −10.7364 15.8624i −0.394144 0.582328i
\(743\) 0.459003 0.0168392 0.00841960 0.999965i \(-0.497320\pi\)
0.00841960 + 0.999965i \(0.497320\pi\)
\(744\) 4.19328 0.912395i 0.153733 0.0334500i
\(745\) −39.8862 −1.46132
\(746\) −4.96207 + 3.35854i −0.181674 + 0.122965i
\(747\) 2.81714 0.103074
\(748\) −10.3078 + 25.7499i −0.376889 + 0.941508i
\(749\) −1.74429 −0.0637350
\(750\) 12.3816 8.38042i 0.452114 0.306010i
\(751\) 4.47136 0.163162 0.0815812 0.996667i \(-0.474003\pi\)
0.0815812 + 0.996667i \(0.474003\pi\)
\(752\) −11.8061 + 12.3835i −0.430526 + 0.451578i
\(753\) 26.9899i 0.983565i
\(754\) −3.06654 + 2.07556i −0.111677 + 0.0755875i
\(755\) 32.9684i 1.19984i
\(756\) 9.24319 23.0904i 0.336171 0.839791i
\(757\) 21.8764i 0.795111i −0.917578 0.397556i \(-0.869859\pi\)
0.917578 0.397556i \(-0.130141\pi\)
\(758\) 7.06414 + 10.4369i 0.256581 + 0.379085i
\(759\) 1.91402 0.0694746
\(760\) −0.322019 43.3809i −0.0116809 1.57359i
\(761\) 13.2416 0.480009 0.240005 0.970772i \(-0.422851\pi\)
0.240005 + 0.970772i \(0.422851\pi\)
\(762\) 17.0446 + 25.1825i 0.617460 + 0.912266i
\(763\) 13.5441i 0.490330i
\(764\) −18.6653 7.47179i −0.675287 0.270320i
\(765\) 23.7423i 0.858405i
\(766\) −28.5156 + 19.3005i −1.03031 + 0.697357i
\(767\) 50.9552i 1.83989i
\(768\) −20.1613 + 0.962896i −0.727509 + 0.0347455i
\(769\) −4.84407 −0.174682 −0.0873409 0.996178i \(-0.527837\pi\)
−0.0873409 + 0.996178i \(0.527837\pi\)
\(770\) 26.6783 18.0570i 0.961418 0.650728i
\(771\) 17.1290 0.616886
\(772\) 27.9254 + 11.1786i 1.00506 + 0.402328i
\(773\) −40.0525 −1.44059 −0.720294 0.693669i \(-0.755993\pi\)
−0.720294 + 0.693669i \(0.755993\pi\)
\(774\) −17.6273 + 11.9309i −0.633600 + 0.428847i
\(775\) −8.87795 −0.318905
\(776\) −6.05386 + 1.31723i −0.217321 + 0.0472858i
\(777\) 16.6074 0.595786
\(778\) 2.41745 + 3.57166i 0.0866698 + 0.128050i
\(779\) 20.8171 + 4.36792i 0.745852 + 0.156497i
\(780\) 20.7951 51.9484i 0.744585 1.86005i
\(781\) 29.5307 1.05669
\(782\) 1.98999 + 2.94010i 0.0711618 + 0.105138i
\(783\) 2.31040i 0.0825669i
\(784\) −5.79021 5.52027i −0.206793 0.197153i
\(785\) 61.2948 2.18770
\(786\) −11.7122 17.3043i −0.417762 0.617222i
\(787\) 1.18061i 0.0420842i 0.999779 + 0.0210421i \(0.00669840\pi\)
−0.999779 + 0.0210421i \(0.993302\pi\)
\(788\) 25.6343 + 10.2615i 0.913184 + 0.365551i
\(789\) −15.2567 −0.543154
\(790\) −20.4617 30.2311i −0.727995 1.07558i
\(791\) −8.01471 −0.284970
\(792\) −2.45230 11.2705i −0.0871386 0.400480i
\(793\) 52.8201i 1.87570i
\(794\) −11.6042 17.1446i −0.411817 0.608438i
\(795\) −26.8874 −0.953596
\(796\) 13.6784 + 5.47552i 0.484818 + 0.194075i
\(797\) 47.0231 1.66564 0.832821 0.553542i \(-0.186724\pi\)
0.832821 + 0.553542i \(0.186724\pi\)
\(798\) −6.58193 16.0950i −0.232998 0.569758i
\(799\) 20.4895i 0.724868i
\(800\) 41.1793 + 6.92137i 1.45591 + 0.244707i
\(801\) 17.1624i 0.606402i
\(802\) 22.7392 + 33.5960i 0.802948 + 1.18632i
\(803\) 22.4755 0.793144
\(804\) −9.18286 + 22.9397i −0.323854 + 0.809022i
\(805\) 4.12347i 0.145333i
\(806\) −8.87795 + 6.00897i −0.312712 + 0.211657i
\(807\) 26.7920i 0.943122i
\(808\) −4.19328 + 0.912395i −0.147519 + 0.0320980i
\(809\) −22.8923 −0.804850 −0.402425 0.915453i \(-0.631833\pi\)
−0.402425 + 0.915453i \(0.631833\pi\)
\(810\) −7.78275 11.4986i −0.273458 0.404020i
\(811\) 7.45423i 0.261753i 0.991399 + 0.130877i \(0.0417792\pi\)
−0.991399 + 0.130877i \(0.958221\pi\)
\(812\) −1.72479 0.690439i −0.0605282 0.0242297i
\(813\) 20.3310 0.713041
\(814\) 19.9621 13.5112i 0.699670 0.473566i
\(815\) 71.5845i 2.50750i
\(816\) −16.6793 + 17.4950i −0.583894 + 0.612446i
\(817\) −9.56450 + 45.5836i −0.334619 + 1.59477i
\(818\) 12.6853 + 18.7419i 0.443532 + 0.655296i
\(819\) 19.8517i 0.693675i
\(820\) −12.7625 + 31.8819i −0.445684 + 1.11337i
\(821\) 51.2254i 1.78778i −0.448288 0.893889i \(-0.647966\pi\)
0.448288 0.893889i \(-0.352034\pi\)
\(822\) 0.946141 + 1.39788i 0.0330005 + 0.0487565i
\(823\) 35.1273i 1.22446i −0.790679 0.612231i \(-0.790272\pi\)
0.790679 0.612231i \(-0.209728\pi\)
\(824\) 0.499637 + 2.29628i 0.0174057 + 0.0799949i
\(825\) 26.9595i 0.938608i
\(826\) −21.1719 + 14.3300i −0.736663 + 0.498605i
\(827\) 20.5839i 0.715773i 0.933765 + 0.357886i \(0.116503\pi\)
−0.933765 + 0.357886i \(0.883497\pi\)
\(828\) −1.37064 0.548672i −0.0476330 0.0190677i
\(829\) 25.0415 0.869727 0.434863 0.900496i \(-0.356797\pi\)
0.434863 + 0.900496i \(0.356797\pi\)
\(830\) 5.57860 + 8.24211i 0.193636 + 0.286088i
\(831\) −5.03075 −0.174515
\(832\) 45.8639 20.9505i 1.59005 0.726327i
\(833\) −9.58043 −0.331942
\(834\) −0.841247 1.24290i −0.0291300 0.0430381i
\(835\) 48.5881i 1.68146i
\(836\) −21.0058 13.9914i −0.726502 0.483903i
\(837\) 6.68885i 0.231200i
\(838\) 1.97710 1.33818i 0.0682978 0.0462268i
\(839\) −40.2222 −1.38863 −0.694313 0.719673i \(-0.744292\pi\)
−0.694313 + 0.719673i \(0.744292\pi\)
\(840\) 27.4327 5.96894i 0.946517 0.205948i
\(841\) −28.8274 −0.994049
\(842\) 18.6425 12.6180i 0.642462 0.434845i
\(843\) −0.795137 −0.0273860
\(844\) −29.0650 11.6348i −1.00046 0.400488i
\(845\) 94.0400i 3.23507i
\(846\) −4.77598 7.05627i −0.164202 0.242600i
\(847\) 5.85483i 0.201174i
\(848\) −17.5360 16.7185i −0.602188 0.574114i
\(849\) 39.1437i 1.34341i
\(850\) 41.4121 28.0294i 1.42042 0.961401i
\(851\) 3.08539i 0.105766i
\(852\) 23.8923 + 9.56417i 0.818536 + 0.327663i
\(853\) 29.2390i 1.00113i 0.865700 + 0.500563i \(0.166874\pi\)
−0.865700 + 0.500563i \(0.833126\pi\)
\(854\) 21.9467 14.8545i 0.751001 0.508309i
\(855\) 21.1441 + 4.43652i 0.723113 + 0.151726i
\(856\) −2.15593 + 0.469098i −0.0736881 + 0.0160334i
\(857\) 34.2639i 1.17043i 0.810877 + 0.585217i \(0.198990\pi\)
−0.810877 + 0.585217i \(0.801010\pi\)
\(858\) −18.2473 26.9595i −0.622952 0.920381i
\(859\) 1.50246 0.0512633 0.0256317 0.999671i \(-0.491840\pi\)
0.0256317 + 0.999671i \(0.491840\pi\)
\(860\) −69.8123 27.9461i −2.38058 0.952955i
\(861\) 13.7651i 0.469112i
\(862\) 14.3657 9.72332i 0.489298 0.331178i
\(863\) −53.5392 −1.82249 −0.911247 0.411860i \(-0.864879\pi\)
−0.911247 + 0.411860i \(0.864879\pi\)
\(864\) 5.21471 31.0254i 0.177408 1.05550i
\(865\) 10.1931i 0.346577i
\(866\) 17.6584 + 26.0894i 0.600057 + 0.886553i
\(867\) 7.50117i 0.254753i
\(868\) −4.99344 1.99889i −0.169489 0.0678469i
\(869\) −21.2379 −0.720445
\(870\) −2.15972 + 1.46179i −0.0732213 + 0.0495592i
\(871\) 61.7267i 2.09153i
\(872\) 3.64246 + 16.7404i 0.123349 + 0.566902i
\(873\) 3.08539i 0.104425i
\(874\) −2.99021 + 1.22282i −0.101145 + 0.0413626i
\(875\) −18.7392 −0.633500
\(876\) 18.1842 + 7.27921i 0.614388 + 0.245942i
\(877\) −7.96451 −0.268943 −0.134471 0.990917i \(-0.542934\pi\)
−0.134471 + 0.990917i \(0.542934\pi\)
\(878\) −44.7254 + 30.2720i −1.50941 + 1.02163i
\(879\) 38.7074i 1.30557i
\(880\) 28.1180 29.4929i 0.947857 0.994207i
\(881\) −0.779210 −0.0262523 −0.0131261 0.999914i \(-0.504178\pi\)
−0.0131261 + 0.999914i \(0.504178\pi\)
\(882\) 3.29935 2.23314i 0.111095 0.0751936i
\(883\) 4.42167 0.148801 0.0744006 0.997228i \(-0.476296\pi\)
0.0744006 + 0.997228i \(0.476296\pi\)
\(884\) 22.4406 56.0589i 0.754758 1.88546i
\(885\) 35.8870i 1.20633i
\(886\) 11.1921 7.57525i 0.376004 0.254496i
\(887\) 15.3505 0.515419 0.257709 0.966222i \(-0.417032\pi\)
0.257709 + 0.966222i \(0.417032\pi\)
\(888\) 20.5265 4.46627i 0.688826 0.149878i
\(889\) 38.1129i 1.27826i
\(890\) −50.2119 + 33.9855i −1.68311 + 1.13920i
\(891\) −8.07796 −0.270622
\(892\) −8.47541 + 21.1724i −0.283778 + 0.708906i
\(893\) −18.2473 3.82871i −0.610622 0.128123i
\(894\) −16.7474 + 11.3353i −0.560115 + 0.379110i
\(895\) −37.4450 −1.25165
\(896\) 21.6031 + 13.1646i 0.721709 + 0.439798i
\(897\) −4.16693 −0.139130
\(898\) 3.23672 + 4.78209i 0.108011 + 0.159580i
\(899\) 0.499637 0.0166638
\(900\) −7.72818 + 19.3058i −0.257606 + 0.643526i
\(901\) −29.0148 −0.966625
\(902\) 11.1988 + 16.5456i 0.372879 + 0.550910i
\(903\) −30.1416 −1.00305
\(904\) −9.90611 + 2.15542i −0.329472 + 0.0716883i
\(905\) 8.46406i 0.281355i
\(906\) −9.36934 13.8427i −0.311276 0.459894i
\(907\) 21.6756i 0.719726i −0.933005 0.359863i \(-0.882823\pi\)
0.933005 0.359863i \(-0.117177\pi\)
\(908\) −26.7858 10.7224i −0.888917 0.355837i
\(909\) 2.13714i 0.0708843i
\(910\) −58.0801 + 39.3110i −1.92534 + 1.30315i
\(911\) 20.9922 0.695502 0.347751 0.937587i \(-0.386946\pi\)
0.347751 + 0.937587i \(0.386946\pi\)
\(912\) −12.4637 18.1232i −0.412714 0.600119i
\(913\) 5.79021 0.191628
\(914\) 36.8914 24.9696i 1.22026 0.825922i
\(915\) 37.2005i 1.22981i
\(916\) −34.9849 14.0046i −1.15593 0.462725i
\(917\) 26.1894i 0.864850i
\(918\) −21.1180 31.2008i −0.696998 1.02978i
\(919\) 12.7719i 0.421306i −0.977561 0.210653i \(-0.932441\pi\)
0.977561 0.210653i \(-0.0675591\pi\)
\(920\) −1.10894 5.09657i −0.0365606 0.168029i
\(921\) 19.7902 0.652110
\(922\) 9.19876 + 13.5907i 0.302945 + 0.447586i
\(923\) −64.2899 −2.11613
\(924\) 6.07000 15.1635i 0.199688 0.498842i
\(925\) −43.4585 −1.42891
\(926\) 26.7816 + 39.5685i 0.880099 + 1.30030i
\(927\) −1.17032 −0.0384383
\(928\) −2.31751 0.389524i −0.0760758 0.0127867i
\(929\) −9.11800 −0.299152 −0.149576 0.988750i \(-0.547791\pi\)
−0.149576 + 0.988750i \(0.547791\pi\)
\(930\) −6.25261 + 4.23203i −0.205031 + 0.138774i
\(931\) 1.79021 8.53201i 0.0586719 0.279625i
\(932\) 3.86409 9.65289i 0.126572 0.316191i
\(933\) 35.8268 1.17292
\(934\) 35.9377 24.3241i 1.17592 0.795909i
\(935\) 48.7987i 1.59589i
\(936\) 5.33879 + 24.5365i 0.174504 + 0.802002i
\(937\) 6.18286 0.201985 0.100993 0.994887i \(-0.467798\pi\)
0.100993 + 0.994887i \(0.467798\pi\)
\(938\) 25.6474 17.3592i 0.837417 0.566799i
\(939\) 6.98575i 0.227971i
\(940\) 11.1869 27.9461i 0.364878 0.911503i
\(941\) 18.9084 0.616397 0.308198 0.951322i \(-0.400274\pi\)
0.308198 + 0.951322i \(0.400274\pi\)
\(942\) 25.7364 17.4194i 0.838536 0.567556i
\(943\) 2.55734 0.0832785
\(944\) −22.3144 + 23.4056i −0.726272 + 0.761787i
\(945\) 43.7588i 1.42347i
\(946\) −36.2302 + 24.5221i −1.17795 + 0.797284i
\(947\) −33.2409 −1.08018 −0.540092 0.841606i \(-0.681611\pi\)
−0.540092 + 0.841606i \(0.681611\pi\)
\(948\) −17.1829 6.87836i −0.558073 0.223399i
\(949\) −48.9305 −1.58835
\(950\) 17.2237 + 42.1178i 0.558812 + 1.36648i
\(951\) 15.0682i 0.488620i
\(952\) 29.6033 6.44124i 0.959449 0.208762i
\(953\) 43.2269i 1.40026i −0.714018 0.700128i \(-0.753126\pi\)
0.714018 0.700128i \(-0.246874\pi\)
\(954\) 9.99225 6.76318i 0.323511 0.218966i
\(955\) 35.3727 1.14463
\(956\) −22.7053 9.08903i −0.734343 0.293960i
\(957\) 1.51724i 0.0490453i
\(958\) 24.1347 + 35.6578i 0.779756 + 1.15205i
\(959\) 2.11564i 0.0683174i
\(960\) 32.3013 14.7551i 1.04252 0.476220i
\(961\) −29.5535 −0.953339
\(962\) −43.4585 + 29.4145i −1.40116 + 0.948363i
\(963\) 1.09878i 0.0354078i
\(964\) −55.5420 22.2337i −1.78889 0.716099i
\(965\) −52.9216 −1.70361
\(966\) −1.17185 1.73136i −0.0377038 0.0557055i
\(967\) 24.5774i 0.790356i −0.918605 0.395178i \(-0.870683\pi\)
0.918605 0.395178i \(-0.129317\pi\)
\(968\) 1.57456 + 7.23652i 0.0506082 + 0.232590i
\(969\) −25.7792 5.40908i −0.828148 0.173765i
\(970\) 9.02693 6.10981i 0.289837 0.196174i
\(971\) 31.4083i 1.00794i −0.863721 0.503970i \(-0.831872\pi\)
0.863721 0.503970i \(-0.168128\pi\)
\(972\) 24.4434 + 9.78480i 0.784024 + 0.313848i
\(973\) 1.88109i 0.0603049i
\(974\) 6.03185 4.08261i 0.193273 0.130815i
\(975\) 58.6922i 1.87965i
\(976\) 23.1311 24.2622i 0.740408 0.776614i
\(977\) 36.9532i 1.18224i −0.806584 0.591120i \(-0.798686\pi\)
0.806584 0.591120i \(-0.201314\pi\)
\(978\) −20.3437 30.0568i −0.650520 0.961111i
\(979\) 35.2747i 1.12738i
\(980\) 13.0670 + 5.23075i 0.417409 + 0.167090i
\(981\) −8.53187 −0.272402
\(982\) 23.8259 16.1264i 0.760315 0.514613i
\(983\) 31.1924 0.994882 0.497441 0.867498i \(-0.334273\pi\)
0.497441 + 0.867498i \(0.334273\pi\)
\(984\) 3.70189 + 17.0135i 0.118012 + 0.542371i
\(985\) −48.5797 −1.54788
\(986\) −2.33061 + 1.57745i −0.0742217 + 0.0502363i
\(987\) 12.0658i 0.384058i
\(988\) 45.7309 + 30.4601i 1.45489 + 0.969064i
\(989\) 5.59985i 0.178065i
\(990\) 11.3747 + 16.8055i 0.361511 + 0.534114i
\(991\) −44.0827 −1.40033 −0.700166 0.713980i \(-0.746891\pi\)
−0.700166 + 0.713980i \(0.746891\pi\)
\(992\) −6.70942 1.12771i −0.213024 0.0358049i
\(993\) 19.6013 0.622028
\(994\) −18.0801 26.7124i −0.573465 0.847265i
\(995\) −25.9220 −0.821784
\(996\) 4.68467 + 1.87529i 0.148439 + 0.0594209i
\(997\) 20.9382i 0.663119i 0.943434 + 0.331560i \(0.107575\pi\)
−0.943434 + 0.331560i \(0.892425\pi\)
\(998\) −21.7575 + 14.7264i −0.688721 + 0.466155i
\(999\) 32.7426i 1.03593i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 152.2.b.c.75.9 yes 12
3.2 odd 2 1368.2.e.e.379.4 12
4.3 odd 2 608.2.b.c.303.4 12
8.3 odd 2 inner 152.2.b.c.75.3 12
8.5 even 2 608.2.b.c.303.3 12
12.11 even 2 5472.2.e.e.5167.1 12
19.18 odd 2 inner 152.2.b.c.75.4 yes 12
24.5 odd 2 5472.2.e.e.5167.12 12
24.11 even 2 1368.2.e.e.379.10 12
57.56 even 2 1368.2.e.e.379.9 12
76.75 even 2 608.2.b.c.303.10 12
152.37 odd 2 608.2.b.c.303.9 12
152.75 even 2 inner 152.2.b.c.75.10 yes 12
228.227 odd 2 5472.2.e.e.5167.2 12
456.227 odd 2 1368.2.e.e.379.3 12
456.341 even 2 5472.2.e.e.5167.11 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.2.b.c.75.3 12 8.3 odd 2 inner
152.2.b.c.75.4 yes 12 19.18 odd 2 inner
152.2.b.c.75.9 yes 12 1.1 even 1 trivial
152.2.b.c.75.10 yes 12 152.75 even 2 inner
608.2.b.c.303.3 12 8.5 even 2
608.2.b.c.303.4 12 4.3 odd 2
608.2.b.c.303.9 12 152.37 odd 2
608.2.b.c.303.10 12 76.75 even 2
1368.2.e.e.379.3 12 456.227 odd 2
1368.2.e.e.379.4 12 3.2 odd 2
1368.2.e.e.379.9 12 57.56 even 2
1368.2.e.e.379.10 12 24.11 even 2
5472.2.e.e.5167.1 12 12.11 even 2
5472.2.e.e.5167.2 12 228.227 odd 2
5472.2.e.e.5167.11 12 456.341 even 2
5472.2.e.e.5167.12 12 24.5 odd 2