Properties

Label 605.3.d.b.604.37
Level $605$
Weight $3$
Character 605.604
Analytic conductor $16.485$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [605,3,Mod(604,605)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(605, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("605.604"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 605.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0,68] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.4850559938\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 604.37
Character \(\chi\) \(=\) 605.604
Dual form 605.3.d.b.604.38

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.55203 q^{2} +1.52519i q^{3} +8.61693 q^{4} +(4.52233 - 2.13273i) q^{5} +5.41753i q^{6} -1.09026 q^{7} +16.3995 q^{8} +6.67379 q^{9} +(16.0635 - 7.57554i) q^{10} +13.1425i q^{12} +0.874050 q^{13} -3.87264 q^{14} +(3.25282 + 6.89741i) q^{15} +23.7838 q^{16} -23.3553 q^{17} +23.7055 q^{18} -25.3361i q^{19} +(38.9686 - 18.3776i) q^{20} -1.66285i q^{21} +33.3562i q^{23} +25.0123i q^{24} +(15.9029 - 19.2898i) q^{25} +3.10466 q^{26} +23.9055i q^{27} -9.39469 q^{28} +16.8499i q^{29} +(11.5541 + 24.4998i) q^{30} -6.40321 q^{31} +18.8828 q^{32} -82.9587 q^{34} +(-4.93051 + 2.32523i) q^{35} +57.5076 q^{36} -65.5809i q^{37} -89.9946i q^{38} +1.33309i q^{39} +(74.1638 - 34.9757i) q^{40} +38.7022i q^{41} -5.90651i q^{42} +15.0656 q^{43} +(30.1811 - 14.2334i) q^{45} +118.482i q^{46} +59.2957i q^{47} +36.2748i q^{48} -47.8113 q^{49} +(56.4876 - 68.5181i) q^{50} -35.6213i q^{51} +7.53163 q^{52} +23.6638i q^{53} +84.9132i q^{54} -17.8797 q^{56} +38.6424 q^{57} +59.8515i q^{58} +38.0356 q^{59} +(28.0294 + 59.4345i) q^{60} -34.0882i q^{61} -22.7444 q^{62} -7.27617 q^{63} -28.0629 q^{64} +(3.95274 - 1.86412i) q^{65} -43.7033i q^{67} -201.251 q^{68} -50.8746 q^{69} +(-17.5133 + 8.25931i) q^{70} +36.2338 q^{71} +109.447 q^{72} -84.0533 q^{73} -232.946i q^{74} +(29.4207 + 24.2549i) q^{75} -218.319i q^{76} +4.73519i q^{78} +30.3428i q^{79} +(107.558 - 50.7244i) q^{80} +23.6037 q^{81} +137.471i q^{82} -136.109 q^{83} -14.3287i q^{84} +(-105.620 + 49.8106i) q^{85} +53.5134 q^{86} -25.6994 q^{87} -8.46901 q^{89} +(107.204 - 50.5576i) q^{90} -0.952942 q^{91} +287.428i q^{92} -9.76612i q^{93} +210.620i q^{94} +(-54.0351 - 114.578i) q^{95} +28.7998i q^{96} +66.6404i q^{97} -169.827 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 68 q^{4} - 8 q^{5} - 24 q^{9} - 12 q^{14} + 64 q^{15} + 212 q^{16} - 48 q^{20} + 32 q^{25} - 288 q^{26} - 212 q^{31} - 112 q^{34} + 288 q^{36} + 196 q^{45} - 472 q^{49} + 144 q^{56} + 256 q^{59}+ \cdots + 1032 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/605\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(486\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.55203 1.77602 0.888008 0.459828i \(-0.152089\pi\)
0.888008 + 0.459828i \(0.152089\pi\)
\(3\) 1.52519i 0.508397i 0.967152 + 0.254198i \(0.0818116\pi\)
−0.967152 + 0.254198i \(0.918188\pi\)
\(4\) 8.61693 2.15423
\(5\) 4.52233 2.13273i 0.904466 0.426547i
\(6\) 5.41753i 0.902921i
\(7\) −1.09026 −0.155751 −0.0778757 0.996963i \(-0.524814\pi\)
−0.0778757 + 0.996963i \(0.524814\pi\)
\(8\) 16.3995 2.04994
\(9\) 6.67379 0.741533
\(10\) 16.0635 7.57554i 1.60635 0.757554i
\(11\) 0 0
\(12\) 13.1425i 1.09521i
\(13\) 0.874050 0.0672347 0.0336173 0.999435i \(-0.489297\pi\)
0.0336173 + 0.999435i \(0.489297\pi\)
\(14\) −3.87264 −0.276617
\(15\) 3.25282 + 6.89741i 0.216855 + 0.459827i
\(16\) 23.7838 1.48649
\(17\) −23.3553 −1.37384 −0.686920 0.726733i \(-0.741038\pi\)
−0.686920 + 0.726733i \(0.741038\pi\)
\(18\) 23.7055 1.31697
\(19\) 25.3361i 1.33348i −0.745291 0.666739i \(-0.767690\pi\)
0.745291 0.666739i \(-0.232310\pi\)
\(20\) 38.9686 18.3776i 1.94843 0.918881i
\(21\) 1.66285i 0.0791835i
\(22\) 0 0
\(23\) 33.3562i 1.45027i 0.688606 + 0.725135i \(0.258223\pi\)
−0.688606 + 0.725135i \(0.741777\pi\)
\(24\) 25.0123i 1.04218i
\(25\) 15.9029 19.2898i 0.636116 0.771594i
\(26\) 3.10466 0.119410
\(27\) 23.9055i 0.885390i
\(28\) −9.39469 −0.335525
\(29\) 16.8499i 0.581032i 0.956870 + 0.290516i \(0.0938270\pi\)
−0.956870 + 0.290516i \(0.906173\pi\)
\(30\) 11.5541 + 24.4998i 0.385138 + 0.816661i
\(31\) −6.40321 −0.206555 −0.103278 0.994653i \(-0.532933\pi\)
−0.103278 + 0.994653i \(0.532933\pi\)
\(32\) 18.8828 0.590087
\(33\) 0 0
\(34\) −82.9587 −2.43996
\(35\) −4.93051 + 2.32523i −0.140872 + 0.0664353i
\(36\) 57.5076 1.59743
\(37\) 65.5809i 1.77246i −0.463248 0.886229i \(-0.653316\pi\)
0.463248 0.886229i \(-0.346684\pi\)
\(38\) 89.9946i 2.36828i
\(39\) 1.33309i 0.0341819i
\(40\) 74.1638 34.9757i 1.85410 0.874393i
\(41\) 38.7022i 0.943955i 0.881611 + 0.471978i \(0.156460\pi\)
−0.881611 + 0.471978i \(0.843540\pi\)
\(42\) 5.90651i 0.140631i
\(43\) 15.0656 0.350362 0.175181 0.984536i \(-0.443949\pi\)
0.175181 + 0.984536i \(0.443949\pi\)
\(44\) 0 0
\(45\) 30.1811 14.2334i 0.670691 0.316298i
\(46\) 118.482i 2.57570i
\(47\) 59.2957i 1.26161i 0.775941 + 0.630805i \(0.217275\pi\)
−0.775941 + 0.630805i \(0.782725\pi\)
\(48\) 36.2748i 0.755725i
\(49\) −47.8113 −0.975741
\(50\) 56.4876 68.5181i 1.12975 1.37036i
\(51\) 35.6213i 0.698456i
\(52\) 7.53163 0.144839
\(53\) 23.6638i 0.446486i 0.974763 + 0.223243i \(0.0716644\pi\)
−0.974763 + 0.223243i \(0.928336\pi\)
\(54\) 84.9132i 1.57247i
\(55\) 0 0
\(56\) −17.8797 −0.319280
\(57\) 38.6424 0.677936
\(58\) 59.8515i 1.03192i
\(59\) 38.0356 0.644672 0.322336 0.946625i \(-0.395532\pi\)
0.322336 + 0.946625i \(0.395532\pi\)
\(60\) 28.0294 + 59.4345i 0.467156 + 0.990575i
\(61\) 34.0882i 0.558823i −0.960171 0.279411i \(-0.909861\pi\)
0.960171 0.279411i \(-0.0901394\pi\)
\(62\) −22.7444 −0.366846
\(63\) −7.27617 −0.115495
\(64\) −28.0629 −0.438482
\(65\) 3.95274 1.86412i 0.0608114 0.0286787i
\(66\) 0 0
\(67\) 43.7033i 0.652288i −0.945320 0.326144i \(-0.894250\pi\)
0.945320 0.326144i \(-0.105750\pi\)
\(68\) −201.251 −2.95957
\(69\) −50.8746 −0.737313
\(70\) −17.5133 + 8.25931i −0.250191 + 0.117990i
\(71\) 36.2338 0.510335 0.255168 0.966897i \(-0.417869\pi\)
0.255168 + 0.966897i \(0.417869\pi\)
\(72\) 109.447 1.52009
\(73\) −84.0533 −1.15142 −0.575708 0.817656i \(-0.695273\pi\)
−0.575708 + 0.817656i \(0.695273\pi\)
\(74\) 232.946i 3.14791i
\(75\) 29.4207 + 24.2549i 0.392276 + 0.323399i
\(76\) 218.319i 2.87262i
\(77\) 0 0
\(78\) 4.73519i 0.0607076i
\(79\) 30.3428i 0.384086i 0.981387 + 0.192043i \(0.0615113\pi\)
−0.981387 + 0.192043i \(0.938489\pi\)
\(80\) 107.558 50.7244i 1.34448 0.634056i
\(81\) 23.6037 0.291403
\(82\) 137.471i 1.67648i
\(83\) −136.109 −1.63987 −0.819936 0.572456i \(-0.805991\pi\)
−0.819936 + 0.572456i \(0.805991\pi\)
\(84\) 14.3287i 0.170580i
\(85\) −105.620 + 49.8106i −1.24259 + 0.586007i
\(86\) 53.5134 0.622249
\(87\) −25.6994 −0.295395
\(88\) 0 0
\(89\) −8.46901 −0.0951574 −0.0475787 0.998867i \(-0.515150\pi\)
−0.0475787 + 0.998867i \(0.515150\pi\)
\(90\) 107.204 50.5576i 1.19116 0.561751i
\(91\) −0.952942 −0.0104719
\(92\) 287.428i 3.12422i
\(93\) 9.76612i 0.105012i
\(94\) 210.620i 2.24064i
\(95\) −54.0351 114.578i −0.568791 1.20608i
\(96\) 28.7998i 0.299998i
\(97\) 66.6404i 0.687015i 0.939150 + 0.343507i \(0.111615\pi\)
−0.939150 + 0.343507i \(0.888385\pi\)
\(98\) −169.827 −1.73293
\(99\) 0 0
\(100\) 137.034 166.219i 1.37034 1.66219i
\(101\) 79.9985i 0.792064i −0.918237 0.396032i \(-0.870387\pi\)
0.918237 0.396032i \(-0.129613\pi\)
\(102\) 126.528i 1.24047i
\(103\) 111.512i 1.08264i −0.840815 0.541322i \(-0.817924\pi\)
0.840815 0.541322i \(-0.182076\pi\)
\(104\) 14.3340 0.137827
\(105\) −3.54642 7.51997i −0.0337755 0.0716188i
\(106\) 84.0545i 0.792967i
\(107\) −21.0075 −0.196332 −0.0981659 0.995170i \(-0.531298\pi\)
−0.0981659 + 0.995170i \(0.531298\pi\)
\(108\) 205.992i 1.90734i
\(109\) 118.493i 1.08710i −0.839378 0.543548i \(-0.817081\pi\)
0.839378 0.543548i \(-0.182919\pi\)
\(110\) 0 0
\(111\) 100.023 0.901112
\(112\) −25.9305 −0.231522
\(113\) 106.589i 0.943264i 0.881795 + 0.471632i \(0.156335\pi\)
−0.881795 + 0.471632i \(0.843665\pi\)
\(114\) 137.259 1.20403
\(115\) 71.1399 + 150.848i 0.618608 + 1.31172i
\(116\) 145.195i 1.25168i
\(117\) 5.83323 0.0498567
\(118\) 135.104 1.14495
\(119\) 25.4633 0.213978
\(120\) 53.3447 + 113.114i 0.444539 + 0.942617i
\(121\) 0 0
\(122\) 121.082i 0.992479i
\(123\) −59.0282 −0.479904
\(124\) −55.1761 −0.444968
\(125\) 30.7780 121.152i 0.246224 0.969213i
\(126\) −25.8452 −0.205121
\(127\) 128.264 1.00995 0.504975 0.863134i \(-0.331502\pi\)
0.504975 + 0.863134i \(0.331502\pi\)
\(128\) −175.211 −1.36884
\(129\) 22.9779i 0.178123i
\(130\) 14.0403 6.62140i 0.108002 0.0509339i
\(131\) 15.3029i 0.116816i 0.998293 + 0.0584079i \(0.0186024\pi\)
−0.998293 + 0.0584079i \(0.981398\pi\)
\(132\) 0 0
\(133\) 27.6229i 0.207691i
\(134\) 155.236i 1.15847i
\(135\) 50.9841 + 108.109i 0.377660 + 0.800804i
\(136\) −383.015 −2.81628
\(137\) 27.4757i 0.200553i 0.994960 + 0.100276i \(0.0319727\pi\)
−0.994960 + 0.100276i \(0.968027\pi\)
\(138\) −180.708 −1.30948
\(139\) 56.2422i 0.404621i −0.979321 0.202310i \(-0.935155\pi\)
0.979321 0.202310i \(-0.0648449\pi\)
\(140\) −42.4859 + 20.0364i −0.303471 + 0.143117i
\(141\) −90.4373 −0.641399
\(142\) 128.704 0.906363
\(143\) 0 0
\(144\) 158.728 1.10228
\(145\) 35.9364 + 76.2009i 0.247837 + 0.525524i
\(146\) −298.560 −2.04493
\(147\) 72.9214i 0.496064i
\(148\) 565.106i 3.81829i
\(149\) 237.208i 1.59200i −0.605298 0.795999i \(-0.706946\pi\)
0.605298 0.795999i \(-0.293054\pi\)
\(150\) 104.503 + 86.1543i 0.696688 + 0.574362i
\(151\) 47.0334i 0.311479i 0.987798 + 0.155740i \(0.0497761\pi\)
−0.987798 + 0.155740i \(0.950224\pi\)
\(152\) 415.499i 2.73354i
\(153\) −155.868 −1.01875
\(154\) 0 0
\(155\) −28.9574 + 13.6564i −0.186822 + 0.0881055i
\(156\) 11.4872i 0.0736357i
\(157\) 145.968i 0.929731i −0.885381 0.464865i \(-0.846103\pi\)
0.885381 0.464865i \(-0.153897\pi\)
\(158\) 107.779i 0.682142i
\(159\) −36.0918 −0.226992
\(160\) 85.3941 40.2719i 0.533713 0.251700i
\(161\) 36.3670i 0.225882i
\(162\) 83.8410 0.517537
\(163\) 80.5446i 0.494139i 0.968998 + 0.247069i \(0.0794676\pi\)
−0.968998 + 0.247069i \(0.920532\pi\)
\(164\) 333.494i 2.03350i
\(165\) 0 0
\(166\) −483.465 −2.91244
\(167\) 112.120 0.671380 0.335690 0.941972i \(-0.391031\pi\)
0.335690 + 0.941972i \(0.391031\pi\)
\(168\) 27.2700i 0.162321i
\(169\) −168.236 −0.995480
\(170\) −375.166 + 176.929i −2.20686 + 1.04076i
\(171\) 169.088i 0.988818i
\(172\) 129.819 0.754762
\(173\) −189.060 −1.09283 −0.546416 0.837514i \(-0.684008\pi\)
−0.546416 + 0.837514i \(0.684008\pi\)
\(174\) −91.2849 −0.524626
\(175\) −17.3383 + 21.0309i −0.0990759 + 0.120177i
\(176\) 0 0
\(177\) 58.0116i 0.327749i
\(178\) −30.0822 −0.169001
\(179\) 228.881 1.27867 0.639333 0.768930i \(-0.279211\pi\)
0.639333 + 0.768930i \(0.279211\pi\)
\(180\) 260.068 122.648i 1.44482 0.681380i
\(181\) −12.4445 −0.0687543 −0.0343772 0.999409i \(-0.510945\pi\)
−0.0343772 + 0.999409i \(0.510945\pi\)
\(182\) −3.38488 −0.0185982
\(183\) 51.9910 0.284104
\(184\) 547.025i 2.97296i
\(185\) −139.867 296.578i −0.756036 1.60313i
\(186\) 34.6896i 0.186503i
\(187\) 0 0
\(188\) 510.947i 2.71780i
\(189\) 26.0632i 0.137901i
\(190\) −191.934 406.985i −1.01018 2.14203i
\(191\) −0.933635 −0.00488814 −0.00244407 0.999997i \(-0.500778\pi\)
−0.00244407 + 0.999997i \(0.500778\pi\)
\(192\) 42.8012i 0.222923i
\(193\) −41.6135 −0.215614 −0.107807 0.994172i \(-0.534383\pi\)
−0.107807 + 0.994172i \(0.534383\pi\)
\(194\) 236.709i 1.22015i
\(195\) 2.84313 + 6.02869i 0.0145802 + 0.0309163i
\(196\) −411.987 −2.10197
\(197\) 85.8608 0.435842 0.217921 0.975966i \(-0.430073\pi\)
0.217921 + 0.975966i \(0.430073\pi\)
\(198\) 0 0
\(199\) 78.5577 0.394763 0.197381 0.980327i \(-0.436756\pi\)
0.197381 + 0.980327i \(0.436756\pi\)
\(200\) 260.799 316.343i 1.30400 1.58172i
\(201\) 66.6559 0.331621
\(202\) 284.157i 1.40672i
\(203\) 18.3708i 0.0904966i
\(204\) 306.946i 1.50464i
\(205\) 82.5414 + 175.024i 0.402641 + 0.853775i
\(206\) 396.096i 1.92279i
\(207\) 222.613i 1.07542i
\(208\) 20.7882 0.0999433
\(209\) 0 0
\(210\) −12.5970 26.7112i −0.0599858 0.127196i
\(211\) 134.083i 0.635464i 0.948181 + 0.317732i \(0.102921\pi\)
−0.948181 + 0.317732i \(0.897079\pi\)
\(212\) 203.909i 0.961835i
\(213\) 55.2634i 0.259453i
\(214\) −74.6193 −0.348688
\(215\) 68.1315 32.1309i 0.316891 0.149446i
\(216\) 392.038i 1.81499i
\(217\) 6.98117 0.0321713
\(218\) 420.893i 1.93070i
\(219\) 128.197i 0.585376i
\(220\) 0 0
\(221\) −20.4137 −0.0923697
\(222\) 355.286 1.60039
\(223\) 200.724i 0.900109i 0.893001 + 0.450055i \(0.148596\pi\)
−0.893001 + 0.450055i \(0.851404\pi\)
\(224\) −20.5871 −0.0919068
\(225\) 106.133 128.736i 0.471701 0.572162i
\(226\) 378.607i 1.67525i
\(227\) 7.44700 0.0328062 0.0164031 0.999865i \(-0.494778\pi\)
0.0164031 + 0.999865i \(0.494778\pi\)
\(228\) 332.978 1.46043
\(229\) 185.776 0.811249 0.405625 0.914040i \(-0.367054\pi\)
0.405625 + 0.914040i \(0.367054\pi\)
\(230\) 252.691 + 535.816i 1.09866 + 2.32964i
\(231\) 0 0
\(232\) 276.330i 1.19108i
\(233\) −94.8094 −0.406907 −0.203454 0.979085i \(-0.565217\pi\)
−0.203454 + 0.979085i \(0.565217\pi\)
\(234\) 20.7198 0.0885463
\(235\) 126.462 + 268.155i 0.538136 + 1.14108i
\(236\) 327.750 1.38877
\(237\) −46.2785 −0.195268
\(238\) 90.4466 0.380028
\(239\) 395.405i 1.65441i 0.561899 + 0.827206i \(0.310071\pi\)
−0.561899 + 0.827206i \(0.689929\pi\)
\(240\) 77.3644 + 164.046i 0.322352 + 0.683527i
\(241\) 26.3347i 0.109273i 0.998506 + 0.0546364i \(0.0174000\pi\)
−0.998506 + 0.0546364i \(0.982600\pi\)
\(242\) 0 0
\(243\) 251.150i 1.03354i
\(244\) 293.736i 1.20383i
\(245\) −216.219 + 101.969i −0.882525 + 0.416199i
\(246\) −209.670 −0.852317
\(247\) 22.1450i 0.0896559i
\(248\) −105.009 −0.423425
\(249\) 207.593i 0.833705i
\(250\) 109.324 430.334i 0.437298 1.72134i
\(251\) 374.579 1.49235 0.746173 0.665752i \(-0.231889\pi\)
0.746173 + 0.665752i \(0.231889\pi\)
\(252\) −62.6983 −0.248803
\(253\) 0 0
\(254\) 455.597 1.79369
\(255\) −75.9706 161.091i −0.297924 0.631729i
\(256\) −510.105 −1.99260
\(257\) 255.512i 0.994211i −0.867690 0.497105i \(-0.834396\pi\)
0.867690 0.497105i \(-0.165604\pi\)
\(258\) 81.6182i 0.316349i
\(259\) 71.5003i 0.276063i
\(260\) 34.0605 16.0630i 0.131002 0.0617806i
\(261\) 112.453i 0.430854i
\(262\) 54.3562i 0.207467i
\(263\) 288.916 1.09854 0.549270 0.835645i \(-0.314906\pi\)
0.549270 + 0.835645i \(0.314906\pi\)
\(264\) 0 0
\(265\) 50.4685 + 107.015i 0.190447 + 0.403831i
\(266\) 98.1175i 0.368863i
\(267\) 12.9168i 0.0483777i
\(268\) 376.589i 1.40518i
\(269\) 216.614 0.805258 0.402629 0.915363i \(-0.368097\pi\)
0.402629 + 0.915363i \(0.368097\pi\)
\(270\) 181.097 + 384.005i 0.670730 + 1.42224i
\(271\) 52.7139i 0.194516i 0.995259 + 0.0972581i \(0.0310072\pi\)
−0.995259 + 0.0972581i \(0.968993\pi\)
\(272\) −555.477 −2.04219
\(273\) 1.45342i 0.00532388i
\(274\) 97.5947i 0.356185i
\(275\) 0 0
\(276\) −438.383 −1.58834
\(277\) 164.025 0.592149 0.296074 0.955165i \(-0.404322\pi\)
0.296074 + 0.955165i \(0.404322\pi\)
\(278\) 199.774i 0.718612i
\(279\) −42.7337 −0.153168
\(280\) −80.8579 + 38.1326i −0.288778 + 0.136188i
\(281\) 511.263i 1.81944i 0.415219 + 0.909721i \(0.363705\pi\)
−0.415219 + 0.909721i \(0.636295\pi\)
\(282\) −321.236 −1.13913
\(283\) 178.463 0.630610 0.315305 0.948990i \(-0.397893\pi\)
0.315305 + 0.948990i \(0.397893\pi\)
\(284\) 312.224 1.09938
\(285\) 174.753 82.4138i 0.613170 0.289171i
\(286\) 0 0
\(287\) 42.1954i 0.147022i
\(288\) 126.020 0.437569
\(289\) 256.469 0.887437
\(290\) 127.647 + 270.668i 0.440163 + 0.933338i
\(291\) −101.639 −0.349276
\(292\) −724.282 −2.48042
\(293\) −56.9530 −0.194379 −0.0971893 0.995266i \(-0.530985\pi\)
−0.0971893 + 0.995266i \(0.530985\pi\)
\(294\) 259.019i 0.881017i
\(295\) 172.010 81.1198i 0.583083 0.274983i
\(296\) 1075.49i 3.63342i
\(297\) 0 0
\(298\) 842.569i 2.82741i
\(299\) 29.1550i 0.0975084i
\(300\) 253.516 + 209.003i 0.845053 + 0.696677i
\(301\) −16.4254 −0.0545694
\(302\) 167.064i 0.553192i
\(303\) 122.013 0.402683
\(304\) 602.588i 1.98220i
\(305\) −72.7011 154.158i −0.238364 0.505436i
\(306\) −553.649 −1.80931
\(307\) −427.615 −1.39288 −0.696442 0.717613i \(-0.745234\pi\)
−0.696442 + 0.717613i \(0.745234\pi\)
\(308\) 0 0
\(309\) 170.078 0.550413
\(310\) −102.858 + 48.5078i −0.331799 + 0.156477i
\(311\) −99.7274 −0.320667 −0.160333 0.987063i \(-0.551257\pi\)
−0.160333 + 0.987063i \(0.551257\pi\)
\(312\) 21.8620i 0.0700707i
\(313\) 52.7279i 0.168460i 0.996446 + 0.0842298i \(0.0268430\pi\)
−0.996446 + 0.0842298i \(0.973157\pi\)
\(314\) 518.482i 1.65122i
\(315\) −32.9052 + 15.5181i −0.104461 + 0.0492639i
\(316\) 261.462i 0.827410i
\(317\) 325.041i 1.02536i 0.858578 + 0.512682i \(0.171348\pi\)
−0.858578 + 0.512682i \(0.828652\pi\)
\(318\) −128.199 −0.403142
\(319\) 0 0
\(320\) −126.909 + 59.8506i −0.396592 + 0.187033i
\(321\) 32.0404i 0.0998145i
\(322\) 129.177i 0.401170i
\(323\) 591.731i 1.83199i
\(324\) 203.391 0.627751
\(325\) 13.8999 16.8603i 0.0427690 0.0518778i
\(326\) 286.097i 0.877599i
\(327\) 180.725 0.552676
\(328\) 634.695i 1.93505i
\(329\) 64.6477i 0.196498i
\(330\) 0 0
\(331\) 343.048 1.03640 0.518199 0.855260i \(-0.326603\pi\)
0.518199 + 0.855260i \(0.326603\pi\)
\(332\) −1172.84 −3.53266
\(333\) 437.674i 1.31434i
\(334\) 398.256 1.19238
\(335\) −93.2076 197.641i −0.278232 0.589972i
\(336\) 39.5489i 0.117705i
\(337\) 625.633 1.85648 0.928239 0.371985i \(-0.121323\pi\)
0.928239 + 0.371985i \(0.121323\pi\)
\(338\) −597.580 −1.76799
\(339\) −162.568 −0.479553
\(340\) −910.122 + 429.214i −2.67683 + 1.26240i
\(341\) 0 0
\(342\) 600.605i 1.75616i
\(343\) 105.550 0.307725
\(344\) 247.068 0.718220
\(345\) −230.072 + 108.502i −0.666874 + 0.314498i
\(346\) −671.547 −1.94089
\(347\) 477.091 1.37490 0.687452 0.726230i \(-0.258729\pi\)
0.687452 + 0.726230i \(0.258729\pi\)
\(348\) −221.450 −0.636349
\(349\) 183.885i 0.526891i 0.964674 + 0.263445i \(0.0848589\pi\)
−0.964674 + 0.263445i \(0.915141\pi\)
\(350\) −61.5862 + 74.7026i −0.175960 + 0.213436i
\(351\) 20.8946i 0.0595289i
\(352\) 0 0
\(353\) 289.312i 0.819580i −0.912180 0.409790i \(-0.865602\pi\)
0.912180 0.409790i \(-0.134398\pi\)
\(354\) 206.059i 0.582087i
\(355\) 163.861 77.2770i 0.461581 0.217682i
\(356\) −72.9769 −0.204991
\(357\) 38.8364i 0.108786i
\(358\) 812.993 2.27093
\(359\) 335.331i 0.934069i −0.884239 0.467034i \(-0.845322\pi\)
0.884239 0.467034i \(-0.154678\pi\)
\(360\) 494.954 233.421i 1.37487 0.648391i
\(361\) −280.917 −0.778164
\(362\) −44.2034 −0.122109
\(363\) 0 0
\(364\) −8.21144 −0.0225589
\(365\) −380.117 + 179.263i −1.04142 + 0.491132i
\(366\) 184.674 0.504573
\(367\) 237.840i 0.648066i 0.946046 + 0.324033i \(0.105039\pi\)
−0.946046 + 0.324033i \(0.894961\pi\)
\(368\) 793.337i 2.15581i
\(369\) 258.290i 0.699974i
\(370\) −496.811 1053.46i −1.34273 2.84718i
\(371\) 25.7997i 0.0695409i
\(372\) 84.1540i 0.226220i
\(373\) 240.258 0.644124 0.322062 0.946719i \(-0.395624\pi\)
0.322062 + 0.946719i \(0.395624\pi\)
\(374\) 0 0
\(375\) 184.779 + 46.9423i 0.492745 + 0.125180i
\(376\) 972.419i 2.58622i
\(377\) 14.7277i 0.0390655i
\(378\) 92.5774i 0.244914i
\(379\) −262.256 −0.691968 −0.345984 0.938240i \(-0.612455\pi\)
−0.345984 + 0.938240i \(0.612455\pi\)
\(380\) −465.617 987.311i −1.22531 2.59819i
\(381\) 195.627i 0.513455i
\(382\) −3.31630 −0.00868141
\(383\) 342.668i 0.894693i −0.894361 0.447347i \(-0.852369\pi\)
0.894361 0.447347i \(-0.147631\pi\)
\(384\) 267.231i 0.695913i
\(385\) 0 0
\(386\) −147.813 −0.382934
\(387\) 100.545 0.259805
\(388\) 574.236i 1.47999i
\(389\) −632.428 −1.62578 −0.812889 0.582418i \(-0.802107\pi\)
−0.812889 + 0.582418i \(0.802107\pi\)
\(390\) 10.0989 + 21.4141i 0.0258946 + 0.0549079i
\(391\) 779.044i 1.99244i
\(392\) −784.081 −2.00021
\(393\) −23.3398 −0.0593887
\(394\) 304.980 0.774062
\(395\) 64.7131 + 137.220i 0.163831 + 0.347392i
\(396\) 0 0
\(397\) 335.656i 0.845482i −0.906251 0.422741i \(-0.861068\pi\)
0.906251 0.422741i \(-0.138932\pi\)
\(398\) 279.040 0.701105
\(399\) −42.1302 −0.105589
\(400\) 378.231 458.785i 0.945577 1.14696i
\(401\) 700.382 1.74659 0.873294 0.487193i \(-0.161979\pi\)
0.873294 + 0.487193i \(0.161979\pi\)
\(402\) 236.764 0.588965
\(403\) −5.59673 −0.0138877
\(404\) 689.341i 1.70629i
\(405\) 106.744 50.3404i 0.263564 0.124297i
\(406\) 65.2537i 0.160723i
\(407\) 0 0
\(408\) 584.170i 1.43179i
\(409\) 18.3049i 0.0447552i −0.999750 0.0223776i \(-0.992876\pi\)
0.999750 0.0223776i \(-0.00712361\pi\)
\(410\) 293.190 + 621.690i 0.715097 + 1.51632i
\(411\) −41.9057 −0.101960
\(412\) 960.895i 2.33227i
\(413\) −41.4687 −0.100409
\(414\) 790.727i 1.90997i
\(415\) −615.531 + 290.285i −1.48321 + 0.699482i
\(416\) 16.5045 0.0396743
\(417\) 85.7801 0.205708
\(418\) 0 0
\(419\) −420.944 −1.00464 −0.502320 0.864682i \(-0.667520\pi\)
−0.502320 + 0.864682i \(0.667520\pi\)
\(420\) −30.5593 64.7991i −0.0727602 0.154284i
\(421\) 466.728 1.10862 0.554309 0.832311i \(-0.312983\pi\)
0.554309 + 0.832311i \(0.312983\pi\)
\(422\) 476.267i 1.12859i
\(423\) 395.727i 0.935526i
\(424\) 388.074i 0.915268i
\(425\) −371.417 + 450.520i −0.873921 + 1.06005i
\(426\) 196.298i 0.460792i
\(427\) 37.1650i 0.0870375i
\(428\) −181.020 −0.422944
\(429\) 0 0
\(430\) 242.005 114.130i 0.562803 0.265418i
\(431\) 238.824i 0.554117i −0.960853 0.277059i \(-0.910640\pi\)
0.960853 0.277059i \(-0.0893596\pi\)
\(432\) 568.563i 1.31612i
\(433\) 95.9207i 0.221526i 0.993847 + 0.110763i \(0.0353294\pi\)
−0.993847 + 0.110763i \(0.964671\pi\)
\(434\) 24.7973 0.0571367
\(435\) −116.221 + 54.8099i −0.267175 + 0.126000i
\(436\) 1021.05i 2.34186i
\(437\) 845.116 1.93390
\(438\) 455.361i 1.03964i
\(439\) 749.426i 1.70712i 0.520994 + 0.853560i \(0.325561\pi\)
−0.520994 + 0.853560i \(0.674439\pi\)
\(440\) 0 0
\(441\) −319.083 −0.723544
\(442\) −72.5101 −0.164050
\(443\) 46.3408i 0.104607i −0.998631 0.0523034i \(-0.983344\pi\)
0.998631 0.0523034i \(-0.0166563\pi\)
\(444\) 861.895 1.94120
\(445\) −38.2996 + 18.0621i −0.0860666 + 0.0405891i
\(446\) 712.980i 1.59861i
\(447\) 361.787 0.809367
\(448\) 30.5958 0.0682943
\(449\) 48.5549 0.108140 0.0540700 0.998537i \(-0.482781\pi\)
0.0540700 + 0.998537i \(0.482781\pi\)
\(450\) 376.987 457.276i 0.837748 1.01617i
\(451\) 0 0
\(452\) 918.469i 2.03201i
\(453\) −71.7349 −0.158355
\(454\) 26.4520 0.0582643
\(455\) −4.30952 + 2.03237i −0.00947147 + 0.00446675i
\(456\) 633.715 1.38973
\(457\) 415.513 0.909218 0.454609 0.890691i \(-0.349779\pi\)
0.454609 + 0.890691i \(0.349779\pi\)
\(458\) 659.883 1.44079
\(459\) 558.320i 1.21638i
\(460\) 613.008 + 1299.84i 1.33263 + 2.82575i
\(461\) 704.025i 1.52717i −0.645707 0.763585i \(-0.723437\pi\)
0.645707 0.763585i \(-0.276563\pi\)
\(462\) 0 0
\(463\) 506.506i 1.09397i 0.837144 + 0.546983i \(0.184224\pi\)
−0.837144 + 0.546983i \(0.815776\pi\)
\(464\) 400.755i 0.863696i
\(465\) −20.8285 44.1656i −0.0447926 0.0949798i
\(466\) −336.766 −0.722674
\(467\) 359.350i 0.769487i −0.923024 0.384743i \(-0.874290\pi\)
0.923024 0.384743i \(-0.125710\pi\)
\(468\) 50.2646 0.107403
\(469\) 47.6480i 0.101595i
\(470\) 449.197 + 952.494i 0.955738 + 2.02658i
\(471\) 222.629 0.472672
\(472\) 623.765 1.32154
\(473\) 0 0
\(474\) −164.383 −0.346799
\(475\) −488.729 402.917i −1.02890 0.848246i
\(476\) 219.416 0.460957
\(477\) 157.927i 0.331084i
\(478\) 1404.49i 2.93826i
\(479\) 538.500i 1.12422i 0.827064 + 0.562108i \(0.190010\pi\)
−0.827064 + 0.562108i \(0.809990\pi\)
\(480\) 61.4224 + 130.242i 0.127963 + 0.271338i
\(481\) 57.3210i 0.119171i
\(482\) 93.5418i 0.194070i
\(483\) 55.4665 0.114838
\(484\) 0 0
\(485\) 142.126 + 301.370i 0.293044 + 0.621381i
\(486\) 892.092i 1.83558i
\(487\) 661.194i 1.35769i −0.734282 0.678844i \(-0.762481\pi\)
0.734282 0.678844i \(-0.237519\pi\)
\(488\) 559.029i 1.14555i
\(489\) −122.846 −0.251219
\(490\) −768.015 + 362.197i −1.56738 + 0.739177i
\(491\) 67.7982i 0.138082i 0.997614 + 0.0690410i \(0.0219939\pi\)
−0.997614 + 0.0690410i \(0.978006\pi\)
\(492\) −508.642 −1.03382
\(493\) 393.535i 0.798245i
\(494\) 78.6598i 0.159230i
\(495\) 0 0
\(496\) −152.293 −0.307042
\(497\) −39.5043 −0.0794854
\(498\) 737.376i 1.48067i
\(499\) 386.074 0.773696 0.386848 0.922144i \(-0.373564\pi\)
0.386848 + 0.922144i \(0.373564\pi\)
\(500\) 265.212 1043.96i 0.530424 2.08791i
\(501\) 171.005i 0.341328i
\(502\) 1330.52 2.65043
\(503\) −259.269 −0.515446 −0.257723 0.966219i \(-0.582972\pi\)
−0.257723 + 0.966219i \(0.582972\pi\)
\(504\) −119.325 −0.236757
\(505\) −170.615 361.779i −0.337852 0.716395i
\(506\) 0 0
\(507\) 256.592i 0.506099i
\(508\) 1105.24 2.17567
\(509\) −807.667 −1.58677 −0.793386 0.608719i \(-0.791684\pi\)
−0.793386 + 0.608719i \(0.791684\pi\)
\(510\) −269.850 572.200i −0.529118 1.12196i
\(511\) 91.6400 0.179335
\(512\) −1111.06 −2.17004
\(513\) 605.672 1.18065
\(514\) 907.587i 1.76573i
\(515\) −237.826 504.296i −0.461799 0.979215i
\(516\) 197.999i 0.383719i
\(517\) 0 0
\(518\) 253.971i 0.490292i
\(519\) 288.353i 0.555593i
\(520\) 64.8229 30.5706i 0.124660 0.0587895i
\(521\) 312.048 0.598940 0.299470 0.954106i \(-0.403190\pi\)
0.299470 + 0.954106i \(0.403190\pi\)
\(522\) 399.437i 0.765204i
\(523\) 73.6569 0.140835 0.0704177 0.997518i \(-0.477567\pi\)
0.0704177 + 0.997518i \(0.477567\pi\)
\(524\) 131.864i 0.251648i
\(525\) −32.0762 26.4442i −0.0610975 0.0503699i
\(526\) 1026.24 1.95103
\(527\) 149.549 0.283774
\(528\) 0 0
\(529\) −583.638 −1.10328
\(530\) 179.266 + 380.122i 0.338237 + 0.717211i
\(531\) 253.842 0.478045
\(532\) 238.025i 0.447415i
\(533\) 33.8276i 0.0634665i
\(534\) 45.8811i 0.0859196i
\(535\) −95.0028 + 44.8034i −0.177575 + 0.0837447i
\(536\) 716.712i 1.33715i
\(537\) 349.087i 0.650069i
\(538\) 769.421 1.43015
\(539\) 0 0
\(540\) 439.327 + 931.564i 0.813568 + 1.72512i
\(541\) 41.4191i 0.0765603i 0.999267 + 0.0382802i \(0.0121879\pi\)
−0.999267 + 0.0382802i \(0.987812\pi\)
\(542\) 187.241i 0.345464i
\(543\) 18.9803i 0.0349545i
\(544\) −441.012 −0.810685
\(545\) −252.715 535.866i −0.463697 0.983241i
\(546\) 5.16259i 0.00945529i
\(547\) 644.686 1.17859 0.589293 0.807920i \(-0.299407\pi\)
0.589293 + 0.807920i \(0.299407\pi\)
\(548\) 236.756i 0.432037i
\(549\) 227.498i 0.414386i
\(550\) 0 0
\(551\) 426.911 0.774794
\(552\) −834.317 −1.51144
\(553\) 33.0815i 0.0598219i
\(554\) 582.623 1.05167
\(555\) 452.339 213.323i 0.815025 0.384366i
\(556\) 484.636i 0.871647i
\(557\) −448.656 −0.805487 −0.402743 0.915313i \(-0.631943\pi\)
−0.402743 + 0.915313i \(0.631943\pi\)
\(558\) −151.792 −0.272028
\(559\) 13.1681 0.0235565
\(560\) −117.266 + 55.3028i −0.209404 + 0.0987551i
\(561\) 0 0
\(562\) 1816.02i 3.23136i
\(563\) 534.562 0.949489 0.474744 0.880124i \(-0.342540\pi\)
0.474744 + 0.880124i \(0.342540\pi\)
\(564\) −779.292 −1.38172
\(565\) 227.326 + 482.030i 0.402346 + 0.853150i
\(566\) 633.905 1.11997
\(567\) −25.7341 −0.0453865
\(568\) 594.216 1.04615
\(569\) 441.511i 0.775941i 0.921672 + 0.387971i \(0.126824\pi\)
−0.921672 + 0.387971i \(0.873176\pi\)
\(570\) 620.730 292.737i 1.08900 0.513573i
\(571\) 935.409i 1.63819i 0.573655 + 0.819097i \(0.305525\pi\)
−0.573655 + 0.819097i \(0.694475\pi\)
\(572\) 0 0
\(573\) 1.42397i 0.00248511i
\(574\) 149.879i 0.261114i
\(575\) 643.436 + 530.461i 1.11902 + 0.922540i
\(576\) −187.286 −0.325149
\(577\) 565.796i 0.980583i −0.871559 0.490291i \(-0.836890\pi\)
0.871559 0.490291i \(-0.163110\pi\)
\(578\) 910.987 1.57610
\(579\) 63.4686i 0.109618i
\(580\) 309.662 + 656.618i 0.533899 + 1.13210i
\(581\) 148.395 0.255412
\(582\) −361.026 −0.620320
\(583\) 0 0
\(584\) −1378.43 −2.36033
\(585\) 26.3798 12.4407i 0.0450937 0.0212662i
\(586\) −202.299 −0.345220
\(587\) 979.469i 1.66860i −0.551309 0.834301i \(-0.685872\pi\)
0.551309 0.834301i \(-0.314128\pi\)
\(588\) 628.359i 1.06864i
\(589\) 162.232i 0.275437i
\(590\) 610.983 288.140i 1.03557 0.488373i
\(591\) 130.954i 0.221580i
\(592\) 1559.76i 2.63473i
\(593\) 1106.21 1.86544 0.932720 0.360600i \(-0.117428\pi\)
0.932720 + 0.360600i \(0.117428\pi\)
\(594\) 0 0
\(595\) 115.154 54.3065i 0.193535 0.0912714i
\(596\) 2044.00i 3.42953i
\(597\) 119.816i 0.200696i
\(598\) 103.560i 0.173177i
\(599\) −570.796 −0.952915 −0.476458 0.879197i \(-0.658079\pi\)
−0.476458 + 0.879197i \(0.658079\pi\)
\(600\) 482.484 + 397.769i 0.804140 + 0.662948i
\(601\) 167.567i 0.278814i −0.990235 0.139407i \(-0.955480\pi\)
0.990235 0.139407i \(-0.0445196\pi\)
\(602\) −58.3435 −0.0969162
\(603\) 291.667i 0.483693i
\(604\) 405.283i 0.670999i
\(605\) 0 0
\(606\) 433.394 0.715171
\(607\) 843.183 1.38910 0.694549 0.719445i \(-0.255604\pi\)
0.694549 + 0.719445i \(0.255604\pi\)
\(608\) 478.415i 0.786868i
\(609\) 28.0190 0.0460082
\(610\) −258.236 547.574i −0.423338 0.897663i
\(611\) 51.8274i 0.0848240i
\(612\) −1343.11 −2.19462
\(613\) −334.544 −0.545749 −0.272875 0.962050i \(-0.587974\pi\)
−0.272875 + 0.962050i \(0.587974\pi\)
\(614\) −1518.90 −2.47378
\(615\) −266.945 + 125.891i −0.434056 + 0.204701i
\(616\) 0 0
\(617\) 916.072i 1.48472i −0.670001 0.742360i \(-0.733706\pi\)
0.670001 0.742360i \(-0.266294\pi\)
\(618\) 604.121 0.977543
\(619\) −696.083 −1.12453 −0.562264 0.826958i \(-0.690070\pi\)
−0.562264 + 0.826958i \(0.690070\pi\)
\(620\) −249.524 + 117.676i −0.402458 + 0.189800i
\(621\) −797.398 −1.28405
\(622\) −354.235 −0.569509
\(623\) 9.23342 0.0148209
\(624\) 31.7060i 0.0508109i
\(625\) −119.196 613.529i −0.190713 0.981646i
\(626\) 187.291i 0.299187i
\(627\) 0 0
\(628\) 1257.79i 2.00286i
\(629\) 1531.66i 2.43507i
\(630\) −116.880 + 55.1209i −0.185524 + 0.0874935i
\(631\) −439.420 −0.696386 −0.348193 0.937423i \(-0.613205\pi\)
−0.348193 + 0.937423i \(0.613205\pi\)
\(632\) 497.606i 0.787351i
\(633\) −204.502 −0.323068
\(634\) 1154.55i 1.82106i
\(635\) 580.050 273.552i 0.913465 0.430791i
\(636\) −311.000 −0.488994
\(637\) −41.7895 −0.0656036
\(638\) 0 0
\(639\) 241.817 0.378430
\(640\) −792.363 + 373.679i −1.23807 + 0.583873i
\(641\) −755.940 −1.17931 −0.589657 0.807654i \(-0.700737\pi\)
−0.589657 + 0.807654i \(0.700737\pi\)
\(642\) 113.809i 0.177272i
\(643\) 117.348i 0.182500i −0.995828 0.0912502i \(-0.970914\pi\)
0.995828 0.0912502i \(-0.0290863\pi\)
\(644\) 313.372i 0.486602i
\(645\) 49.0057 + 103.913i 0.0759778 + 0.161106i
\(646\) 2101.85i 3.25364i
\(647\) 1048.81i 1.62103i 0.585719 + 0.810514i \(0.300812\pi\)
−0.585719 + 0.810514i \(0.699188\pi\)
\(648\) 387.088 0.597358
\(649\) 0 0
\(650\) 49.3730 59.8883i 0.0759585 0.0921358i
\(651\) 10.6476i 0.0163558i
\(652\) 694.048i 1.06449i
\(653\) 394.291i 0.603814i −0.953337 0.301907i \(-0.902377\pi\)
0.953337 0.301907i \(-0.0976232\pi\)
\(654\) 641.941 0.981562
\(655\) 32.6369 + 69.2045i 0.0498274 + 0.105656i
\(656\) 920.483i 1.40318i
\(657\) −560.955 −0.853812
\(658\) 229.631i 0.348983i
\(659\) 894.004i 1.35661i 0.734782 + 0.678303i \(0.237285\pi\)
−0.734782 + 0.678303i \(0.762715\pi\)
\(660\) 0 0
\(661\) −1104.87 −1.67152 −0.835759 0.549097i \(-0.814972\pi\)
−0.835759 + 0.549097i \(0.814972\pi\)
\(662\) 1218.52 1.84066
\(663\) 31.1348i 0.0469604i
\(664\) −2232.12 −3.36163
\(665\) 58.9123 + 124.920i 0.0885900 + 0.187849i
\(666\) 1554.63i 2.33428i
\(667\) −562.050 −0.842654
\(668\) 966.134 1.44631
\(669\) −306.143 −0.457613
\(670\) −331.076 702.026i −0.494144 1.04780i
\(671\) 0 0
\(672\) 31.3993i 0.0467251i
\(673\) −1043.74 −1.55087 −0.775436 0.631426i \(-0.782470\pi\)
−0.775436 + 0.631426i \(0.782470\pi\)
\(674\) 2222.27 3.29713
\(675\) 461.134 + 380.167i 0.683161 + 0.563210i
\(676\) −1449.68 −2.14449
\(677\) 197.164 0.291231 0.145616 0.989341i \(-0.453484\pi\)
0.145616 + 0.989341i \(0.453484\pi\)
\(678\) −577.448 −0.851693
\(679\) 72.6554i 0.107004i
\(680\) −1732.12 + 816.868i −2.54723 + 1.20128i
\(681\) 11.3581i 0.0166786i
\(682\) 0 0
\(683\) 779.498i 1.14129i −0.821198 0.570643i \(-0.806694\pi\)
0.821198 0.570643i \(-0.193306\pi\)
\(684\) 1457.02i 2.13014i
\(685\) 58.5984 + 124.254i 0.0855451 + 0.181393i
\(686\) 374.915 0.546524
\(687\) 283.344i 0.412437i
\(688\) 358.316 0.520809
\(689\) 20.6833i 0.0300193i
\(690\) −817.222 + 385.402i −1.18438 + 0.558554i
\(691\) −742.935 −1.07516 −0.537580 0.843213i \(-0.680661\pi\)
−0.537580 + 0.843213i \(0.680661\pi\)
\(692\) −1629.12 −2.35422
\(693\) 0 0
\(694\) 1694.64 2.44185
\(695\) −119.950 254.346i −0.172590 0.365965i
\(696\) −421.456 −0.605541
\(697\) 903.900i 1.29684i
\(698\) 653.165i 0.935766i
\(699\) 144.602i 0.206870i
\(700\) −149.403 + 181.222i −0.213433 + 0.258889i
\(701\) 966.332i 1.37850i −0.724521 0.689252i \(-0.757939\pi\)
0.724521 0.689252i \(-0.242061\pi\)
\(702\) 74.2184i 0.105724i
\(703\) −1661.56 −2.36353
\(704\) 0 0
\(705\) −408.987 + 192.879i −0.580123 + 0.273587i
\(706\) 1027.64i 1.45559i
\(707\) 87.2191i 0.123365i
\(708\) 499.882i 0.706048i
\(709\) −355.431 −0.501313 −0.250657 0.968076i \(-0.580647\pi\)
−0.250657 + 0.968076i \(0.580647\pi\)
\(710\) 582.040 274.491i 0.819775 0.386606i
\(711\) 202.501i 0.284812i
\(712\) −138.887 −0.195067
\(713\) 213.587i 0.299561i
\(714\) 137.948i 0.193205i
\(715\) 0 0
\(716\) 1972.25 2.75454
\(717\) −603.067 −0.841098
\(718\) 1191.11i 1.65892i
\(719\) 249.411 0.346886 0.173443 0.984844i \(-0.444511\pi\)
0.173443 + 0.984844i \(0.444511\pi\)
\(720\) 717.820 338.525i 0.996972 0.470173i
\(721\) 121.578i 0.168623i
\(722\) −997.826 −1.38203
\(723\) −40.1655 −0.0555539
\(724\) −107.234 −0.148113
\(725\) 325.033 + 267.963i 0.448321 + 0.369604i
\(726\) 0 0
\(727\) 883.791i 1.21567i 0.794064 + 0.607834i \(0.207961\pi\)
−0.794064 + 0.607834i \(0.792039\pi\)
\(728\) −15.6278 −0.0214667
\(729\) −170.618 −0.234044
\(730\) −1350.19 + 636.749i −1.84957 + 0.872259i
\(731\) −351.861 −0.481342
\(732\) 448.003 0.612026
\(733\) −946.218 −1.29088 −0.645442 0.763809i \(-0.723327\pi\)
−0.645442 + 0.763809i \(0.723327\pi\)
\(734\) 844.816i 1.15098i
\(735\) −155.522 329.774i −0.211594 0.448673i
\(736\) 629.858i 0.855785i
\(737\) 0 0
\(738\) 917.455i 1.24316i
\(739\) 474.204i 0.641683i −0.947133 0.320841i \(-0.896034\pi\)
0.947133 0.320841i \(-0.103966\pi\)
\(740\) −1205.22 2555.60i −1.62868 3.45351i
\(741\) 33.7754 0.0455808
\(742\) 91.6412i 0.123506i
\(743\) −240.887 −0.324208 −0.162104 0.986774i \(-0.551828\pi\)
−0.162104 + 0.986774i \(0.551828\pi\)
\(744\) 160.159i 0.215268i
\(745\) −505.901 1072.73i −0.679062 1.43991i
\(746\) 853.404 1.14397
\(747\) −908.365 −1.21602
\(748\) 0 0
\(749\) 22.9036 0.0305790
\(750\) 656.342 + 166.741i 0.875123 + 0.222321i
\(751\) 386.499 0.514646 0.257323 0.966325i \(-0.417160\pi\)
0.257323 + 0.966325i \(0.417160\pi\)
\(752\) 1410.28i 1.87537i
\(753\) 571.304i 0.758704i
\(754\) 52.3132i 0.0693810i
\(755\) 100.310 + 212.700i 0.132860 + 0.281722i
\(756\) 224.585i 0.297070i
\(757\) 778.941i 1.02898i 0.857495 + 0.514492i \(0.172020\pi\)
−0.857495 + 0.514492i \(0.827980\pi\)
\(758\) −931.541 −1.22895
\(759\) 0 0
\(760\) −886.148 1879.02i −1.16598 2.47240i
\(761\) 301.633i 0.396364i 0.980165 + 0.198182i \(0.0635037\pi\)
−0.980165 + 0.198182i \(0.936496\pi\)
\(762\) 694.872i 0.911905i
\(763\) 129.189i 0.169317i
\(764\) −8.04506 −0.0105302
\(765\) −704.888 + 332.426i −0.921422 + 0.434543i
\(766\) 1217.17i 1.58899i
\(767\) 33.2451 0.0433443
\(768\) 778.007i 1.01303i
\(769\) 1335.43i 1.73658i −0.496054 0.868292i \(-0.665218\pi\)
0.496054 0.868292i \(-0.334782\pi\)
\(770\) 0 0
\(771\) 389.705 0.505453
\(772\) −358.581 −0.464483
\(773\) 429.840i 0.556067i 0.960571 + 0.278034i \(0.0896826\pi\)
−0.960571 + 0.278034i \(0.910317\pi\)
\(774\) 357.138 0.461418
\(775\) −101.830 + 123.517i −0.131393 + 0.159377i
\(776\) 1092.87i 1.40834i
\(777\) −109.052 −0.140349
\(778\) −2246.40 −2.88741
\(779\) 980.561 1.25874
\(780\) 24.4991 + 51.9488i 0.0314091 + 0.0666010i
\(781\) 0 0
\(782\) 2767.19i 3.53861i
\(783\) −402.806 −0.514440
\(784\) −1137.13 −1.45043
\(785\) −311.310 660.114i −0.396574 0.840909i
\(786\) −82.9036 −0.105475
\(787\) −1023.44 −1.30043 −0.650213 0.759752i \(-0.725320\pi\)
−0.650213 + 0.759752i \(0.725320\pi\)
\(788\) 739.857 0.938904
\(789\) 440.652i 0.558495i
\(790\) 229.863 + 487.410i 0.290966 + 0.616974i
\(791\) 116.210i 0.146915i
\(792\) 0 0
\(793\) 29.7948i 0.0375723i
\(794\) 1192.26i 1.50159i
\(795\) −163.219 + 76.9741i −0.205307 + 0.0968228i
\(796\) 676.927 0.850410
\(797\) 670.862i 0.841735i 0.907122 + 0.420867i \(0.138274\pi\)
−0.907122 + 0.420867i \(0.861726\pi\)
\(798\) −149.648 −0.187529
\(799\) 1384.87i 1.73325i
\(800\) 300.291 364.246i 0.375363 0.455307i
\(801\) −56.5204 −0.0705623
\(802\) 2487.78 3.10197
\(803\) 0 0
\(804\) 574.369 0.714390
\(805\) −77.5610 164.463i −0.0963491 0.204302i
\(806\) −19.8798 −0.0246647
\(807\) 330.378i 0.409390i
\(808\) 1311.93i 1.62368i
\(809\) 388.465i 0.480179i 0.970751 + 0.240090i \(0.0771768\pi\)
−0.970751 + 0.240090i \(0.922823\pi\)
\(810\) 379.157 178.811i 0.468094 0.220754i
\(811\) 1002.78i 1.23648i −0.785991 0.618238i \(-0.787847\pi\)
0.785991 0.618238i \(-0.212153\pi\)
\(812\) 158.300i 0.194951i
\(813\) −80.3987 −0.0988914
\(814\) 0 0
\(815\) 171.780 + 364.249i 0.210773 + 0.446932i
\(816\) 847.208i 1.03824i
\(817\) 381.703i 0.467200i
\(818\) 65.0196i 0.0794860i
\(819\) −6.35974 −0.00776525
\(820\) 711.253 + 1508.17i 0.867382 + 1.83923i
\(821\) 532.528i 0.648634i 0.945948 + 0.324317i \(0.105134\pi\)
−0.945948 + 0.324317i \(0.894866\pi\)
\(822\) −148.850 −0.181083
\(823\) 903.186i 1.09743i 0.836009 + 0.548716i \(0.184883\pi\)
−0.836009 + 0.548716i \(0.815117\pi\)
\(824\) 1828.75i 2.21935i
\(825\) 0 0
\(826\) −147.298 −0.178327
\(827\) 1456.82 1.76157 0.880784 0.473519i \(-0.157017\pi\)
0.880784 + 0.473519i \(0.157017\pi\)
\(828\) 1918.24i 2.31671i
\(829\) −847.158 −1.02190 −0.510952 0.859609i \(-0.670707\pi\)
−0.510952 + 0.859609i \(0.670707\pi\)
\(830\) −2186.39 + 1031.10i −2.63420 + 1.24229i
\(831\) 250.170i 0.301047i
\(832\) −24.5284 −0.0294812
\(833\) 1116.65 1.34051
\(834\) 304.694 0.365340
\(835\) 507.046 239.123i 0.607240 0.286375i
\(836\) 0 0
\(837\) 153.072i 0.182882i
\(838\) −1495.21 −1.78426
\(839\) −956.668 −1.14025 −0.570124 0.821559i \(-0.693105\pi\)
−0.570124 + 0.821559i \(0.693105\pi\)
\(840\) −58.1595 123.324i −0.0692375 0.146814i
\(841\) 557.080 0.662402
\(842\) 1657.83 1.96892
\(843\) −779.774 −0.924999
\(844\) 1155.38i 1.36894i
\(845\) −760.818 + 358.803i −0.900377 + 0.424619i
\(846\) 1405.64i 1.66151i
\(847\) 0 0
\(848\) 562.814i 0.663695i
\(849\) 272.190i 0.320600i
\(850\) −1319.28 + 1600.26i −1.55210 + 1.88266i
\(851\) 2187.53 2.57054
\(852\) 476.201i 0.558922i
\(853\) −1252.45 −1.46829 −0.734144 0.678994i \(-0.762416\pi\)
−0.734144 + 0.678994i \(0.762416\pi\)
\(854\) 132.011i 0.154580i
\(855\) −360.619 764.670i −0.421777 0.894351i
\(856\) −344.512 −0.402468
\(857\) −628.293 −0.733131 −0.366565 0.930392i \(-0.619466\pi\)
−0.366565 + 0.930392i \(0.619466\pi\)
\(858\) 0 0
\(859\) 196.824 0.229132 0.114566 0.993416i \(-0.463452\pi\)
0.114566 + 0.993416i \(0.463452\pi\)
\(860\) 587.084 276.869i 0.682656 0.321941i
\(861\) 64.3560 0.0747457
\(862\) 848.312i 0.984121i
\(863\) 814.245i 0.943505i −0.881731 0.471753i \(-0.843622\pi\)
0.881731 0.471753i \(-0.156378\pi\)
\(864\) 451.403i 0.522457i
\(865\) −854.991 + 403.215i −0.988429 + 0.466144i
\(866\) 340.713i 0.393433i
\(867\) 391.164i 0.451170i
\(868\) 60.1563 0.0693044
\(869\) 0 0
\(870\) −412.820 + 194.686i −0.474506 + 0.223778i
\(871\) 38.1989i 0.0438564i
\(872\) 1943.23i 2.22848i
\(873\) 444.744i 0.509444i
\(874\) 3001.88 3.43464
\(875\) −33.5560 + 132.087i −0.0383498 + 0.150956i
\(876\) 1104.67i 1.26104i
\(877\) 575.065 0.655718 0.327859 0.944727i \(-0.393673\pi\)
0.327859 + 0.944727i \(0.393673\pi\)
\(878\) 2661.98i 3.03187i
\(879\) 86.8641i 0.0988215i
\(880\) 0 0
\(881\) 513.793 0.583193 0.291596 0.956541i \(-0.405814\pi\)
0.291596 + 0.956541i \(0.405814\pi\)
\(882\) −1133.39 −1.28503
\(883\) 291.241i 0.329831i 0.986308 + 0.164915i \(0.0527351\pi\)
−0.986308 + 0.164915i \(0.947265\pi\)
\(884\) −175.903 −0.198986
\(885\) 123.723 + 262.347i 0.139800 + 0.296438i
\(886\) 164.604i 0.185783i
\(887\) 1163.42 1.31163 0.655816 0.754921i \(-0.272325\pi\)
0.655816 + 0.754921i \(0.272325\pi\)
\(888\) 1640.33 1.84722
\(889\) −139.841 −0.157301
\(890\) −136.042 + 64.1573i −0.152856 + 0.0720868i
\(891\) 0 0
\(892\) 1729.63i 1.93905i
\(893\) 1502.32 1.68233
\(894\) 1285.08 1.43745
\(895\) 1035.08 488.142i 1.15651 0.545411i
\(896\) 191.026 0.213199
\(897\) −44.4670 −0.0495730
\(898\) 172.468 0.192058
\(899\) 107.894i 0.120015i
\(900\) 914.538 1109.31i 1.01615 1.23257i
\(901\) 552.674i 0.613401i
\(902\) 0 0
\(903\) 25.0519i 0.0277429i
\(904\) 1748.00i 1.93363i
\(905\) −56.2783 + 26.5409i −0.0621859 + 0.0293269i
\(906\) −254.804 −0.281241
\(907\) 234.719i 0.258786i 0.991593 + 0.129393i \(0.0413029\pi\)
−0.991593 + 0.129393i \(0.958697\pi\)
\(908\) 64.1703 0.0706722
\(909\) 533.893i 0.587341i
\(910\) −15.3075 + 7.21905i −0.0168215 + 0.00793302i
\(911\) −561.265 −0.616098 −0.308049 0.951371i \(-0.599676\pi\)
−0.308049 + 0.951371i \(0.599676\pi\)
\(912\) 919.061 1.00774
\(913\) 0 0
\(914\) 1475.91 1.61479
\(915\) 235.120 110.883i 0.256962 0.121184i
\(916\) 1600.82 1.74762
\(917\) 16.6841i 0.0181942i
\(918\) 1983.17i 2.16032i
\(919\) 800.742i 0.871319i −0.900112 0.435659i \(-0.856515\pi\)
0.900112 0.435659i \(-0.143485\pi\)
\(920\) 1166.66 + 2473.83i 1.26811 + 2.68894i
\(921\) 652.195i 0.708137i
\(922\) 2500.72i 2.71228i
\(923\) 31.6702 0.0343122
\(924\) 0 0
\(925\) −1265.05 1042.93i −1.36762 1.12749i
\(926\) 1799.12i 1.94290i
\(927\) 744.211i 0.802817i
\(928\) 318.174i 0.342859i
\(929\) −368.505 −0.396668 −0.198334 0.980134i \(-0.563553\pi\)
−0.198334 + 0.980134i \(0.563553\pi\)
\(930\) −73.9836 156.878i −0.0795523 0.168686i
\(931\) 1211.35i 1.30113i
\(932\) −816.966 −0.876573
\(933\) 152.103i 0.163026i
\(934\) 1276.42i 1.36662i
\(935\) 0 0
\(936\) 95.6620 0.102203
\(937\) −35.1307 −0.0374927 −0.0187464 0.999824i \(-0.505968\pi\)
−0.0187464 + 0.999824i \(0.505968\pi\)
\(938\) 169.247i 0.180434i
\(939\) −80.4200 −0.0856443
\(940\) 1089.71 + 2310.67i 1.15927 + 2.45816i
\(941\) 943.737i 1.00291i 0.865184 + 0.501454i \(0.167201\pi\)
−0.865184 + 0.501454i \(0.832799\pi\)
\(942\) 790.784 0.839473
\(943\) −1290.96 −1.36899
\(944\) 904.631 0.958295
\(945\) −55.5859 117.866i −0.0588211 0.124726i
\(946\) 0 0
\(947\) 337.731i 0.356633i −0.983973 0.178316i \(-0.942935\pi\)
0.983973 0.178316i \(-0.0570650\pi\)
\(948\) −398.779 −0.420653
\(949\) −73.4669 −0.0774150
\(950\) −1735.98 1431.17i −1.82735 1.50650i
\(951\) −495.749 −0.521292
\(952\) 417.585 0.438640
\(953\) −1053.77 −1.10574 −0.552872 0.833266i \(-0.686468\pi\)
−0.552872 + 0.833266i \(0.686468\pi\)
\(954\) 560.962i 0.588011i
\(955\) −4.22220 + 1.99119i −0.00442115 + 0.00208502i
\(956\) 3407.17i 3.56399i
\(957\) 0 0
\(958\) 1912.77i 1.99663i
\(959\) 29.9557i 0.0312364i
\(960\) −91.2836 193.561i −0.0950871 0.201626i
\(961\) −919.999 −0.957335
\(962\) 203.606i 0.211649i
\(963\) −140.200 −0.145586
\(964\) 226.925i 0.235399i
\(965\) −188.190 + 88.7506i −0.195016 + 0.0919695i
\(966\) 197.019 0.203953
\(967\) 200.406 0.207246 0.103623 0.994617i \(-0.466957\pi\)
0.103623 + 0.994617i \(0.466957\pi\)
\(968\) 0 0
\(969\) −902.503 −0.931376
\(970\) 504.837 + 1070.48i 0.520451 + 1.10358i
\(971\) −312.778 −0.322119 −0.161060 0.986945i \(-0.551491\pi\)
−0.161060 + 0.986945i \(0.551491\pi\)
\(972\) 2164.14i 2.22648i
\(973\) 61.3187i 0.0630202i
\(974\) 2348.58i 2.41128i
\(975\) 25.7152 + 21.2000i 0.0263745 + 0.0217436i
\(976\) 810.746i 0.830682i
\(977\) 491.515i 0.503086i −0.967846 0.251543i \(-0.919062\pi\)
0.967846 0.251543i \(-0.0809380\pi\)
\(978\) −436.353 −0.446168
\(979\) 0 0
\(980\) −1863.14 + 878.658i −1.90116 + 0.896590i
\(981\) 790.801i 0.806117i
\(982\) 240.821i 0.245236i
\(983\) 869.168i 0.884199i −0.896966 0.442100i \(-0.854234\pi\)
0.896966 0.442100i \(-0.145766\pi\)
\(984\) −968.031 −0.983772
\(985\) 388.291 183.118i 0.394204 0.185907i
\(986\) 1397.85i 1.41770i
\(987\) 98.6001 0.0998988
\(988\) 190.822i 0.193140i
\(989\) 502.531i 0.508120i
\(990\) 0 0
\(991\) −901.175 −0.909360 −0.454680 0.890655i \(-0.650246\pi\)
−0.454680 + 0.890655i \(0.650246\pi\)
\(992\) −120.910 −0.121886
\(993\) 523.213i 0.526901i
\(994\) −140.320 −0.141167
\(995\) 355.264 167.543i 0.357049 0.168385i
\(996\) 1788.81i 1.79600i
\(997\) 1273.41 1.27724 0.638621 0.769521i \(-0.279505\pi\)
0.638621 + 0.769521i \(0.279505\pi\)
\(998\) 1371.35 1.37410
\(999\) 1567.75 1.56932
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 605.3.d.b.604.37 40
5.4 even 2 inner 605.3.d.b.604.4 40
11.3 even 5 55.3.h.a.24.10 yes 40
11.7 odd 10 55.3.h.a.39.1 yes 40
11.10 odd 2 inner 605.3.d.b.604.3 40
55.3 odd 20 275.3.x.j.101.1 40
55.7 even 20 275.3.x.j.226.10 40
55.14 even 10 55.3.h.a.24.1 40
55.18 even 20 275.3.x.j.226.1 40
55.29 odd 10 55.3.h.a.39.10 yes 40
55.47 odd 20 275.3.x.j.101.10 40
55.54 odd 2 inner 605.3.d.b.604.38 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.3.h.a.24.1 40 55.14 even 10
55.3.h.a.24.10 yes 40 11.3 even 5
55.3.h.a.39.1 yes 40 11.7 odd 10
55.3.h.a.39.10 yes 40 55.29 odd 10
275.3.x.j.101.1 40 55.3 odd 20
275.3.x.j.101.10 40 55.47 odd 20
275.3.x.j.226.1 40 55.18 even 20
275.3.x.j.226.10 40 55.7 even 20
605.3.d.b.604.3 40 11.10 odd 2 inner
605.3.d.b.604.4 40 5.4 even 2 inner
605.3.d.b.604.37 40 1.1 even 1 trivial
605.3.d.b.604.38 40 55.54 odd 2 inner