L(s) = 1 | + 3.55·2-s + 1.52i·3-s + 8.61·4-s + (4.52 − 2.13i)5-s + 5.41i·6-s − 1.09·7-s + 16.3·8-s + 6.67·9-s + (16.0 − 7.57i)10-s + 13.1i·12-s + 0.874·13-s − 3.87·14-s + (3.25 + 6.89i)15-s + 23.7·16-s − 23.3·17-s + 23.7·18-s + ⋯ |
L(s) = 1 | + 1.77·2-s + 0.508i·3-s + 2.15·4-s + (0.904 − 0.426i)5-s + 0.902i·6-s − 0.155·7-s + 2.04·8-s + 0.741·9-s + (1.60 − 0.757i)10-s + 1.09i·12-s + 0.0672·13-s − 0.276·14-s + (0.216 + 0.459i)15-s + 1.48·16-s − 1.37·17-s + 1.31·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 605 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.975 - 0.218i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 605 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.975 - 0.218i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(6.076651950\) |
\(L(\frac12)\) |
\(\approx\) |
\(6.076651950\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-4.52 + 2.13i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 - 3.55T + 4T^{2} \) |
| 3 | \( 1 - 1.52iT - 9T^{2} \) |
| 7 | \( 1 + 1.09T + 49T^{2} \) |
| 13 | \( 1 - 0.874T + 169T^{2} \) |
| 17 | \( 1 + 23.3T + 289T^{2} \) |
| 19 | \( 1 + 25.3iT - 361T^{2} \) |
| 23 | \( 1 - 33.3iT - 529T^{2} \) |
| 29 | \( 1 - 16.8iT - 841T^{2} \) |
| 31 | \( 1 + 6.40T + 961T^{2} \) |
| 37 | \( 1 + 65.5iT - 1.36e3T^{2} \) |
| 41 | \( 1 - 38.7iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 15.0T + 1.84e3T^{2} \) |
| 47 | \( 1 - 59.2iT - 2.20e3T^{2} \) |
| 53 | \( 1 - 23.6iT - 2.80e3T^{2} \) |
| 59 | \( 1 - 38.0T + 3.48e3T^{2} \) |
| 61 | \( 1 + 34.0iT - 3.72e3T^{2} \) |
| 67 | \( 1 + 43.7iT - 4.48e3T^{2} \) |
| 71 | \( 1 - 36.2T + 5.04e3T^{2} \) |
| 73 | \( 1 + 84.0T + 5.32e3T^{2} \) |
| 79 | \( 1 - 30.3iT - 6.24e3T^{2} \) |
| 83 | \( 1 + 136.T + 6.88e3T^{2} \) |
| 89 | \( 1 + 8.46T + 7.92e3T^{2} \) |
| 97 | \( 1 - 66.6iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.87362380733956194740072603282, −9.656786403494086830492270227416, −9.006676486250021561651741722024, −7.31258951880785722003016291818, −6.56251124567752924315730172155, −5.61020299252598277281252382332, −4.80626651449065548935229209370, −4.14151162028222470796962875214, −2.90692834462835469562796800738, −1.74420054014722229446402180051,
1.76580210812563179098109737580, 2.59900584066778181036763888329, 3.88443938409850613850862057892, 4.79648857078810827236577205384, 5.92255036889312742364670806048, 6.55328397328201902958660771938, 7.12634629216650389894065011023, 8.484453864913953820542359233230, 9.945410547072442893041337662568, 10.57853060482283733069117677923