Properties

Label 275.3.x.j.101.10
Level $275$
Weight $3$
Character 275.101
Analytic conductor $7.493$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(51,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 7])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.51"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.x (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{10})\)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 101.10
Character \(\chi\) \(=\) 275.101
Dual form 275.3.x.j.226.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.37818 + 1.09764i) q^{2} +(-1.23390 + 0.896484i) q^{3} +(6.97124 + 5.06490i) q^{4} +(-5.15237 + 1.67411i) q^{6} +(-0.640839 + 0.882039i) q^{7} +(9.63938 + 13.2675i) q^{8} +(-2.06232 + 6.34716i) q^{9} +(3.85595 + 10.3020i) q^{11} -13.1425 q^{12} +(-0.831271 - 0.270096i) q^{13} +(-3.13303 + 2.27628i) q^{14} +(7.34959 + 22.6197i) q^{16} +(22.2122 - 7.21718i) q^{17} +(-13.9338 + 19.1782i) q^{18} +(-14.8922 - 20.4973i) q^{19} -1.66285i q^{21} +(1.71822 + 39.0346i) q^{22} +33.3562 q^{23} +(-23.7881 - 7.72924i) q^{24} +(-2.51172 - 1.82487i) q^{26} +(-7.38721 - 22.7355i) q^{27} +(-8.93489 + 2.90312i) q^{28} +(-9.90414 + 13.6319i) q^{29} +(-1.97870 + 6.08982i) q^{31} +18.8828i q^{32} +(-13.9935 - 9.25491i) q^{33} +82.9587 q^{34} +(-46.5246 + 33.8021i) q^{36} +(-53.0561 - 38.5475i) q^{37} +(-27.8099 - 85.5899i) q^{38} +(1.26785 - 0.411949i) q^{39} +(-22.7486 - 31.3107i) q^{41} +(1.82521 - 5.61743i) q^{42} -15.0656i q^{43} +(-25.2980 + 91.3479i) q^{44} +(112.683 + 36.6131i) q^{46} +(47.9712 - 34.8531i) q^{47} +(-29.3469 - 21.3218i) q^{48} +(14.7745 + 45.4713i) q^{49} +(-20.9376 + 28.8182i) q^{51} +(-4.42698 - 6.09322i) q^{52} +(7.31251 - 22.5056i) q^{53} -84.9132i q^{54} -17.8797 q^{56} +(36.7511 + 11.9411i) q^{57} +(-48.4209 + 35.1798i) q^{58} +(30.7715 + 22.3568i) q^{59} +(32.4198 - 10.5338i) q^{61} +(-13.3688 + 18.4006i) q^{62} +(-4.27683 - 5.88655i) q^{63} +(8.67190 - 26.6894i) q^{64} +(-37.1140 - 46.6246i) q^{66} +43.7033 q^{67} +(191.401 + 62.1899i) q^{68} +(-41.1584 + 29.9033i) q^{69} +(11.1969 + 34.4604i) q^{71} +(-104.090 + 33.8209i) q^{72} +(49.4053 - 68.0006i) q^{73} +(-136.922 - 188.457i) q^{74} -218.319i q^{76} +(-11.5578 - 3.20083i) q^{77} +4.73519 q^{78} +(-28.8577 - 9.37643i) q^{79} +(-19.0958 - 13.8739i) q^{81} +(-42.4810 - 130.743i) q^{82} +(-129.448 + 42.0601i) q^{83} +(8.42220 - 11.5922i) q^{84} +(16.5366 - 50.8943i) q^{86} -25.6994i q^{87} +(-99.5127 + 150.464i) q^{88} +8.46901 q^{89} +(0.770946 - 0.560125i) q^{91} +(232.534 + 168.946i) q^{92} +(-3.01790 - 9.28813i) q^{93} +(200.312 - 65.0852i) q^{94} +(-16.9281 - 23.2995i) q^{96} +(-20.5930 + 63.3788i) q^{97} +169.827i q^{98} +(-73.3407 + 3.22831i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 22 q^{4} - 10 q^{6} + 4 q^{9} - 16 q^{11} - 38 q^{14} - 138 q^{16} + 10 q^{19} - 30 q^{24} + 172 q^{26} + 10 q^{29} + 128 q^{31} + 112 q^{34} + 248 q^{36} + 170 q^{39} + 50 q^{41} - 422 q^{44} + 10 q^{46}+ \cdots - 882 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{1}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.37818 + 1.09764i 1.68909 + 0.548819i 0.986640 0.162913i \(-0.0520890\pi\)
0.702451 + 0.711732i \(0.252089\pi\)
\(3\) −1.23390 + 0.896484i −0.411302 + 0.298828i −0.774129 0.633028i \(-0.781812\pi\)
0.362827 + 0.931857i \(0.381812\pi\)
\(4\) 6.97124 + 5.06490i 1.74281 + 1.26623i
\(5\) 0 0
\(6\) −5.15237 + 1.67411i −0.858729 + 0.279018i
\(7\) −0.640839 + 0.882039i −0.0915484 + 0.126006i −0.852334 0.522997i \(-0.824814\pi\)
0.760786 + 0.649003i \(0.224814\pi\)
\(8\) 9.63938 + 13.2675i 1.20492 + 1.65843i
\(9\) −2.06232 + 6.34716i −0.229146 + 0.705239i
\(10\) 0 0
\(11\) 3.85595 + 10.3020i 0.350541 + 0.936547i
\(12\) −13.1425 −1.09521
\(13\) −0.831271 0.270096i −0.0639440 0.0207766i 0.276870 0.960907i \(-0.410703\pi\)
−0.340814 + 0.940131i \(0.610703\pi\)
\(14\) −3.13303 + 2.27628i −0.223788 + 0.162591i
\(15\) 0 0
\(16\) 7.34959 + 22.6197i 0.459349 + 1.41373i
\(17\) 22.2122 7.21718i 1.30660 0.424540i 0.428727 0.903434i \(-0.358962\pi\)
0.877873 + 0.478894i \(0.158962\pi\)
\(18\) −13.9338 + 19.1782i −0.774098 + 1.06545i
\(19\) −14.8922 20.4973i −0.783799 1.07881i −0.994853 0.101332i \(-0.967690\pi\)
0.211054 0.977474i \(-0.432310\pi\)
\(20\) 0 0
\(21\) 1.66285i 0.0791835i
\(22\) 1.71822 + 39.0346i 0.0781009 + 1.77430i
\(23\) 33.3562 1.45027 0.725135 0.688606i \(-0.241777\pi\)
0.725135 + 0.688606i \(0.241777\pi\)
\(24\) −23.7881 7.72924i −0.991173 0.322052i
\(25\) 0 0
\(26\) −2.51172 1.82487i −0.0966046 0.0701873i
\(27\) −7.38721 22.7355i −0.273600 0.842056i
\(28\) −8.93489 + 2.90312i −0.319103 + 0.103683i
\(29\) −9.90414 + 13.6319i −0.341522 + 0.470065i −0.944885 0.327402i \(-0.893827\pi\)
0.603363 + 0.797467i \(0.293827\pi\)
\(30\) 0 0
\(31\) −1.97870 + 6.08982i −0.0638291 + 0.196446i −0.977885 0.209142i \(-0.932933\pi\)
0.914056 + 0.405587i \(0.132933\pi\)
\(32\) 18.8828i 0.590087i
\(33\) −13.9935 9.25491i −0.424045 0.280452i
\(34\) 82.9587 2.43996
\(35\) 0 0
\(36\) −46.5246 + 33.8021i −1.29235 + 0.938948i
\(37\) −53.0561 38.5475i −1.43395 1.04182i −0.989264 0.146137i \(-0.953316\pi\)
−0.444684 0.895687i \(-0.646684\pi\)
\(38\) −27.8099 85.5899i −0.731838 2.25237i
\(39\) 1.26785 0.411949i 0.0325089 0.0105628i
\(40\) 0 0
\(41\) −22.7486 31.3107i −0.554843 0.763676i 0.435817 0.900036i \(-0.356460\pi\)
−0.990659 + 0.136360i \(0.956460\pi\)
\(42\) 1.82521 5.61743i 0.0434574 0.133748i
\(43\) 15.0656i 0.350362i −0.984536 0.175181i \(-0.943949\pi\)
0.984536 0.175181i \(-0.0560511\pi\)
\(44\) −25.2980 + 91.3479i −0.574954 + 2.07609i
\(45\) 0 0
\(46\) 112.683 + 36.6131i 2.44964 + 0.795936i
\(47\) 47.9712 34.8531i 1.02066 0.741556i 0.0542457 0.998528i \(-0.482725\pi\)
0.966419 + 0.256971i \(0.0827246\pi\)
\(48\) −29.3469 21.3218i −0.611394 0.444204i
\(49\) 14.7745 + 45.4713i 0.301521 + 0.927985i
\(50\) 0 0
\(51\) −20.9376 + 28.8182i −0.410542 + 0.565063i
\(52\) −4.42698 6.09322i −0.0851343 0.117177i
\(53\) 7.31251 22.5056i 0.137972 0.424634i −0.858069 0.513535i \(-0.828336\pi\)
0.996040 + 0.0889014i \(0.0283356\pi\)
\(54\) 84.9132i 1.57247i
\(55\) 0 0
\(56\) −17.8797 −0.319280
\(57\) 36.7511 + 11.9411i 0.644755 + 0.209494i
\(58\) −48.4209 + 35.1798i −0.834843 + 0.606549i
\(59\) 30.7715 + 22.3568i 0.521550 + 0.378928i 0.817188 0.576372i \(-0.195532\pi\)
−0.295637 + 0.955300i \(0.595532\pi\)
\(60\) 0 0
\(61\) 32.4198 10.5338i 0.531472 0.172686i −0.0309732 0.999520i \(-0.509861\pi\)
0.562445 + 0.826834i \(0.309861\pi\)
\(62\) −13.3688 + 18.4006i −0.215626 + 0.296784i
\(63\) −4.27683 5.88655i −0.0678861 0.0934372i
\(64\) 8.67190 26.6894i 0.135499 0.417022i
\(65\) 0 0
\(66\) −37.1140 46.6246i −0.562333 0.706433i
\(67\) 43.7033 0.652288 0.326144 0.945320i \(-0.394250\pi\)
0.326144 + 0.945320i \(0.394250\pi\)
\(68\) 191.401 + 62.1899i 2.81472 + 0.914558i
\(69\) −41.1584 + 29.9033i −0.596499 + 0.433382i
\(70\) 0 0
\(71\) 11.1969 + 34.4604i 0.157702 + 0.485358i 0.998425 0.0561087i \(-0.0178694\pi\)
−0.840722 + 0.541466i \(0.817869\pi\)
\(72\) −104.090 + 33.8209i −1.44570 + 0.469735i
\(73\) 49.4053 68.0006i 0.676785 0.931515i −0.323105 0.946363i \(-0.604727\pi\)
0.999890 + 0.0148485i \(0.00472661\pi\)
\(74\) −136.922 188.457i −1.85030 2.54672i
\(75\) 0 0
\(76\) 218.319i 2.87262i
\(77\) −11.5578 3.20083i −0.150102 0.0415693i
\(78\) 4.73519 0.0607076
\(79\) −28.8577 9.37643i −0.365287 0.118689i 0.120621 0.992699i \(-0.461511\pi\)
−0.485909 + 0.874010i \(0.661511\pi\)
\(80\) 0 0
\(81\) −19.0958 13.8739i −0.235750 0.171283i
\(82\) −42.4810 130.743i −0.518061 1.59443i
\(83\) −129.448 + 42.0601i −1.55961 + 0.506748i −0.956704 0.291064i \(-0.905991\pi\)
−0.602906 + 0.797812i \(0.705991\pi\)
\(84\) 8.42220 11.5922i 0.100264 0.138002i
\(85\) 0 0
\(86\) 16.5366 50.8943i 0.192286 0.591794i
\(87\) 25.6994i 0.295395i
\(88\) −99.5127 + 150.464i −1.13083 + 1.70982i
\(89\) 8.46901 0.0951574 0.0475787 0.998867i \(-0.484850\pi\)
0.0475787 + 0.998867i \(0.484850\pi\)
\(90\) 0 0
\(91\) 0.770946 0.560125i 0.00847194 0.00615522i
\(92\) 232.534 + 168.946i 2.52755 + 1.83637i
\(93\) −3.01790 9.28813i −0.0324505 0.0998724i
\(94\) 200.312 65.0852i 2.13098 0.692396i
\(95\) 0 0
\(96\) −16.9281 23.2995i −0.176335 0.242704i
\(97\) −20.5930 + 63.3788i −0.212299 + 0.653390i 0.787035 + 0.616908i \(0.211615\pi\)
−0.999334 + 0.0364815i \(0.988385\pi\)
\(98\) 169.827i 1.73293i
\(99\) −73.3407 + 3.22831i −0.740815 + 0.0326092i
\(100\) 0 0
\(101\) −76.0831 24.7209i −0.753298 0.244761i −0.0928981 0.995676i \(-0.529613\pi\)
−0.660400 + 0.750914i \(0.729613\pi\)
\(102\) −102.363 + 74.3712i −1.00356 + 0.729129i
\(103\) 90.2154 + 65.5454i 0.875878 + 0.636363i 0.932158 0.362052i \(-0.117924\pi\)
−0.0562796 + 0.998415i \(0.517924\pi\)
\(104\) −4.42944 13.6324i −0.0425908 0.131081i
\(105\) 0 0
\(106\) 49.4060 68.0015i 0.466094 0.641524i
\(107\) 12.3479 + 16.9954i 0.115401 + 0.158836i 0.862810 0.505528i \(-0.168702\pi\)
−0.747409 + 0.664364i \(0.768702\pi\)
\(108\) 63.6551 195.910i 0.589399 1.81398i
\(109\) 118.493i 1.08710i 0.839378 + 0.543548i \(0.182919\pi\)
−0.839378 + 0.543548i \(0.817081\pi\)
\(110\) 0 0
\(111\) 100.023 0.901112
\(112\) −24.6614 8.01296i −0.220191 0.0715443i
\(113\) −86.2322 + 62.6514i −0.763117 + 0.554437i −0.899865 0.436169i \(-0.856335\pi\)
0.136748 + 0.990606i \(0.456335\pi\)
\(114\) 111.045 + 80.6787i 0.974077 + 0.707708i
\(115\) 0 0
\(116\) −138.088 + 44.8676i −1.19042 + 0.386790i
\(117\) 3.42869 4.71918i 0.0293050 0.0403349i
\(118\) 79.4120 + 109.301i 0.672983 + 0.926282i
\(119\) −7.86860 + 24.2171i −0.0661227 + 0.203505i
\(120\) 0 0
\(121\) −91.2633 + 79.4482i −0.754242 + 0.656597i
\(122\) 121.082 0.992479
\(123\) 56.1391 + 18.2407i 0.456416 + 0.148298i
\(124\) −44.6384 + 32.4317i −0.359987 + 0.261546i
\(125\) 0 0
\(126\) −7.98660 24.5802i −0.0633857 0.195081i
\(127\) −121.986 + 39.6357i −0.960520 + 0.312092i −0.746983 0.664843i \(-0.768498\pi\)
−0.213537 + 0.976935i \(0.568498\pi\)
\(128\) 102.987 141.749i 0.804583 1.10741i
\(129\) 13.5061 + 18.5895i 0.104698 + 0.144105i
\(130\) 0 0
\(131\) 15.3029i 0.116816i 0.998293 + 0.0584079i \(0.0186024\pi\)
−0.998293 + 0.0584079i \(0.981398\pi\)
\(132\) −50.6767 135.394i −0.383914 1.02571i
\(133\) 27.6229 0.207691
\(134\) 147.638 + 47.9704i 1.10177 + 0.357988i
\(135\) 0 0
\(136\) 309.865 + 225.130i 2.27842 + 1.65537i
\(137\) −8.49047 26.1310i −0.0619742 0.190737i 0.915276 0.402828i \(-0.131973\pi\)
−0.977250 + 0.212091i \(0.931973\pi\)
\(138\) −171.864 + 55.8419i −1.24539 + 0.404651i
\(139\) 33.0584 45.5009i 0.237830 0.327345i −0.673373 0.739303i \(-0.735155\pi\)
0.911203 + 0.411958i \(0.135155\pi\)
\(140\) 0 0
\(141\) −27.9466 + 86.0109i −0.198203 + 0.610007i
\(142\) 128.704i 0.906363i
\(143\) −0.422803 9.60525i −0.00295667 0.0671696i
\(144\) −158.728 −1.10228
\(145\) 0 0
\(146\) 241.540 175.489i 1.65438 1.20198i
\(147\) −58.9946 42.8621i −0.401324 0.291579i
\(148\) −174.627 537.448i −1.17992 3.63141i
\(149\) −225.598 + 73.3012i −1.51408 + 0.491954i −0.944087 0.329695i \(-0.893054\pi\)
−0.569993 + 0.821650i \(0.693054\pi\)
\(150\) 0 0
\(151\) −27.6455 38.0508i −0.183083 0.251992i 0.707604 0.706609i \(-0.249776\pi\)
−0.890687 + 0.454617i \(0.849776\pi\)
\(152\) 128.396 395.163i 0.844712 2.59975i
\(153\) 155.868i 1.01875i
\(154\) −35.5311 23.4993i −0.230721 0.152593i
\(155\) 0 0
\(156\) 10.9250 + 3.54973i 0.0700317 + 0.0227547i
\(157\) −118.090 + 85.7977i −0.752168 + 0.546482i −0.896498 0.443048i \(-0.853897\pi\)
0.144330 + 0.989530i \(0.453897\pi\)
\(158\) −87.1946 63.3506i −0.551865 0.400953i
\(159\) 11.1530 + 34.3253i 0.0701444 + 0.215882i
\(160\) 0 0
\(161\) −21.3760 + 29.4215i −0.132770 + 0.182742i
\(162\) −49.2805 67.8288i −0.304201 0.418696i
\(163\) 24.8897 76.6025i 0.152697 0.469954i −0.845223 0.534414i \(-0.820532\pi\)
0.997920 + 0.0644598i \(0.0205324\pi\)
\(164\) 333.494i 2.03350i
\(165\) 0 0
\(166\) −483.465 −2.91244
\(167\) 106.633 + 34.6471i 0.638521 + 0.207468i 0.610346 0.792135i \(-0.291031\pi\)
0.0281747 + 0.999603i \(0.491031\pi\)
\(168\) 22.0619 16.0289i 0.131321 0.0954100i
\(169\) −136.106 98.8867i −0.805360 0.585128i
\(170\) 0 0
\(171\) 160.812 52.2510i 0.940421 0.305561i
\(172\) 76.3057 105.026i 0.443638 0.610615i
\(173\) −111.127 152.953i −0.642351 0.884120i 0.356387 0.934338i \(-0.384008\pi\)
−0.998738 + 0.0502182i \(0.984008\pi\)
\(174\) 28.2086 86.8171i 0.162118 0.498949i
\(175\) 0 0
\(176\) −204.689 + 162.936i −1.16301 + 0.925774i
\(177\) −58.0116 −0.327749
\(178\) 28.6099 + 9.29591i 0.160730 + 0.0522242i
\(179\) 185.169 134.533i 1.03446 0.751581i 0.0652651 0.997868i \(-0.479211\pi\)
0.969197 + 0.246287i \(0.0792107\pi\)
\(180\) 0 0
\(181\) −3.84557 11.8355i −0.0212463 0.0653893i 0.939871 0.341529i \(-0.110945\pi\)
−0.961118 + 0.276140i \(0.910945\pi\)
\(182\) 3.21921 1.04599i 0.0176880 0.00574718i
\(183\) −30.5595 + 42.0616i −0.166992 + 0.229845i
\(184\) 321.533 + 442.552i 1.74746 + 2.40518i
\(185\) 0 0
\(186\) 34.6896i 0.186503i
\(187\) 160.001 + 201.001i 0.855619 + 1.07487i
\(188\) 510.947 2.71780
\(189\) 24.7876 + 8.05398i 0.131151 + 0.0426137i
\(190\) 0 0
\(191\) 0.755326 + 0.548777i 0.00395459 + 0.00287318i 0.589761 0.807578i \(-0.299222\pi\)
−0.585806 + 0.810451i \(0.699222\pi\)
\(192\) 13.2263 + 40.7064i 0.0688870 + 0.212012i
\(193\) −39.5768 + 12.8593i −0.205061 + 0.0666284i −0.409747 0.912199i \(-0.634383\pi\)
0.204685 + 0.978828i \(0.434383\pi\)
\(194\) −139.134 + 191.502i −0.717186 + 0.987121i
\(195\) 0 0
\(196\) −127.311 + 391.823i −0.649546 + 1.99910i
\(197\) 85.8608i 0.435842i 0.975966 + 0.217921i \(0.0699274\pi\)
−0.975966 + 0.217921i \(0.930073\pi\)
\(198\) −251.302 69.5958i −1.26920 0.351494i
\(199\) −78.5577 −0.394763 −0.197381 0.980327i \(-0.563244\pi\)
−0.197381 + 0.980327i \(0.563244\pi\)
\(200\) 0 0
\(201\) −53.9258 + 39.1794i −0.268287 + 0.194922i
\(202\) −229.888 167.023i −1.13806 0.826848i
\(203\) −5.67689 17.4717i −0.0279650 0.0860674i
\(204\) −291.923 + 94.8515i −1.43099 + 0.464958i
\(205\) 0 0
\(206\) 232.819 + 320.448i 1.13019 + 1.55557i
\(207\) −68.7911 + 211.717i −0.332324 + 1.02279i
\(208\) 20.7882i 0.0999433i
\(209\) 153.740 232.456i 0.735600 1.11223i
\(210\) 0 0
\(211\) 127.520 + 41.4339i 0.604362 + 0.196369i 0.595185 0.803589i \(-0.297079\pi\)
0.00917715 + 0.999958i \(0.497079\pi\)
\(212\) 164.966 119.855i 0.778141 0.565353i
\(213\) −44.7091 32.4830i −0.209902 0.152503i
\(214\) 23.0586 + 70.9672i 0.107751 + 0.331622i
\(215\) 0 0
\(216\) 230.434 317.166i 1.06683 1.46836i
\(217\) −4.10343 5.64788i −0.0189098 0.0260271i
\(218\) −130.063 + 400.293i −0.596619 + 1.83620i
\(219\) 128.197i 0.585376i
\(220\) 0 0
\(221\) −20.4137 −0.0923697
\(222\) 337.897 + 109.790i 1.52206 + 0.494547i
\(223\) −162.389 + 117.983i −0.728204 + 0.529071i −0.888995 0.457917i \(-0.848596\pi\)
0.160791 + 0.986988i \(0.448596\pi\)
\(224\) −16.6553 12.1008i −0.0743542 0.0540215i
\(225\) 0 0
\(226\) −360.077 + 116.996i −1.59326 + 0.517681i
\(227\) 4.37724 6.02475i 0.0192830 0.0265408i −0.799267 0.600977i \(-0.794778\pi\)
0.818550 + 0.574436i \(0.194778\pi\)
\(228\) 195.720 + 269.385i 0.858420 + 1.18151i
\(229\) −57.4080 + 176.684i −0.250690 + 0.771544i 0.743959 + 0.668226i \(0.232946\pi\)
−0.994648 + 0.103318i \(0.967054\pi\)
\(230\) 0 0
\(231\) 17.1308 6.41189i 0.0741591 0.0277571i
\(232\) −276.330 −1.19108
\(233\) 90.1691 + 29.2977i 0.386992 + 0.125741i 0.496050 0.868294i \(-0.334783\pi\)
−0.109058 + 0.994035i \(0.534783\pi\)
\(234\) 16.7627 12.1788i 0.0716354 0.0520462i
\(235\) 0 0
\(236\) 101.280 + 311.709i 0.429154 + 1.32080i
\(237\) 44.0135 14.3008i 0.185711 0.0603411i
\(238\) −53.1632 + 73.1728i −0.223375 + 0.307449i
\(239\) 232.413 + 319.889i 0.972439 + 1.33845i 0.940805 + 0.338948i \(0.110071\pi\)
0.0316341 + 0.999500i \(0.489929\pi\)
\(240\) 0 0
\(241\) 26.3347i 0.109273i 0.998506 + 0.0546364i \(0.0174000\pi\)
−0.998506 + 0.0546364i \(0.982600\pi\)
\(242\) −395.509 + 168.217i −1.63434 + 0.695110i
\(243\) 251.150 1.03354
\(244\) 279.359 + 90.7693i 1.14491 + 0.372005i
\(245\) 0 0
\(246\) 169.627 + 123.241i 0.689539 + 0.500979i
\(247\) 6.84319 + 21.0612i 0.0277052 + 0.0852679i
\(248\) −99.8699 + 32.4497i −0.402701 + 0.130846i
\(249\) 122.020 167.946i 0.490040 0.674482i
\(250\) 0 0
\(251\) 115.751 356.246i 0.461160 1.41931i −0.402588 0.915381i \(-0.631889\pi\)
0.863748 0.503924i \(-0.168111\pi\)
\(252\) 62.6983i 0.248803i
\(253\) 128.620 + 343.637i 0.508379 + 1.35825i
\(254\) −455.597 −1.79369
\(255\) 0 0
\(256\) 412.683 299.832i 1.61204 1.17122i
\(257\) −206.714 150.186i −0.804333 0.584382i 0.107849 0.994167i \(-0.465604\pi\)
−0.912182 + 0.409785i \(0.865604\pi\)
\(258\) 25.2214 + 77.6235i 0.0977574 + 0.300866i
\(259\) 68.0008 22.0948i 0.262551 0.0853081i
\(260\) 0 0
\(261\) −66.0982 90.9764i −0.253250 0.348569i
\(262\) −16.7970 + 51.6959i −0.0641107 + 0.197312i
\(263\) 288.916i 1.09854i −0.835645 0.549270i \(-0.814906\pi\)
0.835645 0.549270i \(-0.185094\pi\)
\(264\) −12.0992 274.870i −0.0458303 1.04117i
\(265\) 0 0
\(266\) 93.3153 + 30.3200i 0.350809 + 0.113985i
\(267\) −10.4500 + 7.59233i −0.0391384 + 0.0284357i
\(268\) 304.667 + 221.353i 1.13682 + 0.825945i
\(269\) −66.9375 206.012i −0.248838 0.765846i −0.994981 0.100060i \(-0.968097\pi\)
0.746143 0.665786i \(-0.231903\pi\)
\(270\) 0 0
\(271\) 30.9844 42.6464i 0.114334 0.157367i −0.748015 0.663682i \(-0.768993\pi\)
0.862348 + 0.506315i \(0.168993\pi\)
\(272\) 326.501 + 449.390i 1.20037 + 1.65217i
\(273\) −0.449131 + 1.38228i −0.00164517 + 0.00506331i
\(274\) 97.5947i 0.356185i
\(275\) 0 0
\(276\) −438.383 −1.58834
\(277\) 155.997 + 50.6866i 0.563167 + 0.182984i 0.576746 0.816924i \(-0.304322\pi\)
−0.0135787 + 0.999908i \(0.504322\pi\)
\(278\) 161.621 117.424i 0.581370 0.422390i
\(279\) −34.5723 25.1183i −0.123915 0.0900296i
\(280\) 0 0
\(281\) −486.240 + 157.989i −1.73039 + 0.562239i −0.993506 0.113778i \(-0.963705\pi\)
−0.736887 + 0.676016i \(0.763705\pi\)
\(282\) −188.818 + 259.885i −0.669567 + 0.921579i
\(283\) 104.898 + 144.379i 0.370664 + 0.510175i 0.953081 0.302715i \(-0.0978931\pi\)
−0.582418 + 0.812890i \(0.697893\pi\)
\(284\) −96.4826 + 296.943i −0.339727 + 1.04557i
\(285\) 0 0
\(286\) 9.11479 32.9124i 0.0318699 0.115078i
\(287\) 42.1954 0.147022
\(288\) −119.852 38.9422i −0.416152 0.135216i
\(289\) 207.488 150.749i 0.717951 0.521622i
\(290\) 0 0
\(291\) −31.4083 96.6647i −0.107932 0.332181i
\(292\) 688.833 223.815i 2.35902 0.766491i
\(293\) 33.4761 46.0759i 0.114253 0.157256i −0.748061 0.663630i \(-0.769015\pi\)
0.862313 + 0.506375i \(0.169015\pi\)
\(294\) −152.248 209.551i −0.517849 0.712758i
\(295\) 0 0
\(296\) 1075.49i 3.63342i
\(297\) 205.737 163.770i 0.692717 0.551415i
\(298\) −842.569 −2.82741
\(299\) −27.7281 9.00940i −0.0927360 0.0301318i
\(300\) 0 0
\(301\) 13.2884 + 9.65461i 0.0441476 + 0.0320751i
\(302\) −51.6256 158.887i −0.170946 0.526117i
\(303\) 116.041 37.7041i 0.382974 0.124436i
\(304\) 354.192 487.504i 1.16511 1.60363i
\(305\) 0 0
\(306\) −171.087 + 526.552i −0.559108 + 1.72076i
\(307\) 427.615i 1.39288i −0.717613 0.696442i \(-0.754766\pi\)
0.717613 0.696442i \(-0.245234\pi\)
\(308\) −64.3605 80.8531i −0.208963 0.262510i
\(309\) −170.078 −0.550413
\(310\) 0 0
\(311\) 80.6811 58.6183i 0.259425 0.188483i −0.450469 0.892792i \(-0.648743\pi\)
0.709893 + 0.704309i \(0.248743\pi\)
\(312\) 17.6868 + 12.8502i 0.0566884 + 0.0411865i
\(313\) 16.2938 + 50.1472i 0.0520569 + 0.160215i 0.973705 0.227812i \(-0.0731570\pi\)
−0.921648 + 0.388026i \(0.873157\pi\)
\(314\) −493.106 + 160.220i −1.57040 + 0.510254i
\(315\) 0 0
\(316\) −153.683 211.527i −0.486339 0.669389i
\(317\) −100.443 + 309.132i −0.316855 + 0.975180i 0.658129 + 0.752905i \(0.271348\pi\)
−0.974984 + 0.222275i \(0.928652\pi\)
\(318\) 128.199i 0.403142i
\(319\) −178.626 49.4688i −0.559956 0.155075i
\(320\) 0 0
\(321\) −30.4723 9.90104i −0.0949292 0.0308444i
\(322\) −104.506 + 75.9281i −0.324553 + 0.235802i
\(323\) −478.721 347.811i −1.48211 1.07681i
\(324\) −62.8513 193.437i −0.193986 0.597026i
\(325\) 0 0
\(326\) 168.164 231.457i 0.515839 0.709992i
\(327\) −106.228 146.210i −0.324855 0.447124i
\(328\) 196.132 603.631i 0.597962 1.84034i
\(329\) 64.6477i 0.196498i
\(330\) 0 0
\(331\) 343.048 1.03640 0.518199 0.855260i \(-0.326603\pi\)
0.518199 + 0.855260i \(0.326603\pi\)
\(332\) −1115.44 362.429i −3.35976 1.09165i
\(333\) 354.085 257.258i 1.06332 0.772547i
\(334\) 322.196 + 234.089i 0.964657 + 0.700865i
\(335\) 0 0
\(336\) 37.6133 12.2213i 0.111944 0.0363729i
\(337\) 367.738 506.148i 1.09121 1.50192i 0.244663 0.969608i \(-0.421323\pi\)
0.846547 0.532313i \(-0.178677\pi\)
\(338\) −351.249 483.452i −1.03920 1.43033i
\(339\) 50.2364 154.612i 0.148190 0.456082i
\(340\) 0 0
\(341\) −70.3672 + 3.09742i −0.206356 + 0.00908334i
\(342\) 600.605 1.75616
\(343\) −100.384 32.6166i −0.292663 0.0950921i
\(344\) 199.882 145.223i 0.581052 0.422159i
\(345\) 0 0
\(346\) −207.519 638.679i −0.599767 1.84589i
\(347\) −453.741 + 147.429i −1.30761 + 0.424868i −0.878223 0.478252i \(-0.841271\pi\)
−0.429388 + 0.903120i \(0.641271\pi\)
\(348\) 130.165 179.156i 0.374037 0.514818i
\(349\) 108.085 + 148.766i 0.309699 + 0.426264i 0.935287 0.353890i \(-0.115141\pi\)
−0.625589 + 0.780153i \(0.715141\pi\)
\(350\) 0 0
\(351\) 20.8946i 0.0595289i
\(352\) −194.531 + 72.8111i −0.552644 + 0.206850i
\(353\) −289.312 −0.819580 −0.409790 0.912180i \(-0.634398\pi\)
−0.409790 + 0.912180i \(0.634398\pi\)
\(354\) −195.974 63.6757i −0.553598 0.179875i
\(355\) 0 0
\(356\) 59.0395 + 42.8947i 0.165841 + 0.120491i
\(357\) −12.0011 36.9356i −0.0336166 0.103461i
\(358\) 773.202 251.229i 2.15978 0.701756i
\(359\) 197.102 271.288i 0.549032 0.755677i −0.440849 0.897581i \(-0.645322\pi\)
0.989880 + 0.141904i \(0.0453225\pi\)
\(360\) 0 0
\(361\) −86.8081 + 267.168i −0.240466 + 0.740078i
\(362\) 44.2034i 0.122109i
\(363\) 41.3861 179.848i 0.114011 0.495448i
\(364\) 8.21144 0.0225589
\(365\) 0 0
\(366\) −149.404 + 108.548i −0.408208 + 0.296581i
\(367\) 192.417 + 139.799i 0.524296 + 0.380924i 0.818220 0.574905i \(-0.194961\pi\)
−0.293924 + 0.955829i \(0.594961\pi\)
\(368\) 245.155 + 754.508i 0.666181 + 2.05029i
\(369\) 245.649 79.8161i 0.665714 0.216304i
\(370\) 0 0
\(371\) 15.1647 + 20.8724i 0.0408751 + 0.0562598i
\(372\) 26.0050 80.0352i 0.0699060 0.215148i
\(373\) 240.258i 0.644124i −0.946719 0.322062i \(-0.895624\pi\)
0.946719 0.322062i \(-0.104376\pi\)
\(374\) 319.885 + 854.642i 0.855307 + 2.28514i
\(375\) 0 0
\(376\) 924.826 + 300.494i 2.45964 + 0.799186i
\(377\) 11.9150 8.65672i 0.0316047 0.0229621i
\(378\) 74.8967 + 54.4157i 0.198139 + 0.143957i
\(379\) 81.0415 + 249.420i 0.213830 + 0.658101i 0.999235 + 0.0391181i \(0.0124549\pi\)
−0.785405 + 0.618983i \(0.787545\pi\)
\(380\) 0 0
\(381\) 114.986 158.265i 0.301802 0.415394i
\(382\) 1.94927 + 2.68294i 0.00510281 + 0.00702341i
\(383\) −105.890 + 325.896i −0.276475 + 0.850904i 0.712350 + 0.701825i \(0.247631\pi\)
−0.988825 + 0.149079i \(0.952369\pi\)
\(384\) 267.231i 0.695913i
\(385\) 0 0
\(386\) −147.813 −0.382934
\(387\) 95.6236 + 31.0700i 0.247089 + 0.0802842i
\(388\) −464.567 + 337.527i −1.19734 + 0.869916i
\(389\) −511.645 371.732i −1.31528 0.955608i −0.999978 0.00661783i \(-0.997893\pi\)
−0.315304 0.948991i \(-0.602107\pi\)
\(390\) 0 0
\(391\) 740.915 240.738i 1.89492 0.615698i
\(392\) −460.871 + 634.335i −1.17569 + 1.61820i
\(393\) −13.7188 18.8823i −0.0349078 0.0480465i
\(394\) −94.2441 + 290.053i −0.239198 + 0.736176i
\(395\) 0 0
\(396\) −527.627 348.958i −1.33239 0.881208i
\(397\) 335.656 0.845482 0.422741 0.906251i \(-0.361068\pi\)
0.422741 + 0.906251i \(0.361068\pi\)
\(398\) −265.382 86.2280i −0.666790 0.216653i
\(399\) −34.0841 + 24.7635i −0.0854237 + 0.0620639i
\(400\) 0 0
\(401\) 216.430 + 666.103i 0.539725 + 1.66110i 0.733211 + 0.680001i \(0.238021\pi\)
−0.193486 + 0.981103i \(0.561979\pi\)
\(402\) −225.176 + 73.1641i −0.560139 + 0.182000i
\(403\) 3.28968 4.52785i 0.00816297 0.0112354i
\(404\) −405.185 557.689i −1.00293 1.38042i
\(405\) 0 0
\(406\) 65.2537i 0.160723i
\(407\) 192.535 695.222i 0.473060 1.70816i
\(408\) −584.170 −1.43179
\(409\) 17.4090 + 5.65652i 0.0425648 + 0.0138301i 0.330222 0.943903i \(-0.392876\pi\)
−0.287657 + 0.957733i \(0.592876\pi\)
\(410\) 0 0
\(411\) 33.9024 + 24.6316i 0.0824877 + 0.0599308i
\(412\) 296.933 + 913.865i 0.720711 + 2.21812i
\(413\) −39.4391 + 12.8145i −0.0954942 + 0.0310279i
\(414\) −464.778 + 639.712i −1.12265 + 1.54520i
\(415\) 0 0
\(416\) 5.10017 15.6967i 0.0122600 0.0377325i
\(417\) 85.7801i 0.205708i
\(418\) 774.516 616.528i 1.85291 1.47495i
\(419\) 420.944 1.00464 0.502320 0.864682i \(-0.332480\pi\)
0.502320 + 0.864682i \(0.332480\pi\)
\(420\) 0 0
\(421\) −377.591 + 274.336i −0.896891 + 0.651629i −0.937665 0.347539i \(-0.887017\pi\)
0.0407749 + 0.999168i \(0.487017\pi\)
\(422\) 385.308 + 279.943i 0.913052 + 0.663371i
\(423\) 122.286 + 376.359i 0.289093 + 0.889738i
\(424\) 369.080 119.921i 0.870472 0.282833i
\(425\) 0 0
\(426\) −115.381 158.808i −0.270847 0.372789i
\(427\) −11.4846 + 35.3460i −0.0268961 + 0.0827776i
\(428\) 181.020i 0.422944i
\(429\) 9.13266 + 11.4729i 0.0212883 + 0.0267434i
\(430\) 0 0
\(431\) −227.136 73.8008i −0.526997 0.171232i 0.0334216 0.999441i \(-0.489360\pi\)
−0.560418 + 0.828210i \(0.689360\pi\)
\(432\) 459.977 334.193i 1.06476 0.773595i
\(433\) −77.6015 56.3808i −0.179218 0.130210i 0.494559 0.869144i \(-0.335329\pi\)
−0.673778 + 0.738934i \(0.735329\pi\)
\(434\) −7.66280 23.5837i −0.0176562 0.0543402i
\(435\) 0 0
\(436\) −600.158 + 826.047i −1.37651 + 1.89460i
\(437\) −496.747 683.713i −1.13672 1.56456i
\(438\) −140.714 + 433.074i −0.321266 + 0.988754i
\(439\) 749.426i 1.70712i −0.520994 0.853560i \(-0.674439\pi\)
0.520994 0.853560i \(-0.325561\pi\)
\(440\) 0 0
\(441\) −319.083 −0.723544
\(442\) −68.9612 22.4069i −0.156021 0.0506942i
\(443\) 37.4905 27.2384i 0.0846286 0.0614863i −0.544666 0.838653i \(-0.683344\pi\)
0.629295 + 0.777166i \(0.283344\pi\)
\(444\) 697.288 + 506.609i 1.57047 + 1.14101i
\(445\) 0 0
\(446\) −678.084 + 220.323i −1.52037 + 0.493997i
\(447\) 212.653 292.692i 0.475734 0.654791i
\(448\) 17.9838 + 24.7525i 0.0401424 + 0.0552512i
\(449\) −15.0043 + 46.1784i −0.0334171 + 0.102847i −0.966374 0.257141i \(-0.917219\pi\)
0.932957 + 0.359989i \(0.117219\pi\)
\(450\) 0 0
\(451\) 234.846 355.089i 0.520723 0.787336i
\(452\) −918.469 −2.03201
\(453\) 68.2239 + 22.1673i 0.150605 + 0.0489344i
\(454\) 21.4001 15.5481i 0.0471368 0.0342469i
\(455\) 0 0
\(456\) 195.829 + 602.698i 0.429449 + 1.32171i
\(457\) −395.176 + 128.400i −0.864718 + 0.280964i −0.707598 0.706616i \(-0.750221\pi\)
−0.157120 + 0.987579i \(0.550221\pi\)
\(458\) −387.869 + 533.856i −0.846876 + 1.16562i
\(459\) −328.172 451.691i −0.714972 0.984075i
\(460\) 0 0
\(461\) 704.025i 1.52717i −0.645707 0.763585i \(-0.723437\pi\)
0.645707 0.763585i \(-0.276563\pi\)
\(462\) 64.9088 2.85715i 0.140495 0.00618431i
\(463\) 506.506 1.09397 0.546983 0.837144i \(-0.315776\pi\)
0.546983 + 0.837144i \(0.315776\pi\)
\(464\) −381.141 123.840i −0.821424 0.266897i
\(465\) 0 0
\(466\) 272.449 + 197.946i 0.584655 + 0.424777i
\(467\) 111.045 + 341.762i 0.237785 + 0.731825i 0.996740 + 0.0806828i \(0.0257101\pi\)
−0.758955 + 0.651143i \(0.774290\pi\)
\(468\) 47.8044 15.5326i 0.102146 0.0331893i
\(469\) −28.0068 + 38.5480i −0.0597160 + 0.0821920i
\(470\) 0 0
\(471\) 68.7960 211.732i 0.146064 0.449538i
\(472\) 623.765i 1.32154i
\(473\) 155.206 58.0922i 0.328131 0.122816i
\(474\) 164.383 0.346799
\(475\) 0 0
\(476\) −177.511 + 128.969i −0.372922 + 0.270944i
\(477\) 127.766 + 92.8272i 0.267853 + 0.194606i
\(478\) 434.011 + 1335.75i 0.907973 + 2.79445i
\(479\) 512.144 166.406i 1.06919 0.347402i 0.279020 0.960285i \(-0.409990\pi\)
0.790173 + 0.612883i \(0.209990\pi\)
\(480\) 0 0
\(481\) 33.6925 + 46.3737i 0.0700467 + 0.0964110i
\(482\) −28.9060 + 88.9635i −0.0599710 + 0.184572i
\(483\) 55.4665i 0.114838i
\(484\) −1038.62 + 91.6129i −2.14590 + 0.189283i
\(485\) 0 0
\(486\) 848.430 + 275.672i 1.74574 + 0.567226i
\(487\) −534.918 + 388.640i −1.09839 + 0.798029i −0.980797 0.195032i \(-0.937519\pi\)
−0.117596 + 0.993061i \(0.537519\pi\)
\(488\) 452.264 + 328.589i 0.926770 + 0.673338i
\(489\) 37.9615 + 116.833i 0.0776308 + 0.238923i
\(490\) 0 0
\(491\) 39.8508 54.8499i 0.0811625 0.111711i −0.766505 0.642238i \(-0.778006\pi\)
0.847668 + 0.530527i \(0.178006\pi\)
\(492\) 298.972 + 411.500i 0.607667 + 0.836381i
\(493\) −121.609 + 374.274i −0.246671 + 0.759177i
\(494\) 78.6598i 0.159230i
\(495\) 0 0
\(496\) −152.293 −0.307042
\(497\) −37.5708 12.2075i −0.0755951 0.0245624i
\(498\) 596.549 433.418i 1.19789 0.870318i
\(499\) 312.340 + 226.929i 0.625933 + 0.454767i 0.854989 0.518646i \(-0.173564\pi\)
−0.229056 + 0.973413i \(0.573564\pi\)
\(500\) 0 0
\(501\) −162.636 + 52.8435i −0.324622 + 0.105476i
\(502\) 782.058 1076.41i 1.55788 2.14424i
\(503\) −152.395 209.753i −0.302971 0.417004i 0.630202 0.776431i \(-0.282972\pi\)
−0.933173 + 0.359427i \(0.882972\pi\)
\(504\) 36.8736 113.485i 0.0731619 0.225169i
\(505\) 0 0
\(506\) 57.3133 + 1302.05i 0.113267 + 2.57321i
\(507\) 256.592 0.506099
\(508\) −1051.14 341.538i −2.06918 0.672318i
\(509\) −653.416 + 474.735i −1.28373 + 0.932681i −0.999659 0.0261234i \(-0.991684\pi\)
−0.284067 + 0.958805i \(0.591684\pi\)
\(510\) 0 0
\(511\) 28.3183 + 87.1548i 0.0554174 + 0.170557i
\(512\) 1056.68 343.337i 2.06383 0.670581i
\(513\) −356.005 + 489.999i −0.693967 + 0.955164i
\(514\) −533.466 734.253i −1.03787 1.42851i
\(515\) 0 0
\(516\) 197.999i 0.383719i
\(517\) 544.033 + 359.809i 1.05229 + 0.695955i
\(518\) 253.971 0.490292
\(519\) 274.240 + 89.1058i 0.528400 + 0.171688i
\(520\) 0 0
\(521\) −252.452 183.417i −0.484553 0.352048i 0.318533 0.947912i \(-0.396810\pi\)
−0.803086 + 0.595864i \(0.796810\pi\)
\(522\) −123.433 379.887i −0.236461 0.727753i
\(523\) 70.0519 22.7612i 0.133942 0.0435205i −0.241279 0.970456i \(-0.577567\pi\)
0.375221 + 0.926935i \(0.377567\pi\)
\(524\) −77.5075 + 106.680i −0.147915 + 0.203588i
\(525\) 0 0
\(526\) 317.125 976.012i 0.602900 1.85554i
\(527\) 149.549i 0.283774i
\(528\) 106.497 384.548i 0.201699 0.728311i
\(529\) 583.638 1.10328
\(530\) 0 0
\(531\) −205.362 + 149.205i −0.386747 + 0.280988i
\(532\) 192.566 + 139.907i 0.361966 + 0.262984i
\(533\) 10.4533 + 32.1720i 0.0196122 + 0.0603602i
\(534\) −43.6355 + 14.1780i −0.0817144 + 0.0265506i
\(535\) 0 0
\(536\) 421.273 + 579.832i 0.785957 + 1.08178i
\(537\) −107.874 + 332.002i −0.200882 + 0.618253i
\(538\) 769.421i 1.43015i
\(539\) −411.476 + 327.542i −0.763407 + 0.607685i
\(540\) 0 0
\(541\) 39.3919 + 12.7992i 0.0728132 + 0.0236584i 0.345197 0.938530i \(-0.387812\pi\)
−0.272384 + 0.962189i \(0.587812\pi\)
\(542\) 151.481 110.058i 0.279486 0.203059i
\(543\) 15.3554 + 11.1563i 0.0282788 + 0.0205457i
\(544\) 136.280 + 419.428i 0.250515 + 0.771007i
\(545\) 0 0
\(546\) −3.03449 + 4.17662i −0.00555768 + 0.00764949i
\(547\) −378.937 521.562i −0.692755 0.953495i −0.999998 0.00186448i \(-0.999407\pi\)
0.307243 0.951631i \(-0.400593\pi\)
\(548\) 73.1618 225.169i 0.133507 0.410892i
\(549\) 227.498i 0.414386i
\(550\) 0 0
\(551\) 426.911 0.774794
\(552\) −793.483 257.818i −1.43747 0.467062i
\(553\) 26.7635 19.4448i 0.0483969 0.0351624i
\(554\) 471.352 + 342.457i 0.850815 + 0.618154i
\(555\) 0 0
\(556\) 460.916 149.761i 0.828985 0.269354i
\(557\) −263.713 + 362.970i −0.473453 + 0.651652i −0.977230 0.212181i \(-0.931943\pi\)
0.503777 + 0.863834i \(0.331943\pi\)
\(558\) −89.2209 122.802i −0.159894 0.220075i
\(559\) −4.06916 + 12.5236i −0.00727936 + 0.0224036i
\(560\) 0 0
\(561\) −377.620 104.578i −0.673120 0.186414i
\(562\) −1816.02 −3.23136
\(563\) −508.399 165.189i −0.903018 0.293408i −0.179536 0.983751i \(-0.557460\pi\)
−0.723482 + 0.690343i \(0.757460\pi\)
\(564\) −630.460 + 458.056i −1.11784 + 0.812156i
\(565\) 0 0
\(566\) 195.888 + 602.880i 0.346091 + 1.06516i
\(567\) 24.4746 7.95229i 0.0431651 0.0140252i
\(568\) −349.271 + 480.731i −0.614914 + 0.846357i
\(569\) 259.513 + 357.190i 0.456087 + 0.627750i 0.973692 0.227870i \(-0.0731762\pi\)
−0.517605 + 0.855620i \(0.673176\pi\)
\(570\) 0 0
\(571\) 935.409i 1.63819i 0.573655 + 0.819097i \(0.305525\pi\)
−0.573655 + 0.819097i \(0.694475\pi\)
\(572\) 45.7022 69.1020i 0.0798990 0.120808i
\(573\) −1.42397 −0.00248511
\(574\) 142.544 + 46.3153i 0.248334 + 0.0806887i
\(575\) 0 0
\(576\) 151.517 + 110.084i 0.263051 + 0.191118i
\(577\) 174.841 + 538.104i 0.303017 + 0.932590i 0.980410 + 0.196968i \(0.0631096\pi\)
−0.677393 + 0.735621i \(0.736890\pi\)
\(578\) 866.400 281.510i 1.49896 0.487042i
\(579\) 37.3059 51.3471i 0.0644316 0.0886825i
\(580\) 0 0
\(581\) 45.8564 141.132i 0.0789267 0.242911i
\(582\) 361.026i 0.620320i
\(583\) 260.050 11.4468i 0.446054 0.0196344i
\(584\) 1378.43 2.36033
\(585\) 0 0
\(586\) 163.663 118.908i 0.279289 0.202915i
\(587\) −792.407 575.718i −1.34993 0.980780i −0.999015 0.0443714i \(-0.985872\pi\)
−0.350912 0.936408i \(-0.614128\pi\)
\(588\) −194.173 597.604i −0.330227 1.01633i
\(589\) 154.292 50.1326i 0.261956 0.0851147i
\(590\) 0 0
\(591\) −76.9729 105.944i −0.130242 0.179262i
\(592\) 481.993 1483.42i 0.814177 2.50578i
\(593\) 1106.21i 1.86544i −0.360600 0.932720i \(-0.617428\pi\)
0.360600 0.932720i \(-0.382572\pi\)
\(594\) 874.777 327.421i 1.47269 0.551214i
\(595\) 0 0
\(596\) −1943.96 631.632i −3.26168 1.05978i
\(597\) 96.9328 70.4258i 0.162366 0.117966i
\(598\) −83.7815 60.8708i −0.140103 0.101791i
\(599\) 176.386 + 542.860i 0.294467 + 0.906276i 0.983400 + 0.181451i \(0.0580795\pi\)
−0.688933 + 0.724825i \(0.741921\pi\)
\(600\) 0 0
\(601\) −98.4935 + 135.565i −0.163883 + 0.225565i −0.883058 0.469263i \(-0.844520\pi\)
0.719176 + 0.694828i \(0.244520\pi\)
\(602\) 34.2935 + 47.2009i 0.0569659 + 0.0784068i
\(603\) −90.1301 + 277.392i −0.149469 + 0.460020i
\(604\) 405.283i 0.670999i
\(605\) 0 0
\(606\) 433.394 0.715171
\(607\) 801.915 + 260.558i 1.32111 + 0.429255i 0.882877 0.469605i \(-0.155604\pi\)
0.438235 + 0.898860i \(0.355604\pi\)
\(608\) 387.046 281.206i 0.636589 0.462509i
\(609\) 22.6678 + 16.4691i 0.0372214 + 0.0270429i
\(610\) 0 0
\(611\) −49.2908 + 16.0156i −0.0806724 + 0.0262120i
\(612\) −789.458 + 1086.60i −1.28996 + 1.77548i
\(613\) −196.640 270.652i −0.320783 0.441520i 0.617923 0.786239i \(-0.287974\pi\)
−0.938706 + 0.344718i \(0.887974\pi\)
\(614\) 469.367 1444.56i 0.764441 2.35271i
\(615\) 0 0
\(616\) −68.9433 184.197i −0.111921 0.299021i
\(617\) 916.072 1.48472 0.742360 0.670001i \(-0.233706\pi\)
0.742360 + 0.670001i \(0.233706\pi\)
\(618\) −574.554 186.684i −0.929698 0.302077i
\(619\) −563.143 + 409.147i −0.909762 + 0.660981i −0.940955 0.338532i \(-0.890070\pi\)
0.0311923 + 0.999513i \(0.490070\pi\)
\(620\) 0 0
\(621\) −246.410 758.370i −0.396795 1.22121i
\(622\) 336.897 109.465i 0.541635 0.175988i
\(623\) −5.42727 + 7.46999i −0.00871151 + 0.0119904i
\(624\) 18.6363 + 25.6507i 0.0298659 + 0.0411069i
\(625\) 0 0
\(626\) 187.291i 0.299187i
\(627\) 18.6924 + 424.655i 0.0298125 + 0.677280i
\(628\) −1257.79 −2.00286
\(629\) −1456.70 473.309i −2.31589 0.752479i
\(630\) 0 0
\(631\) 355.498 + 258.284i 0.563388 + 0.409325i 0.832697 0.553728i \(-0.186795\pi\)
−0.269309 + 0.963054i \(0.586795\pi\)
\(632\) −153.769 473.251i −0.243305 0.748815i
\(633\) −194.493 + 63.1946i −0.307256 + 0.0998335i
\(634\) −678.630 + 934.055i −1.07039 + 1.47327i
\(635\) 0 0
\(636\) −96.1043 + 295.779i −0.151107 + 0.465061i
\(637\) 41.7895i 0.0656036i
\(638\) −549.132 363.181i −0.860708 0.569250i
\(639\) −241.817 −0.378430
\(640\) 0 0
\(641\) 611.568 444.330i 0.954085 0.693183i 0.00231537 0.999997i \(-0.499263\pi\)
0.951769 + 0.306814i \(0.0992630\pi\)
\(642\) −92.0732 66.8951i −0.143416 0.104198i
\(643\) −36.2624 111.604i −0.0563957 0.173568i 0.918891 0.394512i \(-0.129086\pi\)
−0.975287 + 0.220944i \(0.929086\pi\)
\(644\) −298.034 + 96.8371i −0.462786 + 0.150368i
\(645\) 0 0
\(646\) −1235.44 1700.43i −1.91244 2.63225i
\(647\) −324.099 + 997.473i −0.500925 + 1.54169i 0.306590 + 0.951842i \(0.400812\pi\)
−0.807515 + 0.589847i \(0.799188\pi\)
\(648\) 387.088i 0.597358i
\(649\) −111.667 + 403.215i −0.172060 + 0.621286i
\(650\) 0 0
\(651\) 10.1265 + 3.29029i 0.0155553 + 0.00505421i
\(652\) 561.496 407.951i 0.861191 0.625692i
\(653\) 318.988 + 231.758i 0.488496 + 0.354913i 0.804606 0.593810i \(-0.202377\pi\)
−0.316110 + 0.948723i \(0.602377\pi\)
\(654\) −198.371 610.522i −0.303319 0.933521i
\(655\) 0 0
\(656\) 541.046 744.687i 0.824766 1.13519i
\(657\) 329.721 + 453.822i 0.501858 + 0.690749i
\(658\) −70.9598 + 218.392i −0.107842 + 0.331903i
\(659\) 894.004i 1.35661i −0.734782 0.678303i \(-0.762715\pi\)
0.734782 0.678303i \(-0.237285\pi\)
\(660\) 0 0
\(661\) −1104.87 −1.67152 −0.835759 0.549097i \(-0.814972\pi\)
−0.835759 + 0.549097i \(0.814972\pi\)
\(662\) 1158.88 + 376.542i 1.75057 + 0.568795i
\(663\) 25.1886 18.3006i 0.0379918 0.0276027i
\(664\) −1805.82 1312.01i −2.71962 1.97592i
\(665\) 0 0
\(666\) 1478.54 480.407i 2.22003 0.721332i
\(667\) −330.365 + 454.708i −0.495300 + 0.681721i
\(668\) 567.880 + 781.619i 0.850119 + 1.17009i
\(669\) 94.6034 291.159i 0.141410 0.435216i
\(670\) 0 0
\(671\) 233.529 + 293.372i 0.348031 + 0.437215i
\(672\) 31.3993 0.0467251
\(673\) 992.653 + 322.533i 1.47497 + 0.479246i 0.932605 0.360899i \(-0.117530\pi\)
0.542362 + 0.840145i \(0.317530\pi\)
\(674\) 1797.85 1306.22i 2.66744 1.93801i
\(675\) 0 0
\(676\) −447.975 1378.73i −0.662685 2.03954i
\(677\) −187.514 + 60.9269i −0.276977 + 0.0899954i −0.444212 0.895922i \(-0.646516\pi\)
0.167235 + 0.985917i \(0.446516\pi\)
\(678\) 339.415 467.165i 0.500613 0.689034i
\(679\) −42.7058 58.7794i −0.0628951 0.0865677i
\(680\) 0 0
\(681\) 11.3581i 0.0166786i
\(682\) −241.113 66.7741i −0.353538 0.0979092i
\(683\) −779.498 −1.14129 −0.570643 0.821198i \(-0.693306\pi\)
−0.570643 + 0.821198i \(0.693306\pi\)
\(684\) 1385.71 + 450.243i 2.02589 + 0.658250i
\(685\) 0 0
\(686\) −303.313 220.370i −0.442147 0.321239i
\(687\) −87.5581 269.476i −0.127450 0.392250i
\(688\) 340.779 110.726i 0.495318 0.160939i
\(689\) −12.1574 + 16.7332i −0.0176449 + 0.0242862i
\(690\) 0 0
\(691\) −229.580 + 706.573i −0.332242 + 1.02254i 0.635822 + 0.771836i \(0.280661\pi\)
−0.968064 + 0.250701i \(0.919339\pi\)
\(692\) 1629.12i 2.35422i
\(693\) 44.1521 66.7582i 0.0637115 0.0963322i
\(694\) −1694.64 −2.44185
\(695\) 0 0
\(696\) 340.965 247.726i 0.489893 0.355928i
\(697\) −731.270 531.299i −1.04917 0.762265i
\(698\) 201.839 + 621.197i 0.289168 + 0.889967i
\(699\) −137.525 + 44.6846i −0.196745 + 0.0639265i
\(700\) 0 0
\(701\) 567.996 + 781.779i 0.810265 + 1.11523i 0.991282 + 0.131754i \(0.0420608\pi\)
−0.181018 + 0.983480i \(0.557939\pi\)
\(702\) −22.9347 + 70.5859i −0.0326706 + 0.100550i
\(703\) 1661.56i 2.36353i
\(704\) 308.393 13.5748i 0.438058 0.0192824i
\(705\) 0 0
\(706\) −977.348 317.560i −1.38435 0.449801i
\(707\) 70.5618 51.2661i 0.0998045 0.0725122i
\(708\) −404.413 293.823i −0.571204 0.415004i
\(709\) 109.834 + 338.035i 0.154914 + 0.476777i 0.998152 0.0607633i \(-0.0193535\pi\)
−0.843238 + 0.537541i \(0.819353\pi\)
\(710\) 0 0
\(711\) 119.027 163.827i 0.167408 0.230418i
\(712\) 81.6359 + 112.362i 0.114657 + 0.157812i
\(713\) −66.0020 + 203.133i −0.0925695 + 0.284900i
\(714\) 137.948i 0.193205i
\(715\) 0 0
\(716\) 1972.25 2.75454
\(717\) −573.551 186.358i −0.799932 0.259914i
\(718\) 963.624 700.114i 1.34210 0.975089i
\(719\) 201.778 + 146.600i 0.280636 + 0.203894i 0.719195 0.694808i \(-0.244511\pi\)
−0.438558 + 0.898703i \(0.644511\pi\)
\(720\) 0 0
\(721\) −115.627 + 37.5695i −0.160370 + 0.0521075i
\(722\) −586.508 + 807.259i −0.812337 + 1.11809i
\(723\) −23.6087 32.4946i −0.0326538 0.0449441i
\(724\) 33.1370 101.985i 0.0457694 0.140864i
\(725\) 0 0
\(726\) 337.218 562.131i 0.464487 0.774285i
\(727\) −883.791 −1.21567 −0.607834 0.794064i \(-0.707961\pi\)
−0.607834 + 0.794064i \(0.707961\pi\)
\(728\) 14.8629 + 4.82924i 0.0204161 + 0.00663358i
\(729\) −138.033 + 100.287i −0.189346 + 0.137568i
\(730\) 0 0
\(731\) −108.731 334.640i −0.148743 0.457783i
\(732\) −426.076 + 138.440i −0.582071 + 0.189126i
\(733\) 556.173 765.506i 0.758763 1.04435i −0.238553 0.971129i \(-0.576673\pi\)
0.997316 0.0732177i \(-0.0233268\pi\)
\(734\) 496.570 + 683.471i 0.676527 + 0.931159i
\(735\) 0 0
\(736\) 629.858i 0.855785i
\(737\) 168.518 + 450.233i 0.228654 + 0.610899i
\(738\) 917.455 1.24316
\(739\) 450.994 + 146.537i 0.610277 + 0.198291i 0.597818 0.801632i \(-0.296034\pi\)
0.0124581 + 0.999922i \(0.496034\pi\)
\(740\) 0 0
\(741\) −27.3248 19.8527i −0.0368756 0.0267917i
\(742\) 28.3187 + 87.1560i 0.0381654 + 0.117461i
\(743\) −229.097 + 74.4381i −0.308340 + 0.100186i −0.459100 0.888385i \(-0.651828\pi\)
0.150760 + 0.988570i \(0.451828\pi\)
\(744\) 94.1393 129.572i 0.126531 0.174155i
\(745\) 0 0
\(746\) 263.716 811.636i 0.353507 1.08798i
\(747\) 908.365i 1.21602i
\(748\) 97.3508 + 2211.62i 0.130148 + 2.95671i
\(749\) −22.9036 −0.0305790
\(750\) 0 0
\(751\) −312.684 + 227.179i −0.416357 + 0.302501i −0.776171 0.630523i \(-0.782840\pi\)
0.359813 + 0.933024i \(0.382840\pi\)
\(752\) 1140.94 + 828.939i 1.51720 + 1.10231i
\(753\) 176.543 + 543.343i 0.234452 + 0.721570i
\(754\) 49.7528 16.1657i 0.0659852 0.0214399i
\(755\) 0 0
\(756\) 132.008 + 181.693i 0.174613 + 0.240335i
\(757\) −240.706 + 740.817i −0.317974 + 0.978622i 0.656540 + 0.754292i \(0.272020\pi\)
−0.974513 + 0.224331i \(0.927980\pi\)
\(758\) 931.541i 1.22895i
\(759\) −466.770 308.709i −0.614980 0.406731i
\(760\) 0 0
\(761\) 286.870 + 93.2098i 0.376965 + 0.122483i 0.491370 0.870951i \(-0.336496\pi\)
−0.114405 + 0.993434i \(0.536496\pi\)
\(762\) 562.163 408.435i 0.737747 0.536004i
\(763\) −104.516 75.9352i −0.136980 0.0995219i
\(764\) 2.48606 + 7.65131i 0.00325401 + 0.0100148i
\(765\) 0 0
\(766\) −715.432 + 984.708i −0.933985 + 1.28552i
\(767\) −19.5410 26.8958i −0.0254771 0.0350662i
\(768\) −240.417 + 739.928i −0.313043 + 0.963448i
\(769\) 1335.43i 1.73658i 0.496054 + 0.868292i \(0.334782\pi\)
−0.496054 + 0.868292i \(0.665218\pi\)
\(770\) 0 0
\(771\) 389.705 0.505453
\(772\) −341.031 110.808i −0.441750 0.143533i
\(773\) −347.748 + 252.654i −0.449868 + 0.326848i −0.789544 0.613695i \(-0.789683\pi\)
0.339676 + 0.940543i \(0.389683\pi\)
\(774\) 288.930 + 209.920i 0.373295 + 0.271215i
\(775\) 0 0
\(776\) −1039.38 + 337.715i −1.33941 + 0.435200i
\(777\) −64.0989 + 88.2245i −0.0824953 + 0.113545i
\(778\) −1320.40 1817.38i −1.69718 2.33596i
\(779\) −303.010 + 932.569i −0.388973 + 1.19714i
\(780\) 0 0
\(781\) −311.837 + 248.228i −0.399279 + 0.317833i
\(782\) 2767.19 3.53861
\(783\) 383.092 + 124.474i 0.489261 + 0.158971i
\(784\) −919.961 + 668.390i −1.17342 + 0.852539i
\(785\) 0 0
\(786\) −25.6186 78.8460i −0.0325937 0.100313i
\(787\) 973.345 316.259i 1.23678 0.401854i 0.383613 0.923494i \(-0.374680\pi\)
0.853166 + 0.521640i \(0.174680\pi\)
\(788\) −434.877 + 598.556i −0.551874 + 0.759589i
\(789\) 259.009 + 356.495i 0.328275 + 0.451832i
\(790\) 0 0
\(791\) 116.210i 0.146915i
\(792\) −749.790 941.926i −0.946705 1.18930i
\(793\) −29.7948 −0.0375723
\(794\) 1133.91 + 368.429i 1.42810 + 0.464017i
\(795\) 0 0
\(796\) −547.645 397.888i −0.687996 0.499859i
\(797\) −207.308 638.028i −0.260110 0.800537i −0.992780 0.119952i \(-0.961726\pi\)
0.732669 0.680585i \(-0.238274\pi\)
\(798\) −142.324 + 46.2437i −0.178350 + 0.0579495i
\(799\) 814.005 1120.38i 1.01878 1.40223i
\(800\) 0 0
\(801\) −17.4658 + 53.7541i −0.0218050 + 0.0671088i
\(802\) 2487.78i 3.10197i
\(803\) 891.048 + 246.768i 1.10965 + 0.307307i
\(804\) −574.369 −0.714390
\(805\) 0 0
\(806\) 16.0831 11.6850i 0.0199542 0.0144976i
\(807\) 267.282 + 194.191i 0.331204 + 0.240634i
\(808\) −405.410 1247.72i −0.501745 1.54421i
\(809\) 369.452 120.042i 0.456677 0.148383i −0.0716398 0.997431i \(-0.522823\pi\)
0.528317 + 0.849047i \(0.322823\pi\)
\(810\) 0 0
\(811\) 589.421 + 811.268i 0.726783 + 1.00033i 0.999271 + 0.0381716i \(0.0121534\pi\)
−0.272488 + 0.962159i \(0.587847\pi\)
\(812\) 48.9174 150.552i 0.0602431 0.185409i
\(813\) 80.3987i 0.0988914i
\(814\) 1413.52 2137.25i 1.73651 2.62562i
\(815\) 0 0
\(816\) −805.742 261.802i −0.987429 0.320835i
\(817\) −308.804 + 224.359i −0.377973 + 0.274614i
\(818\) 52.6019 + 38.2175i 0.0643055 + 0.0467207i
\(819\) 1.96527 + 6.04847i 0.00239959 + 0.00738519i
\(820\) 0 0
\(821\) 313.012 430.825i 0.381257 0.524756i −0.574660 0.818393i \(-0.694866\pi\)
0.955917 + 0.293637i \(0.0948656\pi\)
\(822\) 87.4921 + 120.423i 0.106438 + 0.146499i
\(823\) 279.100 858.981i 0.339125 1.04372i −0.625529 0.780201i \(-0.715117\pi\)
0.964654 0.263519i \(-0.0848831\pi\)
\(824\) 1828.75i 2.21935i
\(825\) 0 0
\(826\) −147.298 −0.178327
\(827\) 1385.51 + 450.181i 1.67535 + 0.544354i 0.984000 0.178166i \(-0.0570165\pi\)
0.691349 + 0.722521i \(0.257017\pi\)
\(828\) −1551.89 + 1127.51i −1.87426 + 1.36173i
\(829\) −685.365 497.947i −0.826737 0.600660i 0.0918972 0.995768i \(-0.470707\pi\)
−0.918634 + 0.395109i \(0.870707\pi\)
\(830\) 0 0
\(831\) −237.926 + 77.3067i −0.286312 + 0.0930285i
\(832\) −14.4174 + 19.8439i −0.0173286 + 0.0238508i
\(833\) 656.349 + 903.387i 0.787934 + 1.08450i
\(834\) −94.1556 + 289.781i −0.112896 + 0.347459i
\(835\) 0 0
\(836\) 2249.13 841.829i 2.69035 1.00697i
\(837\) 153.072 0.182882
\(838\) 1422.03 + 462.044i 1.69693 + 0.551365i
\(839\) −773.960 + 562.315i −0.922480 + 0.670221i −0.944140 0.329545i \(-0.893105\pi\)
0.0216603 + 0.999765i \(0.493105\pi\)
\(840\) 0 0
\(841\) 172.147 + 529.814i 0.204693 + 0.629981i
\(842\) −1576.69 + 512.299i −1.87256 + 0.608431i
\(843\) 458.340 630.850i 0.543701 0.748340i
\(844\) 679.117 + 934.724i 0.804641 + 1.10749i
\(845\) 0 0
\(846\) 1405.64i 1.66151i
\(847\) −11.5914 131.411i −0.0136852 0.155149i
\(848\) 562.814 0.663695
\(849\) −258.868 84.1112i −0.304909 0.0990710i
\(850\) 0 0
\(851\) −1769.75 1285.80i −2.07961 1.51093i
\(852\) −147.154 452.894i −0.172716 0.531566i
\(853\) −1191.15 + 387.028i −1.39643 + 0.453726i −0.908033 0.418898i \(-0.862416\pi\)
−0.488392 + 0.872624i \(0.662416\pi\)
\(854\) −77.5943 + 106.799i −0.0908598 + 0.125058i
\(855\) 0 0
\(856\) −106.460 + 327.651i −0.124369 + 0.382769i
\(857\) 628.293i 0.733131i −0.930392 0.366565i \(-0.880534\pi\)
0.930392 0.366565i \(-0.119466\pi\)
\(858\) 18.2587 + 48.7820i 0.0212805 + 0.0568555i
\(859\) −196.824 −0.229132 −0.114566 0.993416i \(-0.536548\pi\)
−0.114566 + 0.993416i \(0.536548\pi\)
\(860\) 0 0
\(861\) −52.0651 + 37.8275i −0.0604705 + 0.0439344i
\(862\) −686.299 498.625i −0.796170 0.578452i
\(863\) −251.616 774.393i −0.291559 0.897327i −0.984356 0.176194i \(-0.943622\pi\)
0.692796 0.721133i \(-0.256378\pi\)
\(864\) 429.309 139.491i 0.496886 0.161448i
\(865\) 0 0
\(866\) −200.266 275.643i −0.231254 0.318294i
\(867\) −120.876 + 372.019i −0.139419 + 0.429088i
\(868\) 60.1563i 0.0693044i
\(869\) −14.6777 333.448i −0.0168903 0.383714i
\(870\) 0 0
\(871\) −36.3293 11.8041i −0.0417099 0.0135524i
\(872\) −1572.11 + 1142.20i −1.80288 + 1.30987i
\(873\) −359.806 261.414i −0.412149 0.299444i
\(874\) −927.632 2854.96i −1.06136 3.26654i
\(875\) 0 0
\(876\) −649.307 + 893.695i −0.741218 + 1.02020i
\(877\) −338.015 465.237i −0.385422 0.530487i 0.571589 0.820540i \(-0.306327\pi\)
−0.957011 + 0.290053i \(0.906327\pi\)
\(878\) 822.598 2531.70i 0.936900 2.88348i
\(879\) 86.8641i 0.0988215i
\(880\) 0 0
\(881\) 513.793 0.583193 0.291596 0.956541i \(-0.405814\pi\)
0.291596 + 0.956541i \(0.405814\pi\)
\(882\) −1077.92 350.238i −1.22213 0.397095i
\(883\) −235.619 + 171.187i −0.266839 + 0.193870i −0.713156 0.701005i \(-0.752735\pi\)
0.446318 + 0.894875i \(0.352735\pi\)
\(884\) −142.309 103.393i −0.160983 0.116961i
\(885\) 0 0
\(886\) 156.548 50.8654i 0.176690 0.0574102i
\(887\) 683.839 941.224i 0.770958 1.06113i −0.225265 0.974297i \(-0.572325\pi\)
0.996223 0.0868346i \(-0.0276752\pi\)
\(888\) 964.163 + 1327.06i 1.08577 + 1.49443i
\(889\) 43.2132 132.996i 0.0486087 0.149602i
\(890\) 0 0
\(891\) 69.2967 250.222i 0.0777741 0.280833i
\(892\) −1729.63 −1.93905
\(893\) −1428.79 464.243i −1.59999 0.519869i
\(894\) 1039.65 755.350i 1.16292 0.844911i
\(895\) 0 0
\(896\) 59.0302 + 181.676i 0.0658820 + 0.202764i
\(897\) 42.2906 13.7410i 0.0471467 0.0153189i
\(898\) −101.374 + 139.530i −0.112889 + 0.155379i
\(899\) −63.4184 87.2879i −0.0705432 0.0970944i
\(900\) 0 0
\(901\) 552.674i 0.613401i
\(902\) 1183.11 941.778i 1.31165 1.04410i
\(903\) −25.0519 −0.0277429
\(904\) −1662.45 540.162i −1.83899 0.597525i
\(905\) 0 0
\(906\) 206.141 + 149.770i 0.227529 + 0.165309i
\(907\) −72.5322 223.231i −0.0799694 0.246120i 0.903077 0.429479i \(-0.141303\pi\)
−0.983046 + 0.183359i \(0.941303\pi\)
\(908\) 61.0296 19.8297i 0.0672132 0.0218389i
\(909\) 313.815 431.929i 0.345231 0.475169i
\(910\) 0 0
\(911\) −173.440 + 533.795i −0.190385 + 0.585944i −0.999999 0.00101779i \(-0.999676\pi\)
0.809615 + 0.586962i \(0.199676\pi\)
\(912\) 919.061i 1.00774i
\(913\) −932.448 1171.39i −1.02130 1.28301i
\(914\) −1475.91 −1.61479
\(915\) 0 0
\(916\) −1295.09 + 940.938i −1.41385 + 1.02723i
\(917\) −13.4977 9.80667i −0.0147194 0.0106943i
\(918\) −612.834 1886.11i −0.667575 2.05458i
\(919\) −761.551 + 247.443i −0.828673 + 0.269252i −0.692487 0.721431i \(-0.743485\pi\)
−0.136187 + 0.990683i \(0.543485\pi\)
\(920\) 0 0
\(921\) 383.350 + 527.636i 0.416233 + 0.572895i
\(922\) 772.765 2378.33i 0.838140 2.57953i
\(923\) 31.6702i 0.0343122i
\(924\) 151.898 + 42.0668i 0.164392 + 0.0455269i
\(925\) 0 0
\(926\) 1711.07 + 555.960i 1.84781 + 0.600389i
\(927\) −602.079 + 437.436i −0.649492 + 0.471884i
\(928\) −257.408 187.018i −0.277379 0.201528i
\(929\) 113.874 + 350.469i 0.122577 + 0.377254i 0.993452 0.114251i \(-0.0364469\pi\)
−0.870875 + 0.491505i \(0.836447\pi\)
\(930\) 0 0
\(931\) 712.015 980.004i 0.764785 1.05264i
\(932\) 480.201 + 660.939i 0.515237 + 0.709162i
\(933\) −47.0025 + 144.659i −0.0503778 + 0.155047i
\(934\) 1276.42i 1.36662i
\(935\) 0 0
\(936\) 95.6620 0.102203
\(937\) −33.4113 10.8560i −0.0356577 0.0115859i 0.291134 0.956682i \(-0.405968\pi\)
−0.326792 + 0.945096i \(0.605968\pi\)
\(938\) −136.924 + 99.4810i −0.145974 + 0.106057i
\(939\) −65.0612 47.2697i −0.0692877 0.0503405i
\(940\) 0 0
\(941\) −897.547 + 291.631i −0.953823 + 0.309916i −0.744268 0.667881i \(-0.767201\pi\)
−0.209555 + 0.977797i \(0.567201\pi\)
\(942\) 464.811 639.757i 0.493430 0.679148i
\(943\) −758.806 1044.41i −0.804672 1.10754i
\(944\) −279.546 + 860.355i −0.296129 + 0.911393i
\(945\) 0 0
\(946\) 588.078 25.8860i 0.621647 0.0273636i
\(947\) 337.731 0.356633 0.178316 0.983973i \(-0.442935\pi\)
0.178316 + 0.983973i \(0.442935\pi\)
\(948\) 379.261 + 123.229i 0.400064 + 0.129989i
\(949\) −59.4359 + 43.1827i −0.0626301 + 0.0455034i
\(950\) 0 0
\(951\) −153.195 471.485i −0.161088 0.495778i
\(952\) −397.147 + 129.041i −0.417172 + 0.135547i
\(953\) 619.393 852.521i 0.649940 0.894566i −0.349156 0.937064i \(-0.613532\pi\)
0.999097 + 0.0424986i \(0.0135318\pi\)
\(954\) 329.725 + 453.828i 0.345624 + 0.475711i
\(955\) 0 0
\(956\) 3407.17i 3.56399i
\(957\) 264.755 99.0955i 0.276651 0.103548i
\(958\) 1912.77 1.99663
\(959\) 28.4896 + 9.25682i 0.0297076 + 0.00965257i
\(960\) 0 0
\(961\) 744.295 + 540.762i 0.774500 + 0.562707i
\(962\) 62.9178 + 193.641i 0.0654031 + 0.201290i
\(963\) −133.338 + 43.3241i −0.138461 + 0.0449887i
\(964\) −133.383 + 183.586i −0.138364 + 0.190442i
\(965\) 0 0
\(966\) 60.8822 187.376i 0.0630250 0.193971i
\(967\) 200.406i 0.207246i 0.994617 + 0.103623i \(0.0330435\pi\)
−0.994617 + 0.103623i \(0.966957\pi\)
\(968\) −1933.80 445.001i −1.99772 0.459712i
\(969\) 902.503 0.931376
\(970\) 0 0
\(971\) 253.043 183.846i 0.260600 0.189337i −0.449812 0.893124i \(-0.648509\pi\)
0.710412 + 0.703787i \(0.248509\pi\)
\(972\) 1750.83 + 1272.05i 1.80126 + 1.30869i
\(973\) 18.9485 + 58.3175i 0.0194743 + 0.0599358i
\(974\) −2233.64 + 725.752i −2.29326 + 0.745126i
\(975\) 0 0
\(976\) 476.545 + 655.907i 0.488263 + 0.672036i
\(977\) 151.887 467.459i 0.155462 0.478464i −0.842745 0.538313i \(-0.819062\pi\)
0.998207 + 0.0598491i \(0.0190620\pi\)
\(978\) 436.353i 0.446168i
\(979\) 32.6561 + 87.2479i 0.0333566 + 0.0891194i
\(980\) 0 0
\(981\) −752.096 244.371i −0.766663 0.249104i
\(982\) 194.829 141.551i 0.198400 0.144146i
\(983\) 703.172 + 510.884i 0.715332 + 0.519719i 0.884889 0.465801i \(-0.154234\pi\)
−0.169557 + 0.985520i \(0.554234\pi\)
\(984\) 299.138 + 920.653i 0.304002 + 0.935623i
\(985\) 0 0
\(986\) −821.635 + 1130.88i −0.833301 + 1.14694i
\(987\) −57.9557 79.7692i −0.0587190 0.0808198i
\(988\) −58.9673 + 181.483i −0.0596835 + 0.183687i
\(989\) 502.531i 0.508120i
\(990\) 0 0
\(991\) −901.175 −0.909360 −0.454680 0.890655i \(-0.650246\pi\)
−0.454680 + 0.890655i \(0.650246\pi\)
\(992\) −114.993 37.3634i −0.115920 0.0376647i
\(993\) −423.288 + 307.537i −0.426272 + 0.309705i
\(994\) −113.522 82.4783i −0.114207 0.0829761i
\(995\) 0 0
\(996\) 1701.26 552.773i 1.70809 0.554993i
\(997\) 748.492 1030.21i 0.750744 1.03331i −0.247184 0.968969i \(-0.579505\pi\)
0.997928 0.0643420i \(-0.0204949\pi\)
\(998\) 806.058 + 1109.44i 0.807673 + 1.11167i
\(999\) −484.460 + 1491.02i −0.484945 + 1.49251i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.x.j.101.10 40
5.2 odd 4 55.3.h.a.24.1 40
5.3 odd 4 55.3.h.a.24.10 yes 40
5.4 even 2 inner 275.3.x.j.101.1 40
11.6 odd 10 inner 275.3.x.j.226.10 40
55.7 even 20 605.3.d.b.604.38 40
55.17 even 20 55.3.h.a.39.10 yes 40
55.18 even 20 605.3.d.b.604.3 40
55.28 even 20 55.3.h.a.39.1 yes 40
55.37 odd 20 605.3.d.b.604.4 40
55.39 odd 10 inner 275.3.x.j.226.1 40
55.48 odd 20 605.3.d.b.604.37 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.3.h.a.24.1 40 5.2 odd 4
55.3.h.a.24.10 yes 40 5.3 odd 4
55.3.h.a.39.1 yes 40 55.28 even 20
55.3.h.a.39.10 yes 40 55.17 even 20
275.3.x.j.101.1 40 5.4 even 2 inner
275.3.x.j.101.10 40 1.1 even 1 trivial
275.3.x.j.226.1 40 55.39 odd 10 inner
275.3.x.j.226.10 40 11.6 odd 10 inner
605.3.d.b.604.3 40 55.18 even 20
605.3.d.b.604.4 40 55.37 odd 20
605.3.d.b.604.37 40 55.48 odd 20
605.3.d.b.604.38 40 55.7 even 20