Properties

Label 6031.2.a.c.1.3
Level $6031$
Weight $2$
Character 6031.1
Self dual yes
Analytic conductor $48.158$
Analytic rank $1$
Dimension $110$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6031,2,Mod(1,6031)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6031.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6031, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6031 = 37 \cdot 163 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6031.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [110] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.1577774590\)
Analytic rank: \(1\)
Dimension: \(110\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Character \(\chi\) \(=\) 6031.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.69148 q^{2} -2.62726 q^{3} +5.24405 q^{4} +0.394241 q^{5} +7.07121 q^{6} -0.479189 q^{7} -8.73128 q^{8} +3.90249 q^{9} -1.06109 q^{10} -1.84868 q^{11} -13.7775 q^{12} +6.41254 q^{13} +1.28973 q^{14} -1.03577 q^{15} +13.0119 q^{16} -0.224809 q^{17} -10.5035 q^{18} +2.59899 q^{19} +2.06742 q^{20} +1.25895 q^{21} +4.97568 q^{22} +3.01427 q^{23} +22.9393 q^{24} -4.84457 q^{25} -17.2592 q^{26} -2.37107 q^{27} -2.51289 q^{28} -8.24827 q^{29} +2.78776 q^{30} -0.0554678 q^{31} -17.5588 q^{32} +4.85696 q^{33} +0.605068 q^{34} -0.188916 q^{35} +20.4648 q^{36} -1.00000 q^{37} -6.99512 q^{38} -16.8474 q^{39} -3.44223 q^{40} +7.63705 q^{41} -3.38844 q^{42} +6.63023 q^{43} -9.69456 q^{44} +1.53852 q^{45} -8.11285 q^{46} +5.12386 q^{47} -34.1857 q^{48} -6.77038 q^{49} +13.0391 q^{50} +0.590631 q^{51} +33.6277 q^{52} -1.98102 q^{53} +6.38169 q^{54} -0.728825 q^{55} +4.18393 q^{56} -6.82822 q^{57} +22.2000 q^{58} -1.41404 q^{59} -5.43164 q^{60} -9.06011 q^{61} +0.149290 q^{62} -1.87003 q^{63} +21.2352 q^{64} +2.52809 q^{65} -13.0724 q^{66} +3.07595 q^{67} -1.17891 q^{68} -7.91928 q^{69} +0.508462 q^{70} -9.10631 q^{71} -34.0737 q^{72} +0.856155 q^{73} +2.69148 q^{74} +12.7280 q^{75} +13.6292 q^{76} +0.885866 q^{77} +45.3444 q^{78} +9.06540 q^{79} +5.12984 q^{80} -5.47804 q^{81} -20.5549 q^{82} -14.1190 q^{83} +6.60201 q^{84} -0.0886289 q^{85} -17.8451 q^{86} +21.6703 q^{87} +16.1413 q^{88} -16.7994 q^{89} -4.14089 q^{90} -3.07282 q^{91} +15.8070 q^{92} +0.145728 q^{93} -13.7907 q^{94} +1.02463 q^{95} +46.1315 q^{96} +14.6560 q^{97} +18.2223 q^{98} -7.21445 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 110 q - 9 q^{2} + 97 q^{4} - 26 q^{5} - 26 q^{6} - 4 q^{7} - 27 q^{8} + 62 q^{9} - 17 q^{10} - 9 q^{11} - 21 q^{13} - 29 q^{14} - 23 q^{15} + 79 q^{16} - 76 q^{17} - 31 q^{18} - 27 q^{19} - 67 q^{20} - 30 q^{21}+ \cdots - 21 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.69148 −1.90316 −0.951581 0.307399i \(-0.900541\pi\)
−0.951581 + 0.307399i \(0.900541\pi\)
\(3\) −2.62726 −1.51685 −0.758424 0.651761i \(-0.774030\pi\)
−0.758424 + 0.651761i \(0.774030\pi\)
\(4\) 5.24405 2.62202
\(5\) 0.394241 0.176310 0.0881549 0.996107i \(-0.471903\pi\)
0.0881549 + 0.996107i \(0.471903\pi\)
\(6\) 7.07121 2.88681
\(7\) −0.479189 −0.181116 −0.0905581 0.995891i \(-0.528865\pi\)
−0.0905581 + 0.995891i \(0.528865\pi\)
\(8\) −8.73128 −3.08697
\(9\) 3.90249 1.30083
\(10\) −1.06109 −0.335546
\(11\) −1.84868 −0.557398 −0.278699 0.960379i \(-0.589903\pi\)
−0.278699 + 0.960379i \(0.589903\pi\)
\(12\) −13.7775 −3.97721
\(13\) 6.41254 1.77852 0.889260 0.457403i \(-0.151220\pi\)
0.889260 + 0.457403i \(0.151220\pi\)
\(14\) 1.28973 0.344694
\(15\) −1.03577 −0.267435
\(16\) 13.0119 3.25299
\(17\) −0.224809 −0.0545242 −0.0272621 0.999628i \(-0.508679\pi\)
−0.0272621 + 0.999628i \(0.508679\pi\)
\(18\) −10.5035 −2.47569
\(19\) 2.59899 0.596249 0.298124 0.954527i \(-0.403639\pi\)
0.298124 + 0.954527i \(0.403639\pi\)
\(20\) 2.06742 0.462289
\(21\) 1.25895 0.274726
\(22\) 4.97568 1.06082
\(23\) 3.01427 0.628519 0.314260 0.949337i \(-0.398244\pi\)
0.314260 + 0.949337i \(0.398244\pi\)
\(24\) 22.9393 4.68247
\(25\) −4.84457 −0.968915
\(26\) −17.2592 −3.38481
\(27\) −2.37107 −0.456314
\(28\) −2.51289 −0.474891
\(29\) −8.24827 −1.53167 −0.765833 0.643040i \(-0.777673\pi\)
−0.765833 + 0.643040i \(0.777673\pi\)
\(30\) 2.78776 0.508973
\(31\) −0.0554678 −0.00996232 −0.00498116 0.999988i \(-0.501586\pi\)
−0.00498116 + 0.999988i \(0.501586\pi\)
\(32\) −17.5588 −3.10398
\(33\) 4.85696 0.845488
\(34\) 0.605068 0.103768
\(35\) −0.188916 −0.0319326
\(36\) 20.4648 3.41081
\(37\) −1.00000 −0.164399
\(38\) −6.99512 −1.13476
\(39\) −16.8474 −2.69774
\(40\) −3.44223 −0.544264
\(41\) 7.63705 1.19271 0.596353 0.802722i \(-0.296616\pi\)
0.596353 + 0.802722i \(0.296616\pi\)
\(42\) −3.38844 −0.522848
\(43\) 6.63023 1.01110 0.505550 0.862797i \(-0.331290\pi\)
0.505550 + 0.862797i \(0.331290\pi\)
\(44\) −9.69456 −1.46151
\(45\) 1.53852 0.229349
\(46\) −8.11285 −1.19617
\(47\) 5.12386 0.747391 0.373696 0.927551i \(-0.378090\pi\)
0.373696 + 0.927551i \(0.378090\pi\)
\(48\) −34.1857 −4.93429
\(49\) −6.77038 −0.967197
\(50\) 13.0391 1.84400
\(51\) 0.590631 0.0827049
\(52\) 33.6277 4.66332
\(53\) −1.98102 −0.272114 −0.136057 0.990701i \(-0.543443\pi\)
−0.136057 + 0.990701i \(0.543443\pi\)
\(54\) 6.38169 0.868438
\(55\) −0.728825 −0.0982747
\(56\) 4.18393 0.559101
\(57\) −6.82822 −0.904420
\(58\) 22.2000 2.91501
\(59\) −1.41404 −0.184092 −0.0920459 0.995755i \(-0.529341\pi\)
−0.0920459 + 0.995755i \(0.529341\pi\)
\(60\) −5.43164 −0.701222
\(61\) −9.06011 −1.16003 −0.580014 0.814606i \(-0.696953\pi\)
−0.580014 + 0.814606i \(0.696953\pi\)
\(62\) 0.149290 0.0189599
\(63\) −1.87003 −0.235601
\(64\) 21.2352 2.65440
\(65\) 2.52809 0.313570
\(66\) −13.0724 −1.60910
\(67\) 3.07595 0.375787 0.187894 0.982189i \(-0.439834\pi\)
0.187894 + 0.982189i \(0.439834\pi\)
\(68\) −1.17891 −0.142964
\(69\) −7.91928 −0.953369
\(70\) 0.508462 0.0607729
\(71\) −9.10631 −1.08072 −0.540360 0.841434i \(-0.681712\pi\)
−0.540360 + 0.841434i \(0.681712\pi\)
\(72\) −34.0737 −4.01563
\(73\) 0.856155 0.100205 0.0501027 0.998744i \(-0.484045\pi\)
0.0501027 + 0.998744i \(0.484045\pi\)
\(74\) 2.69148 0.312878
\(75\) 12.7280 1.46970
\(76\) 13.6292 1.56338
\(77\) 0.885866 0.100954
\(78\) 45.3444 5.13424
\(79\) 9.06540 1.01994 0.509969 0.860193i \(-0.329657\pi\)
0.509969 + 0.860193i \(0.329657\pi\)
\(80\) 5.12984 0.573533
\(81\) −5.47804 −0.608671
\(82\) −20.5549 −2.26991
\(83\) −14.1190 −1.54976 −0.774878 0.632111i \(-0.782189\pi\)
−0.774878 + 0.632111i \(0.782189\pi\)
\(84\) 6.60201 0.720338
\(85\) −0.0886289 −0.00961315
\(86\) −17.8451 −1.92429
\(87\) 21.6703 2.32330
\(88\) 16.1413 1.72067
\(89\) −16.7994 −1.78074 −0.890368 0.455241i \(-0.849553\pi\)
−0.890368 + 0.455241i \(0.849553\pi\)
\(90\) −4.14089 −0.436488
\(91\) −3.07282 −0.322119
\(92\) 15.8070 1.64799
\(93\) 0.145728 0.0151113
\(94\) −13.7907 −1.42241
\(95\) 1.02463 0.105125
\(96\) 46.1315 4.70827
\(97\) 14.6560 1.48809 0.744047 0.668128i \(-0.232904\pi\)
0.744047 + 0.668128i \(0.232904\pi\)
\(98\) 18.2223 1.84073
\(99\) −7.21445 −0.725080
\(100\) −25.4052 −2.54052
\(101\) −2.57513 −0.256235 −0.128117 0.991759i \(-0.540893\pi\)
−0.128117 + 0.991759i \(0.540893\pi\)
\(102\) −1.58967 −0.157401
\(103\) 14.2950 1.40853 0.704265 0.709937i \(-0.251277\pi\)
0.704265 + 0.709937i \(0.251277\pi\)
\(104\) −55.9897 −5.49024
\(105\) 0.496331 0.0484369
\(106\) 5.33187 0.517877
\(107\) −1.46793 −0.141910 −0.0709550 0.997480i \(-0.522605\pi\)
−0.0709550 + 0.997480i \(0.522605\pi\)
\(108\) −12.4340 −1.19647
\(109\) 0.402342 0.0385373 0.0192687 0.999814i \(-0.493866\pi\)
0.0192687 + 0.999814i \(0.493866\pi\)
\(110\) 1.96162 0.187033
\(111\) 2.62726 0.249368
\(112\) −6.23518 −0.589169
\(113\) −16.7761 −1.57817 −0.789083 0.614287i \(-0.789444\pi\)
−0.789083 + 0.614287i \(0.789444\pi\)
\(114\) 18.3780 1.72126
\(115\) 1.18835 0.110814
\(116\) −43.2543 −4.01606
\(117\) 25.0249 2.31355
\(118\) 3.80584 0.350356
\(119\) 0.107726 0.00987522
\(120\) 9.04362 0.825566
\(121\) −7.58238 −0.689308
\(122\) 24.3851 2.20772
\(123\) −20.0645 −1.80916
\(124\) −0.290876 −0.0261214
\(125\) −3.88113 −0.347139
\(126\) 5.03314 0.448388
\(127\) −15.0361 −1.33424 −0.667120 0.744950i \(-0.732473\pi\)
−0.667120 + 0.744950i \(0.732473\pi\)
\(128\) −22.0364 −1.94776
\(129\) −17.4193 −1.53369
\(130\) −6.80429 −0.596775
\(131\) 9.87401 0.862696 0.431348 0.902186i \(-0.358038\pi\)
0.431348 + 0.902186i \(0.358038\pi\)
\(132\) 25.4701 2.21689
\(133\) −1.24541 −0.107990
\(134\) −8.27886 −0.715184
\(135\) −0.934775 −0.0804526
\(136\) 1.96287 0.168315
\(137\) 11.0355 0.942824 0.471412 0.881913i \(-0.343744\pi\)
0.471412 + 0.881913i \(0.343744\pi\)
\(138\) 21.3145 1.81441
\(139\) −14.8200 −1.25702 −0.628510 0.777802i \(-0.716335\pi\)
−0.628510 + 0.777802i \(0.716335\pi\)
\(140\) −0.990683 −0.0837280
\(141\) −13.4617 −1.13368
\(142\) 24.5094 2.05679
\(143\) −11.8547 −0.991343
\(144\) 50.7790 4.23158
\(145\) −3.25181 −0.270048
\(146\) −2.30432 −0.190707
\(147\) 17.7875 1.46709
\(148\) −5.24405 −0.431058
\(149\) 9.48985 0.777439 0.388720 0.921356i \(-0.372918\pi\)
0.388720 + 0.921356i \(0.372918\pi\)
\(150\) −34.2570 −2.79707
\(151\) −13.8624 −1.12810 −0.564051 0.825740i \(-0.690758\pi\)
−0.564051 + 0.825740i \(0.690758\pi\)
\(152\) −22.6925 −1.84061
\(153\) −0.877315 −0.0709267
\(154\) −2.38429 −0.192131
\(155\) −0.0218677 −0.00175645
\(156\) −88.3486 −7.07355
\(157\) 4.24183 0.338535 0.169268 0.985570i \(-0.445860\pi\)
0.169268 + 0.985570i \(0.445860\pi\)
\(158\) −24.3993 −1.94111
\(159\) 5.20465 0.412756
\(160\) −6.92239 −0.547263
\(161\) −1.44441 −0.113835
\(162\) 14.7440 1.15840
\(163\) −1.00000 −0.0783260
\(164\) 40.0491 3.12731
\(165\) 1.91481 0.149068
\(166\) 38.0008 2.94944
\(167\) −12.7567 −0.987143 −0.493571 0.869705i \(-0.664309\pi\)
−0.493571 + 0.869705i \(0.664309\pi\)
\(168\) −10.9923 −0.848072
\(169\) 28.1207 2.16313
\(170\) 0.238543 0.0182954
\(171\) 10.1425 0.775619
\(172\) 34.7692 2.65113
\(173\) 25.9164 1.97039 0.985195 0.171439i \(-0.0548418\pi\)
0.985195 + 0.171439i \(0.0548418\pi\)
\(174\) −58.3252 −4.42162
\(175\) 2.32146 0.175486
\(176\) −24.0549 −1.81321
\(177\) 3.71504 0.279239
\(178\) 45.2153 3.38903
\(179\) 4.72132 0.352888 0.176444 0.984311i \(-0.443541\pi\)
0.176444 + 0.984311i \(0.443541\pi\)
\(180\) 8.06808 0.601359
\(181\) −26.4727 −1.96770 −0.983849 0.178999i \(-0.942714\pi\)
−0.983849 + 0.178999i \(0.942714\pi\)
\(182\) 8.27042 0.613044
\(183\) 23.8033 1.75959
\(184\) −26.3185 −1.94022
\(185\) −0.394241 −0.0289852
\(186\) −0.392224 −0.0287593
\(187\) 0.415600 0.0303917
\(188\) 26.8698 1.95968
\(189\) 1.13619 0.0826458
\(190\) −2.75776 −0.200069
\(191\) −9.21557 −0.666815 −0.333408 0.942783i \(-0.608199\pi\)
−0.333408 + 0.942783i \(0.608199\pi\)
\(192\) −55.7903 −4.02632
\(193\) −20.8826 −1.50316 −0.751582 0.659640i \(-0.770709\pi\)
−0.751582 + 0.659640i \(0.770709\pi\)
\(194\) −39.4463 −2.83208
\(195\) −6.64194 −0.475639
\(196\) −35.5042 −2.53601
\(197\) −24.8596 −1.77117 −0.885587 0.464473i \(-0.846244\pi\)
−0.885587 + 0.464473i \(0.846244\pi\)
\(198\) 19.4175 1.37994
\(199\) 13.1047 0.928964 0.464482 0.885583i \(-0.346241\pi\)
0.464482 + 0.885583i \(0.346241\pi\)
\(200\) 42.2993 2.99101
\(201\) −8.08132 −0.570013
\(202\) 6.93090 0.487656
\(203\) 3.95248 0.277410
\(204\) 3.09730 0.216854
\(205\) 3.01084 0.210286
\(206\) −38.4747 −2.68066
\(207\) 11.7632 0.817597
\(208\) 83.4396 5.78550
\(209\) −4.80470 −0.332348
\(210\) −1.33586 −0.0921832
\(211\) 12.3787 0.852182 0.426091 0.904680i \(-0.359890\pi\)
0.426091 + 0.904680i \(0.359890\pi\)
\(212\) −10.3886 −0.713490
\(213\) 23.9246 1.63929
\(214\) 3.95089 0.270078
\(215\) 2.61391 0.178267
\(216\) 20.7025 1.40863
\(217\) 0.0265796 0.00180434
\(218\) −1.08289 −0.0733428
\(219\) −2.24934 −0.151996
\(220\) −3.82199 −0.257679
\(221\) −1.44160 −0.0969723
\(222\) −7.07121 −0.474588
\(223\) 0.966051 0.0646916 0.0323458 0.999477i \(-0.489702\pi\)
0.0323458 + 0.999477i \(0.489702\pi\)
\(224\) 8.41397 0.562182
\(225\) −18.9059 −1.26039
\(226\) 45.1526 3.00351
\(227\) −0.570146 −0.0378419 −0.0189209 0.999821i \(-0.506023\pi\)
−0.0189209 + 0.999821i \(0.506023\pi\)
\(228\) −35.8075 −2.37141
\(229\) 16.0880 1.06313 0.531563 0.847019i \(-0.321605\pi\)
0.531563 + 0.847019i \(0.321605\pi\)
\(230\) −3.19842 −0.210897
\(231\) −2.32740 −0.153132
\(232\) 72.0180 4.72821
\(233\) 19.9797 1.30892 0.654458 0.756098i \(-0.272897\pi\)
0.654458 + 0.756098i \(0.272897\pi\)
\(234\) −67.3539 −4.40306
\(235\) 2.02003 0.131772
\(236\) −7.41527 −0.482693
\(237\) −23.8172 −1.54709
\(238\) −0.289942 −0.0187941
\(239\) 10.3749 0.671095 0.335547 0.942023i \(-0.391079\pi\)
0.335547 + 0.942023i \(0.391079\pi\)
\(240\) −13.4774 −0.869964
\(241\) 15.7934 1.01734 0.508672 0.860961i \(-0.330137\pi\)
0.508672 + 0.860961i \(0.330137\pi\)
\(242\) 20.4078 1.31186
\(243\) 21.5055 1.37958
\(244\) −47.5117 −3.04162
\(245\) −2.66916 −0.170526
\(246\) 54.0032 3.44312
\(247\) 16.6661 1.06044
\(248\) 0.484305 0.0307534
\(249\) 37.0941 2.35075
\(250\) 10.4460 0.660662
\(251\) 19.2954 1.21791 0.608956 0.793204i \(-0.291588\pi\)
0.608956 + 0.793204i \(0.291588\pi\)
\(252\) −9.80652 −0.617753
\(253\) −5.57242 −0.350335
\(254\) 40.4694 2.53928
\(255\) 0.232851 0.0145817
\(256\) 16.8402 1.05251
\(257\) 14.1945 0.885430 0.442715 0.896662i \(-0.354015\pi\)
0.442715 + 0.896662i \(0.354015\pi\)
\(258\) 46.8837 2.91885
\(259\) 0.479189 0.0297753
\(260\) 13.2574 0.822189
\(261\) −32.1888 −1.99244
\(262\) −26.5757 −1.64185
\(263\) −9.81606 −0.605284 −0.302642 0.953104i \(-0.597869\pi\)
−0.302642 + 0.953104i \(0.597869\pi\)
\(264\) −42.4075 −2.61000
\(265\) −0.780999 −0.0479764
\(266\) 3.35198 0.205523
\(267\) 44.1365 2.70111
\(268\) 16.1304 0.985324
\(269\) 12.1462 0.740568 0.370284 0.928919i \(-0.379260\pi\)
0.370284 + 0.928919i \(0.379260\pi\)
\(270\) 2.51592 0.153114
\(271\) 32.3614 1.96582 0.982908 0.184096i \(-0.0589357\pi\)
0.982908 + 0.184096i \(0.0589357\pi\)
\(272\) −2.92520 −0.177366
\(273\) 8.07309 0.488605
\(274\) −29.7017 −1.79435
\(275\) 8.95606 0.540071
\(276\) −41.5291 −2.49976
\(277\) 14.5421 0.873751 0.436876 0.899522i \(-0.356085\pi\)
0.436876 + 0.899522i \(0.356085\pi\)
\(278\) 39.8878 2.39231
\(279\) −0.216463 −0.0129593
\(280\) 1.64948 0.0985751
\(281\) −17.1366 −1.02229 −0.511143 0.859496i \(-0.670778\pi\)
−0.511143 + 0.859496i \(0.670778\pi\)
\(282\) 36.2319 2.15758
\(283\) 12.7562 0.758280 0.379140 0.925339i \(-0.376220\pi\)
0.379140 + 0.925339i \(0.376220\pi\)
\(284\) −47.7539 −2.83367
\(285\) −2.69196 −0.159458
\(286\) 31.9067 1.88669
\(287\) −3.65959 −0.216019
\(288\) −68.5230 −4.03776
\(289\) −16.9495 −0.997027
\(290\) 8.75216 0.513944
\(291\) −38.5052 −2.25721
\(292\) 4.48972 0.262741
\(293\) 18.0430 1.05408 0.527041 0.849840i \(-0.323301\pi\)
0.527041 + 0.849840i \(0.323301\pi\)
\(294\) −47.8747 −2.79211
\(295\) −0.557471 −0.0324572
\(296\) 8.73128 0.507495
\(297\) 4.38336 0.254348
\(298\) −25.5417 −1.47959
\(299\) 19.3292 1.11783
\(300\) 66.7460 3.85358
\(301\) −3.17713 −0.183127
\(302\) 37.3102 2.14696
\(303\) 6.76553 0.388669
\(304\) 33.8179 1.93959
\(305\) −3.57187 −0.204524
\(306\) 2.36127 0.134985
\(307\) 23.8587 1.36169 0.680845 0.732427i \(-0.261613\pi\)
0.680845 + 0.732427i \(0.261613\pi\)
\(308\) 4.64552 0.264703
\(309\) −37.5567 −2.13653
\(310\) 0.0588564 0.00334282
\(311\) 23.0910 1.30937 0.654686 0.755901i \(-0.272801\pi\)
0.654686 + 0.755901i \(0.272801\pi\)
\(312\) 147.099 8.32787
\(313\) 21.9355 1.23987 0.619934 0.784654i \(-0.287159\pi\)
0.619934 + 0.784654i \(0.287159\pi\)
\(314\) −11.4168 −0.644287
\(315\) −0.737242 −0.0415389
\(316\) 47.5394 2.67430
\(317\) −31.3553 −1.76109 −0.880546 0.473961i \(-0.842824\pi\)
−0.880546 + 0.473961i \(0.842824\pi\)
\(318\) −14.0082 −0.785541
\(319\) 15.2484 0.853747
\(320\) 8.37177 0.467996
\(321\) 3.85663 0.215256
\(322\) 3.88758 0.216647
\(323\) −0.584276 −0.0325100
\(324\) −28.7271 −1.59595
\(325\) −31.0660 −1.72323
\(326\) 2.69148 0.149067
\(327\) −1.05706 −0.0584553
\(328\) −66.6812 −3.68185
\(329\) −2.45529 −0.135365
\(330\) −5.15367 −0.283700
\(331\) −2.36209 −0.129832 −0.0649160 0.997891i \(-0.520678\pi\)
−0.0649160 + 0.997891i \(0.520678\pi\)
\(332\) −74.0405 −4.06350
\(333\) −3.90249 −0.213855
\(334\) 34.3344 1.87869
\(335\) 1.21267 0.0662550
\(336\) 16.3814 0.893680
\(337\) 4.93594 0.268878 0.134439 0.990922i \(-0.457077\pi\)
0.134439 + 0.990922i \(0.457077\pi\)
\(338\) −75.6862 −4.11679
\(339\) 44.0753 2.39384
\(340\) −0.464774 −0.0252059
\(341\) 0.102542 0.00555297
\(342\) −27.2984 −1.47613
\(343\) 6.59861 0.356291
\(344\) −57.8904 −3.12124
\(345\) −3.12210 −0.168088
\(346\) −69.7535 −3.74997
\(347\) 7.10077 0.381189 0.190595 0.981669i \(-0.438958\pi\)
0.190595 + 0.981669i \(0.438958\pi\)
\(348\) 113.640 6.09176
\(349\) −15.3746 −0.822985 −0.411492 0.911413i \(-0.634992\pi\)
−0.411492 + 0.911413i \(0.634992\pi\)
\(350\) −6.24817 −0.333979
\(351\) −15.2046 −0.811563
\(352\) 32.4606 1.73015
\(353\) −33.6174 −1.78927 −0.894636 0.446797i \(-0.852565\pi\)
−0.894636 + 0.446797i \(0.852565\pi\)
\(354\) −9.99894 −0.531438
\(355\) −3.59008 −0.190542
\(356\) −88.0970 −4.66913
\(357\) −0.283024 −0.0149792
\(358\) −12.7073 −0.671603
\(359\) −16.5244 −0.872124 −0.436062 0.899917i \(-0.643627\pi\)
−0.436062 + 0.899917i \(0.643627\pi\)
\(360\) −13.4333 −0.707995
\(361\) −12.2453 −0.644487
\(362\) 71.2506 3.74485
\(363\) 19.9209 1.04558
\(364\) −16.1140 −0.844603
\(365\) 0.337531 0.0176672
\(366\) −64.0659 −3.34878
\(367\) 1.06148 0.0554091 0.0277045 0.999616i \(-0.491180\pi\)
0.0277045 + 0.999616i \(0.491180\pi\)
\(368\) 39.2216 2.04456
\(369\) 29.8035 1.55151
\(370\) 1.06109 0.0551634
\(371\) 0.949283 0.0492843
\(372\) 0.764206 0.0396223
\(373\) −29.0863 −1.50603 −0.753015 0.658003i \(-0.771401\pi\)
−0.753015 + 0.658003i \(0.771401\pi\)
\(374\) −1.11858 −0.0578402
\(375\) 10.1967 0.526557
\(376\) −44.7378 −2.30718
\(377\) −52.8924 −2.72410
\(378\) −3.05803 −0.157288
\(379\) −2.22096 −0.114083 −0.0570416 0.998372i \(-0.518167\pi\)
−0.0570416 + 0.998372i \(0.518167\pi\)
\(380\) 5.37320 0.275639
\(381\) 39.5038 2.02384
\(382\) 24.8035 1.26906
\(383\) 19.1442 0.978224 0.489112 0.872221i \(-0.337321\pi\)
0.489112 + 0.872221i \(0.337321\pi\)
\(384\) 57.8954 2.95446
\(385\) 0.349245 0.0177992
\(386\) 56.2051 2.86076
\(387\) 25.8744 1.31527
\(388\) 76.8569 3.90182
\(389\) 3.89630 0.197550 0.0987751 0.995110i \(-0.468508\pi\)
0.0987751 + 0.995110i \(0.468508\pi\)
\(390\) 17.8766 0.905218
\(391\) −0.677636 −0.0342695
\(392\) 59.1141 2.98571
\(393\) −25.9416 −1.30858
\(394\) 66.9091 3.37083
\(395\) 3.57395 0.179825
\(396\) −37.8329 −1.90118
\(397\) −4.40919 −0.221291 −0.110645 0.993860i \(-0.535292\pi\)
−0.110645 + 0.993860i \(0.535292\pi\)
\(398\) −35.2709 −1.76797
\(399\) 3.27200 0.163805
\(400\) −63.0373 −3.15187
\(401\) −12.1509 −0.606789 −0.303394 0.952865i \(-0.598120\pi\)
−0.303394 + 0.952865i \(0.598120\pi\)
\(402\) 21.7507 1.08483
\(403\) −0.355690 −0.0177182
\(404\) −13.5041 −0.671854
\(405\) −2.15967 −0.107315
\(406\) −10.6380 −0.527955
\(407\) 1.84868 0.0916356
\(408\) −5.15697 −0.255308
\(409\) −14.4579 −0.714898 −0.357449 0.933933i \(-0.616353\pi\)
−0.357449 + 0.933933i \(0.616353\pi\)
\(410\) −8.10360 −0.400208
\(411\) −28.9930 −1.43012
\(412\) 74.9638 3.69320
\(413\) 0.677590 0.0333420
\(414\) −31.6603 −1.55602
\(415\) −5.56627 −0.273237
\(416\) −112.596 −5.52050
\(417\) 38.9361 1.90671
\(418\) 12.9317 0.632512
\(419\) −25.2661 −1.23433 −0.617164 0.786835i \(-0.711718\pi\)
−0.617164 + 0.786835i \(0.711718\pi\)
\(420\) 2.60278 0.127003
\(421\) −13.4837 −0.657154 −0.328577 0.944477i \(-0.606569\pi\)
−0.328577 + 0.944477i \(0.606569\pi\)
\(422\) −33.3169 −1.62184
\(423\) 19.9958 0.972229
\(424\) 17.2968 0.840009
\(425\) 1.08910 0.0528293
\(426\) −64.3926 −3.11983
\(427\) 4.34150 0.210100
\(428\) −7.69788 −0.372091
\(429\) 31.1455 1.50372
\(430\) −7.03527 −0.339271
\(431\) 10.3991 0.500909 0.250455 0.968128i \(-0.419420\pi\)
0.250455 + 0.968128i \(0.419420\pi\)
\(432\) −30.8523 −1.48438
\(433\) 11.9439 0.573989 0.286994 0.957932i \(-0.407344\pi\)
0.286994 + 0.957932i \(0.407344\pi\)
\(434\) −0.0715382 −0.00343395
\(435\) 8.54333 0.409622
\(436\) 2.10990 0.101046
\(437\) 7.83406 0.374754
\(438\) 6.05405 0.289274
\(439\) −5.45148 −0.260185 −0.130092 0.991502i \(-0.541527\pi\)
−0.130092 + 0.991502i \(0.541527\pi\)
\(440\) 6.36357 0.303372
\(441\) −26.4213 −1.25816
\(442\) 3.88003 0.184554
\(443\) −3.54361 −0.168362 −0.0841810 0.996450i \(-0.526827\pi\)
−0.0841810 + 0.996450i \(0.526827\pi\)
\(444\) 13.7775 0.653850
\(445\) −6.62302 −0.313961
\(446\) −2.60010 −0.123119
\(447\) −24.9323 −1.17926
\(448\) −10.1757 −0.480755
\(449\) 20.7081 0.977277 0.488638 0.872486i \(-0.337494\pi\)
0.488638 + 0.872486i \(0.337494\pi\)
\(450\) 50.8848 2.39873
\(451\) −14.1185 −0.664812
\(452\) −87.9749 −4.13799
\(453\) 36.4200 1.71116
\(454\) 1.53453 0.0720192
\(455\) −1.21143 −0.0567927
\(456\) 59.6191 2.79192
\(457\) −25.7077 −1.20255 −0.601277 0.799041i \(-0.705341\pi\)
−0.601277 + 0.799041i \(0.705341\pi\)
\(458\) −43.3005 −2.02330
\(459\) 0.533039 0.0248801
\(460\) 6.23176 0.290557
\(461\) −40.4748 −1.88510 −0.942551 0.334063i \(-0.891580\pi\)
−0.942551 + 0.334063i \(0.891580\pi\)
\(462\) 6.26414 0.291434
\(463\) −18.0787 −0.840189 −0.420094 0.907480i \(-0.638003\pi\)
−0.420094 + 0.907480i \(0.638003\pi\)
\(464\) −107.326 −4.98249
\(465\) 0.0574521 0.00266428
\(466\) −53.7750 −2.49108
\(467\) −36.1447 −1.67258 −0.836288 0.548290i \(-0.815279\pi\)
−0.836288 + 0.548290i \(0.815279\pi\)
\(468\) 131.232 6.06619
\(469\) −1.47396 −0.0680612
\(470\) −5.43687 −0.250784
\(471\) −11.1444 −0.513507
\(472\) 12.3463 0.568286
\(473\) −12.2572 −0.563585
\(474\) 64.1033 2.94436
\(475\) −12.5910 −0.577714
\(476\) 0.564920 0.0258931
\(477\) −7.73091 −0.353974
\(478\) −27.9237 −1.27720
\(479\) 36.5473 1.66989 0.834944 0.550335i \(-0.185500\pi\)
0.834944 + 0.550335i \(0.185500\pi\)
\(480\) 18.1869 0.830115
\(481\) −6.41254 −0.292387
\(482\) −42.5076 −1.93617
\(483\) 3.79483 0.172671
\(484\) −39.7624 −1.80738
\(485\) 5.77800 0.262366
\(486\) −57.8814 −2.62556
\(487\) 20.9796 0.950675 0.475337 0.879804i \(-0.342326\pi\)
0.475337 + 0.879804i \(0.342326\pi\)
\(488\) 79.1064 3.58098
\(489\) 2.62726 0.118809
\(490\) 7.18398 0.324539
\(491\) 19.0882 0.861441 0.430720 0.902485i \(-0.358260\pi\)
0.430720 + 0.902485i \(0.358260\pi\)
\(492\) −105.219 −4.74365
\(493\) 1.85429 0.0835128
\(494\) −44.8565 −2.01819
\(495\) −2.84423 −0.127839
\(496\) −0.721744 −0.0324073
\(497\) 4.36364 0.195736
\(498\) −99.8380 −4.47385
\(499\) −34.3524 −1.53783 −0.768913 0.639354i \(-0.779202\pi\)
−0.768913 + 0.639354i \(0.779202\pi\)
\(500\) −20.3528 −0.910207
\(501\) 33.5151 1.49735
\(502\) −51.9330 −2.31788
\(503\) −8.91295 −0.397409 −0.198704 0.980059i \(-0.563673\pi\)
−0.198704 + 0.980059i \(0.563673\pi\)
\(504\) 16.3277 0.727296
\(505\) −1.01522 −0.0451767
\(506\) 14.9981 0.666745
\(507\) −73.8804 −3.28114
\(508\) −78.8502 −3.49841
\(509\) 10.8738 0.481972 0.240986 0.970529i \(-0.422529\pi\)
0.240986 + 0.970529i \(0.422529\pi\)
\(510\) −0.626713 −0.0277513
\(511\) −0.410260 −0.0181488
\(512\) −1.25206 −0.0553339
\(513\) −6.16240 −0.272077
\(514\) −38.2042 −1.68512
\(515\) 5.63568 0.248338
\(516\) −91.3478 −4.02136
\(517\) −9.47237 −0.416594
\(518\) −1.28973 −0.0566673
\(519\) −68.0892 −2.98878
\(520\) −22.0734 −0.967984
\(521\) −27.9723 −1.22549 −0.612744 0.790282i \(-0.709934\pi\)
−0.612744 + 0.790282i \(0.709934\pi\)
\(522\) 86.6354 3.79193
\(523\) 0.112991 0.00494073 0.00247037 0.999997i \(-0.499214\pi\)
0.00247037 + 0.999997i \(0.499214\pi\)
\(524\) 51.7798 2.26201
\(525\) −6.09909 −0.266186
\(526\) 26.4197 1.15195
\(527\) 0.0124697 0.000543187 0
\(528\) 63.1985 2.75036
\(529\) −13.9142 −0.604963
\(530\) 2.10204 0.0913068
\(531\) −5.51826 −0.239472
\(532\) −6.53097 −0.283153
\(533\) 48.9729 2.12125
\(534\) −118.792 −5.14064
\(535\) −0.578717 −0.0250201
\(536\) −26.8570 −1.16005
\(537\) −12.4041 −0.535278
\(538\) −32.6912 −1.40942
\(539\) 12.5163 0.539113
\(540\) −4.90200 −0.210949
\(541\) −1.92549 −0.0827832 −0.0413916 0.999143i \(-0.513179\pi\)
−0.0413916 + 0.999143i \(0.513179\pi\)
\(542\) −87.1000 −3.74127
\(543\) 69.5506 2.98470
\(544\) 3.94737 0.169242
\(545\) 0.158619 0.00679451
\(546\) −21.7285 −0.929895
\(547\) 34.9629 1.49490 0.747452 0.664316i \(-0.231277\pi\)
0.747452 + 0.664316i \(0.231277\pi\)
\(548\) 57.8705 2.47211
\(549\) −35.3570 −1.50900
\(550\) −24.1050 −1.02784
\(551\) −21.4372 −0.913254
\(552\) 69.1454 2.94302
\(553\) −4.34404 −0.184727
\(554\) −39.1398 −1.66289
\(555\) 1.03577 0.0439661
\(556\) −77.7170 −3.29593
\(557\) −12.6681 −0.536767 −0.268383 0.963312i \(-0.586489\pi\)
−0.268383 + 0.963312i \(0.586489\pi\)
\(558\) 0.582604 0.0246636
\(559\) 42.5166 1.79826
\(560\) −2.45816 −0.103876
\(561\) −1.09189 −0.0460996
\(562\) 46.1229 1.94558
\(563\) 0.123849 0.00521961 0.00260981 0.999997i \(-0.499169\pi\)
0.00260981 + 0.999997i \(0.499169\pi\)
\(564\) −70.5938 −2.97254
\(565\) −6.61384 −0.278246
\(566\) −34.3331 −1.44313
\(567\) 2.62502 0.110240
\(568\) 79.5098 3.33616
\(569\) 25.5373 1.07058 0.535290 0.844669i \(-0.320202\pi\)
0.535290 + 0.844669i \(0.320202\pi\)
\(570\) 7.24535 0.303474
\(571\) −3.42592 −0.143370 −0.0716852 0.997427i \(-0.522838\pi\)
−0.0716852 + 0.997427i \(0.522838\pi\)
\(572\) −62.1668 −2.59932
\(573\) 24.2117 1.01146
\(574\) 9.84970 0.411118
\(575\) −14.6029 −0.608982
\(576\) 82.8701 3.45292
\(577\) −39.1445 −1.62961 −0.814804 0.579737i \(-0.803155\pi\)
−0.814804 + 0.579737i \(0.803155\pi\)
\(578\) 45.6191 1.89750
\(579\) 54.8640 2.28007
\(580\) −17.0526 −0.708072
\(581\) 6.76564 0.280686
\(582\) 103.636 4.29584
\(583\) 3.66227 0.151676
\(584\) −7.47533 −0.309331
\(585\) 9.86583 0.407902
\(586\) −48.5622 −2.00609
\(587\) −26.1808 −1.08060 −0.540298 0.841473i \(-0.681689\pi\)
−0.540298 + 0.841473i \(0.681689\pi\)
\(588\) 93.2787 3.84675
\(589\) −0.144160 −0.00594002
\(590\) 1.50042 0.0617713
\(591\) 65.3127 2.68660
\(592\) −13.0119 −0.534788
\(593\) −9.80282 −0.402553 −0.201277 0.979534i \(-0.564509\pi\)
−0.201277 + 0.979534i \(0.564509\pi\)
\(594\) −11.7977 −0.484066
\(595\) 0.0424699 0.00174110
\(596\) 49.7652 2.03846
\(597\) −34.4293 −1.40910
\(598\) −52.0240 −2.12742
\(599\) −7.16104 −0.292592 −0.146296 0.989241i \(-0.546735\pi\)
−0.146296 + 0.989241i \(0.546735\pi\)
\(600\) −111.131 −4.53692
\(601\) 6.75920 0.275714 0.137857 0.990452i \(-0.455979\pi\)
0.137857 + 0.990452i \(0.455979\pi\)
\(602\) 8.55117 0.348520
\(603\) 12.0039 0.488836
\(604\) −72.6949 −2.95791
\(605\) −2.98929 −0.121532
\(606\) −18.2093 −0.739701
\(607\) −28.4212 −1.15358 −0.576791 0.816891i \(-0.695695\pi\)
−0.576791 + 0.816891i \(0.695695\pi\)
\(608\) −45.6351 −1.85075
\(609\) −10.3842 −0.420788
\(610\) 9.61359 0.389243
\(611\) 32.8570 1.32925
\(612\) −4.60068 −0.185971
\(613\) −19.0996 −0.771426 −0.385713 0.922619i \(-0.626044\pi\)
−0.385713 + 0.922619i \(0.626044\pi\)
\(614\) −64.2153 −2.59152
\(615\) −7.91025 −0.318972
\(616\) −7.73475 −0.311642
\(617\) −10.6848 −0.430153 −0.215076 0.976597i \(-0.569000\pi\)
−0.215076 + 0.976597i \(0.569000\pi\)
\(618\) 101.083 4.06616
\(619\) 17.8627 0.717962 0.358981 0.933345i \(-0.383124\pi\)
0.358981 + 0.933345i \(0.383124\pi\)
\(620\) −0.114675 −0.00460547
\(621\) −7.14707 −0.286802
\(622\) −62.1489 −2.49195
\(623\) 8.05010 0.322520
\(624\) −219.218 −8.77573
\(625\) 22.6928 0.907711
\(626\) −59.0389 −2.35967
\(627\) 12.6232 0.504121
\(628\) 22.2444 0.887647
\(629\) 0.224809 0.00896372
\(630\) 1.98427 0.0790552
\(631\) −34.2634 −1.36400 −0.682002 0.731351i \(-0.738890\pi\)
−0.682002 + 0.731351i \(0.738890\pi\)
\(632\) −79.1525 −3.14852
\(633\) −32.5219 −1.29263
\(634\) 84.3922 3.35164
\(635\) −5.92786 −0.235240
\(636\) 27.2935 1.08226
\(637\) −43.4153 −1.72018
\(638\) −41.0407 −1.62482
\(639\) −35.5373 −1.40583
\(640\) −8.68766 −0.343410
\(641\) −24.7243 −0.976553 −0.488276 0.872689i \(-0.662374\pi\)
−0.488276 + 0.872689i \(0.662374\pi\)
\(642\) −10.3800 −0.409667
\(643\) 33.9882 1.34036 0.670182 0.742197i \(-0.266216\pi\)
0.670182 + 0.742197i \(0.266216\pi\)
\(644\) −7.57453 −0.298478
\(645\) −6.86741 −0.270404
\(646\) 1.57257 0.0618718
\(647\) 29.3716 1.15472 0.577359 0.816491i \(-0.304083\pi\)
0.577359 + 0.816491i \(0.304083\pi\)
\(648\) 47.8303 1.87895
\(649\) 2.61410 0.102612
\(650\) 83.6135 3.27959
\(651\) −0.0698314 −0.00273691
\(652\) −5.24405 −0.205373
\(653\) −9.64133 −0.377294 −0.188647 0.982045i \(-0.560410\pi\)
−0.188647 + 0.982045i \(0.560410\pi\)
\(654\) 2.84504 0.111250
\(655\) 3.89274 0.152102
\(656\) 99.3729 3.87986
\(657\) 3.34114 0.130350
\(658\) 6.60837 0.257621
\(659\) −2.85587 −0.111249 −0.0556245 0.998452i \(-0.517715\pi\)
−0.0556245 + 0.998452i \(0.517715\pi\)
\(660\) 10.0414 0.390860
\(661\) 18.0561 0.702299 0.351150 0.936319i \(-0.385791\pi\)
0.351150 + 0.936319i \(0.385791\pi\)
\(662\) 6.35750 0.247091
\(663\) 3.78745 0.147092
\(664\) 123.277 4.78406
\(665\) −0.490990 −0.0190398
\(666\) 10.5035 0.407001
\(667\) −24.8625 −0.962681
\(668\) −66.8967 −2.58831
\(669\) −2.53807 −0.0981273
\(670\) −3.26386 −0.126094
\(671\) 16.7492 0.646597
\(672\) −22.1057 −0.852745
\(673\) 6.53957 0.252082 0.126041 0.992025i \(-0.459773\pi\)
0.126041 + 0.992025i \(0.459773\pi\)
\(674\) −13.2850 −0.511718
\(675\) 11.4868 0.442129
\(676\) 147.466 5.67178
\(677\) 19.5615 0.751810 0.375905 0.926658i \(-0.377332\pi\)
0.375905 + 0.926658i \(0.377332\pi\)
\(678\) −118.628 −4.55586
\(679\) −7.02300 −0.269518
\(680\) 0.773844 0.0296755
\(681\) 1.49792 0.0574004
\(682\) −0.275990 −0.0105682
\(683\) 0.541188 0.0207080 0.0103540 0.999946i \(-0.496704\pi\)
0.0103540 + 0.999946i \(0.496704\pi\)
\(684\) 53.1879 2.03369
\(685\) 4.35063 0.166229
\(686\) −17.7600 −0.678080
\(687\) −42.2673 −1.61260
\(688\) 86.2721 3.28909
\(689\) −12.7034 −0.483960
\(690\) 8.40307 0.319899
\(691\) −32.6332 −1.24143 −0.620713 0.784038i \(-0.713157\pi\)
−0.620713 + 0.784038i \(0.713157\pi\)
\(692\) 135.907 5.16641
\(693\) 3.45708 0.131324
\(694\) −19.1116 −0.725465
\(695\) −5.84266 −0.221625
\(696\) −189.210 −7.17198
\(697\) −1.71688 −0.0650314
\(698\) 41.3804 1.56627
\(699\) −52.4919 −1.98543
\(700\) 12.1739 0.460129
\(701\) 5.32388 0.201080 0.100540 0.994933i \(-0.467943\pi\)
0.100540 + 0.994933i \(0.467943\pi\)
\(702\) 40.9229 1.54453
\(703\) −2.59899 −0.0980227
\(704\) −39.2570 −1.47956
\(705\) −5.30715 −0.199879
\(706\) 90.4803 3.40527
\(707\) 1.23397 0.0464083
\(708\) 19.4818 0.732172
\(709\) 4.18784 0.157278 0.0786389 0.996903i \(-0.474943\pi\)
0.0786389 + 0.996903i \(0.474943\pi\)
\(710\) 9.66262 0.362632
\(711\) 35.3776 1.32676
\(712\) 146.681 5.49709
\(713\) −0.167195 −0.00626151
\(714\) 0.761752 0.0285079
\(715\) −4.67362 −0.174783
\(716\) 24.7588 0.925281
\(717\) −27.2575 −1.01795
\(718\) 44.4750 1.65979
\(719\) −17.4674 −0.651422 −0.325711 0.945469i \(-0.605604\pi\)
−0.325711 + 0.945469i \(0.605604\pi\)
\(720\) 20.0191 0.746070
\(721\) −6.85001 −0.255108
\(722\) 32.9578 1.22656
\(723\) −41.4934 −1.54316
\(724\) −138.824 −5.15935
\(725\) 39.9594 1.48405
\(726\) −53.6166 −1.98990
\(727\) −10.4311 −0.386868 −0.193434 0.981113i \(-0.561963\pi\)
−0.193434 + 0.981113i \(0.561963\pi\)
\(728\) 26.8296 0.994372
\(729\) −40.0663 −1.48394
\(730\) −0.908458 −0.0336235
\(731\) −1.49053 −0.0551294
\(732\) 124.825 4.61368
\(733\) −0.627492 −0.0231769 −0.0115885 0.999933i \(-0.503689\pi\)
−0.0115885 + 0.999933i \(0.503689\pi\)
\(734\) −2.85696 −0.105452
\(735\) 7.01257 0.258663
\(736\) −52.9270 −1.95091
\(737\) −5.68645 −0.209463
\(738\) −80.2155 −2.95277
\(739\) −12.8911 −0.474206 −0.237103 0.971484i \(-0.576198\pi\)
−0.237103 + 0.971484i \(0.576198\pi\)
\(740\) −2.06742 −0.0759998
\(741\) −43.7862 −1.60853
\(742\) −2.55497 −0.0937960
\(743\) −27.1154 −0.994768 −0.497384 0.867531i \(-0.665706\pi\)
−0.497384 + 0.867531i \(0.665706\pi\)
\(744\) −1.27240 −0.0466483
\(745\) 3.74129 0.137070
\(746\) 78.2851 2.86622
\(747\) −55.0991 −2.01597
\(748\) 2.17942 0.0796877
\(749\) 0.703414 0.0257022
\(750\) −27.4443 −1.00212
\(751\) −44.5093 −1.62417 −0.812083 0.583542i \(-0.801666\pi\)
−0.812083 + 0.583542i \(0.801666\pi\)
\(752\) 66.6713 2.43125
\(753\) −50.6939 −1.84739
\(754\) 142.359 5.18440
\(755\) −5.46511 −0.198896
\(756\) 5.95825 0.216699
\(757\) −9.11939 −0.331450 −0.165725 0.986172i \(-0.552996\pi\)
−0.165725 + 0.986172i \(0.552996\pi\)
\(758\) 5.97767 0.217119
\(759\) 14.6402 0.531406
\(760\) −8.94631 −0.324517
\(761\) −1.69667 −0.0615043 −0.0307522 0.999527i \(-0.509790\pi\)
−0.0307522 + 0.999527i \(0.509790\pi\)
\(762\) −106.324 −3.85170
\(763\) −0.192797 −0.00697974
\(764\) −48.3269 −1.74841
\(765\) −0.345873 −0.0125051
\(766\) −51.5262 −1.86172
\(767\) −9.06756 −0.327411
\(768\) −44.2435 −1.59650
\(769\) −19.5863 −0.706302 −0.353151 0.935566i \(-0.614890\pi\)
−0.353151 + 0.935566i \(0.614890\pi\)
\(770\) −0.939984 −0.0338747
\(771\) −37.2927 −1.34306
\(772\) −109.509 −3.94133
\(773\) −4.76738 −0.171471 −0.0857353 0.996318i \(-0.527324\pi\)
−0.0857353 + 0.996318i \(0.527324\pi\)
\(774\) −69.6403 −2.50317
\(775\) 0.268718 0.00965264
\(776\) −127.966 −4.59371
\(777\) −1.25895 −0.0451647
\(778\) −10.4868 −0.375970
\(779\) 19.8486 0.711150
\(780\) −34.8306 −1.24714
\(781\) 16.8347 0.602391
\(782\) 1.82384 0.0652204
\(783\) 19.5573 0.698920
\(784\) −88.0958 −3.14628
\(785\) 1.67230 0.0596871
\(786\) 69.8211 2.49044
\(787\) −14.8438 −0.529126 −0.264563 0.964368i \(-0.585228\pi\)
−0.264563 + 0.964368i \(0.585228\pi\)
\(788\) −130.365 −4.64406
\(789\) 25.7893 0.918125
\(790\) −9.61921 −0.342236
\(791\) 8.03893 0.285832
\(792\) 62.9914 2.23830
\(793\) −58.0983 −2.06313
\(794\) 11.8672 0.421152
\(795\) 2.05189 0.0727729
\(796\) 68.7214 2.43577
\(797\) −21.7329 −0.769818 −0.384909 0.922955i \(-0.625767\pi\)
−0.384909 + 0.922955i \(0.625767\pi\)
\(798\) −8.80652 −0.311748
\(799\) −1.15189 −0.0407509
\(800\) 85.0648 3.00750
\(801\) −65.5596 −2.31643
\(802\) 32.7040 1.15482
\(803\) −1.58276 −0.0558543
\(804\) −42.3789 −1.49459
\(805\) −0.569444 −0.0200702
\(806\) 0.957331 0.0337205
\(807\) −31.9112 −1.12333
\(808\) 22.4842 0.790990
\(809\) −13.6518 −0.479971 −0.239985 0.970777i \(-0.577143\pi\)
−0.239985 + 0.970777i \(0.577143\pi\)
\(810\) 5.81270 0.204237
\(811\) −27.5333 −0.966826 −0.483413 0.875392i \(-0.660603\pi\)
−0.483413 + 0.875392i \(0.660603\pi\)
\(812\) 20.7270 0.727374
\(813\) −85.0218 −2.98185
\(814\) −4.97568 −0.174397
\(815\) −0.394241 −0.0138097
\(816\) 7.68526 0.269038
\(817\) 17.2319 0.602867
\(818\) 38.9132 1.36057
\(819\) −11.9916 −0.419022
\(820\) 15.7890 0.551375
\(821\) −3.42089 −0.119390 −0.0596949 0.998217i \(-0.519013\pi\)
−0.0596949 + 0.998217i \(0.519013\pi\)
\(822\) 78.0341 2.72175
\(823\) 10.8052 0.376645 0.188323 0.982107i \(-0.439695\pi\)
0.188323 + 0.982107i \(0.439695\pi\)
\(824\) −124.814 −4.34810
\(825\) −23.5299 −0.819206
\(826\) −1.82372 −0.0634552
\(827\) 10.9686 0.381415 0.190708 0.981647i \(-0.438922\pi\)
0.190708 + 0.981647i \(0.438922\pi\)
\(828\) 61.6866 2.14376
\(829\) 45.4087 1.57711 0.788555 0.614964i \(-0.210829\pi\)
0.788555 + 0.614964i \(0.210829\pi\)
\(830\) 14.9815 0.520015
\(831\) −38.2059 −1.32535
\(832\) 136.171 4.72090
\(833\) 1.52204 0.0527356
\(834\) −104.796 −3.62877
\(835\) −5.02921 −0.174043
\(836\) −25.1961 −0.871424
\(837\) 0.131518 0.00454594
\(838\) 68.0030 2.34912
\(839\) 23.3391 0.805756 0.402878 0.915254i \(-0.368010\pi\)
0.402878 + 0.915254i \(0.368010\pi\)
\(840\) −4.33360 −0.149523
\(841\) 39.0340 1.34600
\(842\) 36.2910 1.25067
\(843\) 45.0224 1.55065
\(844\) 64.9143 2.23444
\(845\) 11.0863 0.381381
\(846\) −53.8182 −1.85031
\(847\) 3.63339 0.124845
\(848\) −25.7769 −0.885183
\(849\) −33.5140 −1.15020
\(850\) −2.93130 −0.100543
\(851\) −3.01427 −0.103328
\(852\) 125.462 4.29826
\(853\) 23.6365 0.809297 0.404649 0.914472i \(-0.367394\pi\)
0.404649 + 0.914472i \(0.367394\pi\)
\(854\) −11.6851 −0.399854
\(855\) 3.99860 0.136749
\(856\) 12.8169 0.438072
\(857\) −2.23177 −0.0762359 −0.0381179 0.999273i \(-0.512136\pi\)
−0.0381179 + 0.999273i \(0.512136\pi\)
\(858\) −83.8273 −2.86182
\(859\) −52.2809 −1.78380 −0.891901 0.452231i \(-0.850628\pi\)
−0.891901 + 0.452231i \(0.850628\pi\)
\(860\) 13.7074 0.467420
\(861\) 9.61468 0.327668
\(862\) −27.9891 −0.953311
\(863\) 4.85418 0.165238 0.0826191 0.996581i \(-0.473672\pi\)
0.0826191 + 0.996581i \(0.473672\pi\)
\(864\) 41.6332 1.41639
\(865\) 10.2173 0.347399
\(866\) −32.1468 −1.09239
\(867\) 44.5306 1.51234
\(868\) 0.139384 0.00473102
\(869\) −16.7590 −0.568511
\(870\) −22.9942 −0.779576
\(871\) 19.7247 0.668345
\(872\) −3.51296 −0.118964
\(873\) 57.1950 1.93576
\(874\) −21.0852 −0.713218
\(875\) 1.85979 0.0628725
\(876\) −11.7957 −0.398538
\(877\) 34.8816 1.17787 0.588934 0.808181i \(-0.299548\pi\)
0.588934 + 0.808181i \(0.299548\pi\)
\(878\) 14.6725 0.495174
\(879\) −47.4036 −1.59888
\(880\) −9.48343 −0.319686
\(881\) 45.4448 1.53107 0.765536 0.643393i \(-0.222474\pi\)
0.765536 + 0.643393i \(0.222474\pi\)
\(882\) 71.1124 2.39448
\(883\) −10.1210 −0.340597 −0.170299 0.985392i \(-0.554473\pi\)
−0.170299 + 0.985392i \(0.554473\pi\)
\(884\) −7.55980 −0.254264
\(885\) 1.46462 0.0492327
\(886\) 9.53754 0.320420
\(887\) −32.1335 −1.07894 −0.539469 0.842005i \(-0.681375\pi\)
−0.539469 + 0.842005i \(0.681375\pi\)
\(888\) −22.9393 −0.769794
\(889\) 7.20514 0.241653
\(890\) 17.8257 0.597519
\(891\) 10.1271 0.339272
\(892\) 5.06602 0.169623
\(893\) 13.3168 0.445631
\(894\) 67.1047 2.24432
\(895\) 1.86134 0.0622176
\(896\) 10.5596 0.352772
\(897\) −50.7827 −1.69558
\(898\) −55.7354 −1.85992
\(899\) 0.457514 0.0152589
\(900\) −99.1435 −3.30478
\(901\) 0.445351 0.0148368
\(902\) 37.9995 1.26525
\(903\) 8.34714 0.277775
\(904\) 146.477 4.87176
\(905\) −10.4366 −0.346925
\(906\) −98.0236 −3.25662
\(907\) 18.6776 0.620181 0.310090 0.950707i \(-0.399641\pi\)
0.310090 + 0.950707i \(0.399641\pi\)
\(908\) −2.98987 −0.0992224
\(909\) −10.0494 −0.333318
\(910\) 3.26054 0.108086
\(911\) −8.53492 −0.282774 −0.141387 0.989954i \(-0.545156\pi\)
−0.141387 + 0.989954i \(0.545156\pi\)
\(912\) −88.8484 −2.94206
\(913\) 26.1014 0.863831
\(914\) 69.1916 2.28865
\(915\) 9.38422 0.310233
\(916\) 84.3663 2.78754
\(917\) −4.73151 −0.156248
\(918\) −1.43466 −0.0473509
\(919\) 19.0370 0.627972 0.313986 0.949428i \(-0.398336\pi\)
0.313986 + 0.949428i \(0.398336\pi\)
\(920\) −10.3758 −0.342080
\(921\) −62.6831 −2.06548
\(922\) 108.937 3.58765
\(923\) −58.3946 −1.92208
\(924\) −12.2050 −0.401515
\(925\) 4.84457 0.159289
\(926\) 48.6584 1.59902
\(927\) 55.7862 1.83226
\(928\) 144.830 4.75426
\(929\) 14.9235 0.489623 0.244812 0.969571i \(-0.421274\pi\)
0.244812 + 0.969571i \(0.421274\pi\)
\(930\) −0.154631 −0.00507055
\(931\) −17.5961 −0.576690
\(932\) 104.775 3.43201
\(933\) −60.6661 −1.98612
\(934\) 97.2826 3.18318
\(935\) 0.163846 0.00535835
\(936\) −218.499 −7.14187
\(937\) −54.4948 −1.78027 −0.890134 0.455699i \(-0.849389\pi\)
−0.890134 + 0.455699i \(0.849389\pi\)
\(938\) 3.96713 0.129532
\(939\) −57.6302 −1.88069
\(940\) 10.5932 0.345511
\(941\) 38.8359 1.26601 0.633007 0.774146i \(-0.281821\pi\)
0.633007 + 0.774146i \(0.281821\pi\)
\(942\) 29.9949 0.977286
\(943\) 23.0202 0.749639
\(944\) −18.3994 −0.598848
\(945\) 0.447933 0.0145713
\(946\) 32.9899 1.07259
\(947\) −2.62161 −0.0851907 −0.0425954 0.999092i \(-0.513563\pi\)
−0.0425954 + 0.999092i \(0.513563\pi\)
\(948\) −124.898 −4.05651
\(949\) 5.49013 0.178217
\(950\) 33.8884 1.09948
\(951\) 82.3786 2.67131
\(952\) −0.940585 −0.0304845
\(953\) −30.0878 −0.974638 −0.487319 0.873224i \(-0.662025\pi\)
−0.487319 + 0.873224i \(0.662025\pi\)
\(954\) 20.8076 0.673670
\(955\) −3.63315 −0.117566
\(956\) 54.4063 1.75963
\(957\) −40.0615 −1.29500
\(958\) −98.3662 −3.17807
\(959\) −5.28807 −0.170761
\(960\) −21.9948 −0.709880
\(961\) −30.9969 −0.999901
\(962\) 17.2592 0.556459
\(963\) −5.72857 −0.184601
\(964\) 82.8214 2.66750
\(965\) −8.23278 −0.265023
\(966\) −10.2137 −0.328620
\(967\) −0.0354940 −0.00114141 −0.000570706 1.00000i \(-0.500182\pi\)
−0.000570706 1.00000i \(0.500182\pi\)
\(968\) 66.2039 2.12787
\(969\) 1.53504 0.0493127
\(970\) −15.5514 −0.499324
\(971\) 49.2860 1.58166 0.790832 0.612033i \(-0.209648\pi\)
0.790832 + 0.612033i \(0.209648\pi\)
\(972\) 112.776 3.61728
\(973\) 7.10159 0.227667
\(974\) −56.4660 −1.80929
\(975\) 81.6185 2.61388
\(976\) −117.890 −3.77356
\(977\) −31.9419 −1.02191 −0.510956 0.859607i \(-0.670709\pi\)
−0.510956 + 0.859607i \(0.670709\pi\)
\(978\) −7.07121 −0.226112
\(979\) 31.0568 0.992578
\(980\) −13.9972 −0.447124
\(981\) 1.57013 0.0501305
\(982\) −51.3756 −1.63946
\(983\) 46.0207 1.46783 0.733916 0.679240i \(-0.237691\pi\)
0.733916 + 0.679240i \(0.237691\pi\)
\(984\) 175.189 5.58482
\(985\) −9.80068 −0.312276
\(986\) −4.99077 −0.158938
\(987\) 6.45069 0.205328
\(988\) 87.3980 2.78050
\(989\) 19.9853 0.635496
\(990\) 7.65518 0.243298
\(991\) −14.6167 −0.464315 −0.232158 0.972678i \(-0.574579\pi\)
−0.232158 + 0.972678i \(0.574579\pi\)
\(992\) 0.973948 0.0309229
\(993\) 6.20581 0.196935
\(994\) −11.7446 −0.372517
\(995\) 5.16639 0.163786
\(996\) 194.523 6.16371
\(997\) −30.6900 −0.971962 −0.485981 0.873969i \(-0.661538\pi\)
−0.485981 + 0.873969i \(0.661538\pi\)
\(998\) 92.4587 2.92673
\(999\) 2.37107 0.0750175
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6031.2.a.c.1.3 110
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6031.2.a.c.1.3 110 1.1 even 1 trivial