Properties

Label 6031.2.a
Level $6031$
Weight $2$
Character orbit 6031.a
Rep. character $\chi_{6031}(1,\cdot)$
Character field $\Q$
Dimension $487$
Newform subspaces $5$
Sturm bound $1038$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 6031 = 37 \cdot 163 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6031.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(1038\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(6031))\).

Total New Old
Modular forms 520 487 33
Cusp forms 517 487 30
Eisenstein series 3 0 3

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(37\)\(163\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(117\)\(110\)\(7\)\(117\)\(110\)\(7\)\(0\)\(0\)\(0\)
\(+\)\(-\)\(-\)\(142\)\(133\)\(9\)\(141\)\(133\)\(8\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(143\)\(135\)\(8\)\(142\)\(135\)\(7\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(118\)\(109\)\(9\)\(117\)\(109\)\(8\)\(1\)\(0\)\(1\)
Plus space\(+\)\(235\)\(219\)\(16\)\(234\)\(219\)\(15\)\(1\)\(0\)\(1\)
Minus space\(-\)\(285\)\(268\)\(17\)\(283\)\(268\)\(15\)\(2\)\(0\)\(2\)

Trace form

\( 487 q + 3 q^{2} + 4 q^{3} + 485 q^{4} + 6 q^{5} + 15 q^{8} + 491 q^{9} - 14 q^{10} + 12 q^{12} + 2 q^{13} - 24 q^{15} + 461 q^{16} + 14 q^{17} + 23 q^{18} - 4 q^{19} + 26 q^{20} + 24 q^{21} - 16 q^{22}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(6031))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 37 163
6031.2.a.a 6031.a 1.a $1$ $48.158$ \(\Q\) None 6031.2.a.a \(0\) \(3\) \(4\) \(1\) $-$ $+$ $\mathrm{SU}(2)$ \(q+3q^{3}-2q^{4}+4q^{5}+q^{7}+6q^{9}+\cdots\)
6031.2.a.b 6031.a 1.a $109$ $48.158$ None 6031.2.a.b \(-11\) \(-14\) \(-28\) \(-16\) $-$ $-$ $\mathrm{SU}(2)$
6031.2.a.c 6031.a 1.a $110$ $48.158$ None 6031.2.a.c \(-9\) \(0\) \(-26\) \(-4\) $+$ $+$ $\mathrm{SU}(2)$
6031.2.a.d 6031.a 1.a $133$ $48.158$ None 6031.2.a.d \(14\) \(8\) \(34\) \(8\) $+$ $-$ $\mathrm{SU}(2)$
6031.2.a.e 6031.a 1.a $134$ $48.158$ None 6031.2.a.e \(9\) \(7\) \(22\) \(11\) $-$ $+$ $\mathrm{SU}(2)$

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(6031))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(6031)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(37))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(163))\)\(^{\oplus 2}\)