Properties

Label 2-6031-1.1-c1-0-241
Degree $2$
Conductor $6031$
Sign $-1$
Analytic cond. $48.1577$
Root an. cond. $6.93958$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.69·2-s − 2.62·3-s + 5.24·4-s + 0.394·5-s + 7.07·6-s − 0.479·7-s − 8.73·8-s + 3.90·9-s − 1.06·10-s − 1.84·11-s − 13.7·12-s + 6.41·13-s + 1.28·14-s − 1.03·15-s + 13.0·16-s − 0.224·17-s − 10.5·18-s + 2.59·19-s + 2.06·20-s + 1.25·21-s + 4.97·22-s + 3.01·23-s + 22.9·24-s − 4.84·25-s − 17.2·26-s − 2.37·27-s − 2.51·28-s + ⋯
L(s)  = 1  − 1.90·2-s − 1.51·3-s + 2.62·4-s + 0.176·5-s + 2.88·6-s − 0.181·7-s − 3.08·8-s + 1.30·9-s − 0.335·10-s − 0.557·11-s − 3.97·12-s + 1.77·13-s + 0.344·14-s − 0.267·15-s + 3.25·16-s − 0.0545·17-s − 2.47·18-s + 0.596·19-s + 0.462·20-s + 0.274·21-s + 1.06·22-s + 0.628·23-s + 4.68·24-s − 0.968·25-s − 3.38·26-s − 0.456·27-s − 0.474·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6031 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6031 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6031\)    =    \(37 \cdot 163\)
Sign: $-1$
Analytic conductor: \(48.1577\)
Root analytic conductor: \(6.93958\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6031,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad37 \( 1 + T \)
163 \( 1 + T \)
good2 \( 1 + 2.69T + 2T^{2} \)
3 \( 1 + 2.62T + 3T^{2} \)
5 \( 1 - 0.394T + 5T^{2} \)
7 \( 1 + 0.479T + 7T^{2} \)
11 \( 1 + 1.84T + 11T^{2} \)
13 \( 1 - 6.41T + 13T^{2} \)
17 \( 1 + 0.224T + 17T^{2} \)
19 \( 1 - 2.59T + 19T^{2} \)
23 \( 1 - 3.01T + 23T^{2} \)
29 \( 1 + 8.24T + 29T^{2} \)
31 \( 1 + 0.0554T + 31T^{2} \)
41 \( 1 - 7.63T + 41T^{2} \)
43 \( 1 - 6.63T + 43T^{2} \)
47 \( 1 - 5.12T + 47T^{2} \)
53 \( 1 + 1.98T + 53T^{2} \)
59 \( 1 + 1.41T + 59T^{2} \)
61 \( 1 + 9.06T + 61T^{2} \)
67 \( 1 - 3.07T + 67T^{2} \)
71 \( 1 + 9.10T + 71T^{2} \)
73 \( 1 - 0.856T + 73T^{2} \)
79 \( 1 - 9.06T + 79T^{2} \)
83 \( 1 + 14.1T + 83T^{2} \)
89 \( 1 + 16.7T + 89T^{2} \)
97 \( 1 - 14.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.64823499226683035374786210744, −7.22466037955766264901733391744, −6.22533660951768668553241294733, −6.01008233480751589520595188378, −5.32472589655035683129143582586, −3.96248969548900484650328324404, −2.89210212480212459829302468109, −1.69031019653197519620120676305, −0.976379542065803451711349792396, 0, 0.976379542065803451711349792396, 1.69031019653197519620120676305, 2.89210212480212459829302468109, 3.96248969548900484650328324404, 5.32472589655035683129143582586, 6.01008233480751589520595188378, 6.22533660951768668553241294733, 7.22466037955766264901733391744, 7.64823499226683035374786210744

Graph of the $Z$-function along the critical line