Properties

Label 6026.2.a.m.1.11
Level $6026$
Weight $2$
Character 6026.1
Self dual yes
Analytic conductor $48.118$
Analytic rank $0$
Dimension $41$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6026,2,Mod(1,6026)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6026, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6026.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6026 = 2 \cdot 23 \cdot 131 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6026.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [41,41,4,41,9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.1178522580\)
Analytic rank: \(0\)
Dimension: \(41\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Character \(\chi\) \(=\) 6026.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.56181 q^{3} +1.00000 q^{4} +1.51273 q^{5} -1.56181 q^{6} +2.72551 q^{7} +1.00000 q^{8} -0.560757 q^{9} +1.51273 q^{10} -1.08693 q^{11} -1.56181 q^{12} -3.25138 q^{13} +2.72551 q^{14} -2.36260 q^{15} +1.00000 q^{16} -6.54570 q^{17} -0.560757 q^{18} +7.89936 q^{19} +1.51273 q^{20} -4.25672 q^{21} -1.08693 q^{22} +1.00000 q^{23} -1.56181 q^{24} -2.71164 q^{25} -3.25138 q^{26} +5.56122 q^{27} +2.72551 q^{28} -4.02445 q^{29} -2.36260 q^{30} +5.65283 q^{31} +1.00000 q^{32} +1.69758 q^{33} -6.54570 q^{34} +4.12297 q^{35} -0.560757 q^{36} -5.71628 q^{37} +7.89936 q^{38} +5.07803 q^{39} +1.51273 q^{40} +8.21663 q^{41} -4.25672 q^{42} +10.6057 q^{43} -1.08693 q^{44} -0.848275 q^{45} +1.00000 q^{46} -12.0232 q^{47} -1.56181 q^{48} +0.428399 q^{49} -2.71164 q^{50} +10.2231 q^{51} -3.25138 q^{52} +10.9686 q^{53} +5.56122 q^{54} -1.64424 q^{55} +2.72551 q^{56} -12.3373 q^{57} -4.02445 q^{58} +8.07821 q^{59} -2.36260 q^{60} +5.67453 q^{61} +5.65283 q^{62} -1.52835 q^{63} +1.00000 q^{64} -4.91847 q^{65} +1.69758 q^{66} +13.2548 q^{67} -6.54570 q^{68} -1.56181 q^{69} +4.12297 q^{70} -1.75710 q^{71} -0.560757 q^{72} +4.47561 q^{73} -5.71628 q^{74} +4.23506 q^{75} +7.89936 q^{76} -2.96244 q^{77} +5.07803 q^{78} +15.1732 q^{79} +1.51273 q^{80} -7.00328 q^{81} +8.21663 q^{82} -11.1953 q^{83} -4.25672 q^{84} -9.90190 q^{85} +10.6057 q^{86} +6.28542 q^{87} -1.08693 q^{88} +12.0812 q^{89} -0.848275 q^{90} -8.86167 q^{91} +1.00000 q^{92} -8.82863 q^{93} -12.0232 q^{94} +11.9496 q^{95} -1.56181 q^{96} +6.02816 q^{97} +0.428399 q^{98} +0.609505 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 41 q + 41 q^{2} + 4 q^{3} + 41 q^{4} + 9 q^{5} + 4 q^{6} + 12 q^{7} + 41 q^{8} + 63 q^{9} + 9 q^{10} + 4 q^{11} + 4 q^{12} + 16 q^{13} + 12 q^{14} + 10 q^{15} + 41 q^{16} + 10 q^{17} + 63 q^{18} + 16 q^{19}+ \cdots - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −1.56181 −0.901710 −0.450855 0.892597i \(-0.648881\pi\)
−0.450855 + 0.892597i \(0.648881\pi\)
\(4\) 1.00000 0.500000
\(5\) 1.51273 0.676515 0.338257 0.941054i \(-0.390163\pi\)
0.338257 + 0.941054i \(0.390163\pi\)
\(6\) −1.56181 −0.637605
\(7\) 2.72551 1.03015 0.515073 0.857146i \(-0.327765\pi\)
0.515073 + 0.857146i \(0.327765\pi\)
\(8\) 1.00000 0.353553
\(9\) −0.560757 −0.186919
\(10\) 1.51273 0.478368
\(11\) −1.08693 −0.327723 −0.163861 0.986483i \(-0.552395\pi\)
−0.163861 + 0.986483i \(0.552395\pi\)
\(12\) −1.56181 −0.450855
\(13\) −3.25138 −0.901771 −0.450885 0.892582i \(-0.648892\pi\)
−0.450885 + 0.892582i \(0.648892\pi\)
\(14\) 2.72551 0.728423
\(15\) −2.36260 −0.610020
\(16\) 1.00000 0.250000
\(17\) −6.54570 −1.58757 −0.793783 0.608201i \(-0.791891\pi\)
−0.793783 + 0.608201i \(0.791891\pi\)
\(18\) −0.560757 −0.132172
\(19\) 7.89936 1.81224 0.906119 0.423023i \(-0.139031\pi\)
0.906119 + 0.423023i \(0.139031\pi\)
\(20\) 1.51273 0.338257
\(21\) −4.25672 −0.928893
\(22\) −1.08693 −0.231735
\(23\) 1.00000 0.208514
\(24\) −1.56181 −0.318803
\(25\) −2.71164 −0.542328
\(26\) −3.25138 −0.637648
\(27\) 5.56122 1.07026
\(28\) 2.72551 0.515073
\(29\) −4.02445 −0.747321 −0.373661 0.927565i \(-0.621898\pi\)
−0.373661 + 0.927565i \(0.621898\pi\)
\(30\) −2.36260 −0.431349
\(31\) 5.65283 1.01528 0.507639 0.861570i \(-0.330518\pi\)
0.507639 + 0.861570i \(0.330518\pi\)
\(32\) 1.00000 0.176777
\(33\) 1.69758 0.295511
\(34\) −6.54570 −1.12258
\(35\) 4.12297 0.696909
\(36\) −0.560757 −0.0934594
\(37\) −5.71628 −0.939751 −0.469875 0.882733i \(-0.655701\pi\)
−0.469875 + 0.882733i \(0.655701\pi\)
\(38\) 7.89936 1.28145
\(39\) 5.07803 0.813136
\(40\) 1.51273 0.239184
\(41\) 8.21663 1.28322 0.641611 0.767030i \(-0.278266\pi\)
0.641611 + 0.767030i \(0.278266\pi\)
\(42\) −4.25672 −0.656826
\(43\) 10.6057 1.61736 0.808680 0.588248i \(-0.200182\pi\)
0.808680 + 0.588248i \(0.200182\pi\)
\(44\) −1.08693 −0.163861
\(45\) −0.848275 −0.126453
\(46\) 1.00000 0.147442
\(47\) −12.0232 −1.75376 −0.876880 0.480709i \(-0.840379\pi\)
−0.876880 + 0.480709i \(0.840379\pi\)
\(48\) −1.56181 −0.225428
\(49\) 0.428399 0.0611999
\(50\) −2.71164 −0.383484
\(51\) 10.2231 1.43152
\(52\) −3.25138 −0.450885
\(53\) 10.9686 1.50665 0.753327 0.657646i \(-0.228448\pi\)
0.753327 + 0.657646i \(0.228448\pi\)
\(54\) 5.56122 0.756786
\(55\) −1.64424 −0.221709
\(56\) 2.72551 0.364211
\(57\) −12.3373 −1.63411
\(58\) −4.02445 −0.528436
\(59\) 8.07821 1.05169 0.525847 0.850579i \(-0.323748\pi\)
0.525847 + 0.850579i \(0.323748\pi\)
\(60\) −2.36260 −0.305010
\(61\) 5.67453 0.726550 0.363275 0.931682i \(-0.381659\pi\)
0.363275 + 0.931682i \(0.381659\pi\)
\(62\) 5.65283 0.717910
\(63\) −1.52835 −0.192554
\(64\) 1.00000 0.125000
\(65\) −4.91847 −0.610061
\(66\) 1.69758 0.208958
\(67\) 13.2548 1.61933 0.809664 0.586893i \(-0.199649\pi\)
0.809664 + 0.586893i \(0.199649\pi\)
\(68\) −6.54570 −0.793783
\(69\) −1.56181 −0.188020
\(70\) 4.12297 0.492789
\(71\) −1.75710 −0.208529 −0.104265 0.994550i \(-0.533249\pi\)
−0.104265 + 0.994550i \(0.533249\pi\)
\(72\) −0.560757 −0.0660858
\(73\) 4.47561 0.523830 0.261915 0.965091i \(-0.415646\pi\)
0.261915 + 0.965091i \(0.415646\pi\)
\(74\) −5.71628 −0.664504
\(75\) 4.23506 0.489022
\(76\) 7.89936 0.906119
\(77\) −2.96244 −0.337602
\(78\) 5.07803 0.574974
\(79\) 15.1732 1.70712 0.853558 0.520998i \(-0.174440\pi\)
0.853558 + 0.520998i \(0.174440\pi\)
\(80\) 1.51273 0.169129
\(81\) −7.00328 −0.778143
\(82\) 8.21663 0.907375
\(83\) −11.1953 −1.22885 −0.614423 0.788977i \(-0.710611\pi\)
−0.614423 + 0.788977i \(0.710611\pi\)
\(84\) −4.25672 −0.464446
\(85\) −9.90190 −1.07401
\(86\) 10.6057 1.14365
\(87\) 6.28542 0.673867
\(88\) −1.08693 −0.115867
\(89\) 12.0812 1.28060 0.640300 0.768125i \(-0.278810\pi\)
0.640300 + 0.768125i \(0.278810\pi\)
\(90\) −0.848275 −0.0894160
\(91\) −8.86167 −0.928955
\(92\) 1.00000 0.104257
\(93\) −8.82863 −0.915487
\(94\) −12.0232 −1.24010
\(95\) 11.9496 1.22601
\(96\) −1.56181 −0.159401
\(97\) 6.02816 0.612067 0.306034 0.952021i \(-0.400998\pi\)
0.306034 + 0.952021i \(0.400998\pi\)
\(98\) 0.428399 0.0432749
\(99\) 0.609505 0.0612575
\(100\) −2.71164 −0.271164
\(101\) 11.1625 1.11071 0.555356 0.831613i \(-0.312582\pi\)
0.555356 + 0.831613i \(0.312582\pi\)
\(102\) 10.2231 1.01224
\(103\) 5.38566 0.530665 0.265333 0.964157i \(-0.414518\pi\)
0.265333 + 0.964157i \(0.414518\pi\)
\(104\) −3.25138 −0.318824
\(105\) −6.43928 −0.628410
\(106\) 10.9686 1.06537
\(107\) 5.56524 0.538012 0.269006 0.963139i \(-0.413305\pi\)
0.269006 + 0.963139i \(0.413305\pi\)
\(108\) 5.56122 0.535128
\(109\) 18.0035 1.72443 0.862213 0.506545i \(-0.169078\pi\)
0.862213 + 0.506545i \(0.169078\pi\)
\(110\) −1.64424 −0.156772
\(111\) 8.92773 0.847383
\(112\) 2.72551 0.257536
\(113\) −10.3281 −0.971590 −0.485795 0.874073i \(-0.661470\pi\)
−0.485795 + 0.874073i \(0.661470\pi\)
\(114\) −12.3373 −1.15549
\(115\) 1.51273 0.141063
\(116\) −4.02445 −0.373661
\(117\) 1.82323 0.168558
\(118\) 8.07821 0.743660
\(119\) −17.8404 −1.63542
\(120\) −2.36260 −0.215675
\(121\) −9.81858 −0.892598
\(122\) 5.67453 0.513748
\(123\) −12.8328 −1.15709
\(124\) 5.65283 0.507639
\(125\) −11.6657 −1.04341
\(126\) −1.52835 −0.136156
\(127\) −1.13819 −0.100998 −0.0504988 0.998724i \(-0.516081\pi\)
−0.0504988 + 0.998724i \(0.516081\pi\)
\(128\) 1.00000 0.0883883
\(129\) −16.5641 −1.45839
\(130\) −4.91847 −0.431378
\(131\) 1.00000 0.0873704
\(132\) 1.69758 0.147755
\(133\) 21.5298 1.86687
\(134\) 13.2548 1.14504
\(135\) 8.41264 0.724045
\(136\) −6.54570 −0.561289
\(137\) −6.46391 −0.552249 −0.276124 0.961122i \(-0.589050\pi\)
−0.276124 + 0.961122i \(0.589050\pi\)
\(138\) −1.56181 −0.132950
\(139\) −12.6275 −1.07105 −0.535524 0.844520i \(-0.679886\pi\)
−0.535524 + 0.844520i \(0.679886\pi\)
\(140\) 4.12297 0.348454
\(141\) 18.7779 1.58138
\(142\) −1.75710 −0.147453
\(143\) 3.53403 0.295531
\(144\) −0.560757 −0.0467297
\(145\) −6.08792 −0.505574
\(146\) 4.47561 0.370404
\(147\) −0.669077 −0.0551846
\(148\) −5.71628 −0.469875
\(149\) 2.41085 0.197504 0.0987522 0.995112i \(-0.468515\pi\)
0.0987522 + 0.995112i \(0.468515\pi\)
\(150\) 4.23506 0.345791
\(151\) −13.2218 −1.07597 −0.537986 0.842954i \(-0.680815\pi\)
−0.537986 + 0.842954i \(0.680815\pi\)
\(152\) 7.89936 0.640723
\(153\) 3.67054 0.296746
\(154\) −2.96244 −0.238721
\(155\) 8.55122 0.686851
\(156\) 5.07803 0.406568
\(157\) −23.1492 −1.84751 −0.923753 0.382990i \(-0.874894\pi\)
−0.923753 + 0.382990i \(0.874894\pi\)
\(158\) 15.1732 1.20711
\(159\) −17.1309 −1.35856
\(160\) 1.51273 0.119592
\(161\) 2.72551 0.214800
\(162\) −7.00328 −0.550230
\(163\) 18.9577 1.48488 0.742442 0.669911i \(-0.233668\pi\)
0.742442 + 0.669911i \(0.233668\pi\)
\(164\) 8.21663 0.641611
\(165\) 2.56799 0.199917
\(166\) −11.1953 −0.868925
\(167\) 13.0447 1.00943 0.504715 0.863286i \(-0.331598\pi\)
0.504715 + 0.863286i \(0.331598\pi\)
\(168\) −4.25672 −0.328413
\(169\) −2.42852 −0.186809
\(170\) −9.90190 −0.759441
\(171\) −4.42962 −0.338741
\(172\) 10.6057 0.808680
\(173\) −1.61076 −0.122464 −0.0612320 0.998124i \(-0.519503\pi\)
−0.0612320 + 0.998124i \(0.519503\pi\)
\(174\) 6.28542 0.476496
\(175\) −7.39059 −0.558676
\(176\) −1.08693 −0.0819306
\(177\) −12.6166 −0.948323
\(178\) 12.0812 0.905521
\(179\) −10.9706 −0.819978 −0.409989 0.912091i \(-0.634467\pi\)
−0.409989 + 0.912091i \(0.634467\pi\)
\(180\) −0.848275 −0.0632267
\(181\) 2.15287 0.160022 0.0800108 0.996794i \(-0.474505\pi\)
0.0800108 + 0.996794i \(0.474505\pi\)
\(182\) −8.86167 −0.656870
\(183\) −8.86253 −0.655137
\(184\) 1.00000 0.0737210
\(185\) −8.64721 −0.635755
\(186\) −8.82863 −0.647347
\(187\) 7.11474 0.520281
\(188\) −12.0232 −0.876880
\(189\) 15.1571 1.10252
\(190\) 11.9496 0.866917
\(191\) 11.4780 0.830522 0.415261 0.909702i \(-0.363690\pi\)
0.415261 + 0.909702i \(0.363690\pi\)
\(192\) −1.56181 −0.112714
\(193\) 14.9276 1.07451 0.537256 0.843419i \(-0.319461\pi\)
0.537256 + 0.843419i \(0.319461\pi\)
\(194\) 6.02816 0.432797
\(195\) 7.68171 0.550098
\(196\) 0.428399 0.0306000
\(197\) −23.4357 −1.66973 −0.834863 0.550458i \(-0.814453\pi\)
−0.834863 + 0.550458i \(0.814453\pi\)
\(198\) 0.609505 0.0433156
\(199\) −14.3032 −1.01392 −0.506962 0.861968i \(-0.669232\pi\)
−0.506962 + 0.861968i \(0.669232\pi\)
\(200\) −2.71164 −0.191742
\(201\) −20.7014 −1.46017
\(202\) 11.1625 0.785392
\(203\) −10.9687 −0.769850
\(204\) 10.2231 0.715762
\(205\) 12.4296 0.868119
\(206\) 5.38566 0.375237
\(207\) −0.560757 −0.0389753
\(208\) −3.25138 −0.225443
\(209\) −8.58608 −0.593911
\(210\) −6.43928 −0.444353
\(211\) 20.1435 1.38674 0.693368 0.720584i \(-0.256126\pi\)
0.693368 + 0.720584i \(0.256126\pi\)
\(212\) 10.9686 0.753327
\(213\) 2.74425 0.188033
\(214\) 5.56524 0.380432
\(215\) 16.0437 1.09417
\(216\) 5.56122 0.378393
\(217\) 15.4068 1.04588
\(218\) 18.0035 1.21935
\(219\) −6.99004 −0.472343
\(220\) −1.64424 −0.110855
\(221\) 21.2826 1.43162
\(222\) 8.92773 0.599190
\(223\) −14.8615 −0.995200 −0.497600 0.867406i \(-0.665785\pi\)
−0.497600 + 0.867406i \(0.665785\pi\)
\(224\) 2.72551 0.182106
\(225\) 1.52057 0.101371
\(226\) −10.3281 −0.687018
\(227\) −3.92557 −0.260549 −0.130275 0.991478i \(-0.541586\pi\)
−0.130275 + 0.991478i \(0.541586\pi\)
\(228\) −12.3373 −0.817057
\(229\) 20.5271 1.35647 0.678233 0.734847i \(-0.262746\pi\)
0.678233 + 0.734847i \(0.262746\pi\)
\(230\) 1.51273 0.0997467
\(231\) 4.62677 0.304419
\(232\) −4.02445 −0.264218
\(233\) −29.5168 −1.93371 −0.966854 0.255330i \(-0.917816\pi\)
−0.966854 + 0.255330i \(0.917816\pi\)
\(234\) 1.82323 0.119188
\(235\) −18.1879 −1.18644
\(236\) 8.07821 0.525847
\(237\) −23.6976 −1.53932
\(238\) −17.8404 −1.15642
\(239\) 15.8106 1.02270 0.511351 0.859372i \(-0.329145\pi\)
0.511351 + 0.859372i \(0.329145\pi\)
\(240\) −2.36260 −0.152505
\(241\) 17.8829 1.15194 0.575971 0.817470i \(-0.304624\pi\)
0.575971 + 0.817470i \(0.304624\pi\)
\(242\) −9.81858 −0.631162
\(243\) −5.74587 −0.368598
\(244\) 5.67453 0.363275
\(245\) 0.648054 0.0414026
\(246\) −12.8328 −0.818189
\(247\) −25.6838 −1.63422
\(248\) 5.65283 0.358955
\(249\) 17.4849 1.10806
\(250\) −11.6657 −0.737801
\(251\) −3.89626 −0.245930 −0.122965 0.992411i \(-0.539240\pi\)
−0.122965 + 0.992411i \(0.539240\pi\)
\(252\) −1.52835 −0.0962768
\(253\) −1.08693 −0.0683349
\(254\) −1.13819 −0.0714161
\(255\) 15.4649 0.968447
\(256\) 1.00000 0.0625000
\(257\) 2.54566 0.158794 0.0793969 0.996843i \(-0.474701\pi\)
0.0793969 + 0.996843i \(0.474701\pi\)
\(258\) −16.5641 −1.03124
\(259\) −15.5798 −0.968080
\(260\) −4.91847 −0.305031
\(261\) 2.25674 0.139688
\(262\) 1.00000 0.0617802
\(263\) 2.59768 0.160180 0.0800899 0.996788i \(-0.474479\pi\)
0.0800899 + 0.996788i \(0.474479\pi\)
\(264\) 1.69758 0.104479
\(265\) 16.5926 1.01927
\(266\) 21.5298 1.32008
\(267\) −18.8685 −1.15473
\(268\) 13.2548 0.809664
\(269\) 3.84494 0.234430 0.117215 0.993107i \(-0.462603\pi\)
0.117215 + 0.993107i \(0.462603\pi\)
\(270\) 8.41264 0.511977
\(271\) 19.5477 1.18744 0.593720 0.804671i \(-0.297659\pi\)
0.593720 + 0.804671i \(0.297659\pi\)
\(272\) −6.54570 −0.396891
\(273\) 13.8402 0.837648
\(274\) −6.46391 −0.390499
\(275\) 2.94737 0.177733
\(276\) −1.56181 −0.0940098
\(277\) 7.78713 0.467883 0.233942 0.972251i \(-0.424838\pi\)
0.233942 + 0.972251i \(0.424838\pi\)
\(278\) −12.6275 −0.757345
\(279\) −3.16986 −0.189775
\(280\) 4.12297 0.246394
\(281\) −7.12347 −0.424951 −0.212475 0.977166i \(-0.568152\pi\)
−0.212475 + 0.977166i \(0.568152\pi\)
\(282\) 18.7779 1.11821
\(283\) −13.2971 −0.790433 −0.395216 0.918588i \(-0.629330\pi\)
−0.395216 + 0.918588i \(0.629330\pi\)
\(284\) −1.75710 −0.104265
\(285\) −18.6630 −1.10550
\(286\) 3.53403 0.208972
\(287\) 22.3945 1.32191
\(288\) −0.560757 −0.0330429
\(289\) 25.8462 1.52037
\(290\) −6.08792 −0.357495
\(291\) −9.41483 −0.551907
\(292\) 4.47561 0.261915
\(293\) 33.6550 1.96614 0.983072 0.183220i \(-0.0586521\pi\)
0.983072 + 0.183220i \(0.0586521\pi\)
\(294\) −0.669077 −0.0390214
\(295\) 12.2202 0.711487
\(296\) −5.71628 −0.332252
\(297\) −6.04467 −0.350747
\(298\) 2.41085 0.139657
\(299\) −3.25138 −0.188032
\(300\) 4.23506 0.244511
\(301\) 28.9061 1.66612
\(302\) −13.2218 −0.760827
\(303\) −17.4337 −1.00154
\(304\) 7.89936 0.453060
\(305\) 8.58406 0.491522
\(306\) 3.67054 0.209831
\(307\) 11.9374 0.681305 0.340653 0.940189i \(-0.389352\pi\)
0.340653 + 0.940189i \(0.389352\pi\)
\(308\) −2.96244 −0.168801
\(309\) −8.41137 −0.478506
\(310\) 8.55122 0.485677
\(311\) 30.3911 1.72332 0.861659 0.507487i \(-0.169425\pi\)
0.861659 + 0.507487i \(0.169425\pi\)
\(312\) 5.07803 0.287487
\(313\) 26.0508 1.47248 0.736239 0.676722i \(-0.236600\pi\)
0.736239 + 0.676722i \(0.236600\pi\)
\(314\) −23.1492 −1.30638
\(315\) −2.31198 −0.130265
\(316\) 15.1732 0.853558
\(317\) 3.62877 0.203812 0.101906 0.994794i \(-0.467506\pi\)
0.101906 + 0.994794i \(0.467506\pi\)
\(318\) −17.1309 −0.960650
\(319\) 4.37430 0.244914
\(320\) 1.51273 0.0845644
\(321\) −8.69183 −0.485131
\(322\) 2.72551 0.151887
\(323\) −51.7069 −2.87705
\(324\) −7.00328 −0.389071
\(325\) 8.81657 0.489055
\(326\) 18.9577 1.04997
\(327\) −28.1181 −1.55493
\(328\) 8.21663 0.453687
\(329\) −32.7693 −1.80663
\(330\) 2.56799 0.141363
\(331\) −3.86538 −0.212460 −0.106230 0.994342i \(-0.533878\pi\)
−0.106230 + 0.994342i \(0.533878\pi\)
\(332\) −11.1953 −0.614423
\(333\) 3.20544 0.175657
\(334\) 13.0447 0.713774
\(335\) 20.0509 1.09550
\(336\) −4.25672 −0.232223
\(337\) −20.4027 −1.11141 −0.555703 0.831381i \(-0.687551\pi\)
−0.555703 + 0.831381i \(0.687551\pi\)
\(338\) −2.42852 −0.132094
\(339\) 16.1306 0.876092
\(340\) −9.90190 −0.537006
\(341\) −6.14425 −0.332730
\(342\) −4.42962 −0.239526
\(343\) −17.9110 −0.967101
\(344\) 10.6057 0.571823
\(345\) −2.36260 −0.127198
\(346\) −1.61076 −0.0865952
\(347\) −24.3575 −1.30758 −0.653789 0.756676i \(-0.726822\pi\)
−0.653789 + 0.756676i \(0.726822\pi\)
\(348\) 6.28542 0.336934
\(349\) −31.6986 −1.69679 −0.848394 0.529366i \(-0.822430\pi\)
−0.848394 + 0.529366i \(0.822430\pi\)
\(350\) −7.39059 −0.395044
\(351\) −18.0816 −0.965126
\(352\) −1.08693 −0.0579337
\(353\) −22.3874 −1.19156 −0.595782 0.803146i \(-0.703158\pi\)
−0.595782 + 0.803146i \(0.703158\pi\)
\(354\) −12.6166 −0.670566
\(355\) −2.65802 −0.141073
\(356\) 12.0812 0.640300
\(357\) 27.8632 1.47468
\(358\) −10.9706 −0.579812
\(359\) 1.91933 0.101298 0.0506492 0.998717i \(-0.483871\pi\)
0.0506492 + 0.998717i \(0.483871\pi\)
\(360\) −0.848275 −0.0447080
\(361\) 43.3999 2.28421
\(362\) 2.15287 0.113152
\(363\) 15.3347 0.804865
\(364\) −8.86167 −0.464478
\(365\) 6.77040 0.354379
\(366\) −8.86253 −0.463252
\(367\) 25.7720 1.34529 0.672643 0.739967i \(-0.265159\pi\)
0.672643 + 0.739967i \(0.265159\pi\)
\(368\) 1.00000 0.0521286
\(369\) −4.60753 −0.239858
\(370\) −8.64721 −0.449547
\(371\) 29.8950 1.55207
\(372\) −8.82863 −0.457743
\(373\) 12.6845 0.656777 0.328388 0.944543i \(-0.393495\pi\)
0.328388 + 0.944543i \(0.393495\pi\)
\(374\) 7.11474 0.367894
\(375\) 18.2195 0.940851
\(376\) −12.0232 −0.620048
\(377\) 13.0850 0.673913
\(378\) 15.1571 0.779600
\(379\) 32.3547 1.66195 0.830975 0.556309i \(-0.187783\pi\)
0.830975 + 0.556309i \(0.187783\pi\)
\(380\) 11.9496 0.613003
\(381\) 1.77763 0.0910706
\(382\) 11.4780 0.587268
\(383\) −9.13968 −0.467016 −0.233508 0.972355i \(-0.575020\pi\)
−0.233508 + 0.972355i \(0.575020\pi\)
\(384\) −1.56181 −0.0797007
\(385\) −4.48139 −0.228393
\(386\) 14.9276 0.759795
\(387\) −5.94724 −0.302315
\(388\) 6.02816 0.306034
\(389\) 11.3707 0.576516 0.288258 0.957553i \(-0.406924\pi\)
0.288258 + 0.957553i \(0.406924\pi\)
\(390\) 7.68171 0.388978
\(391\) −6.54570 −0.331030
\(392\) 0.428399 0.0216374
\(393\) −1.56181 −0.0787828
\(394\) −23.4357 −1.18067
\(395\) 22.9530 1.15489
\(396\) 0.609505 0.0306288
\(397\) 13.0132 0.653116 0.326558 0.945177i \(-0.394111\pi\)
0.326558 + 0.945177i \(0.394111\pi\)
\(398\) −14.3032 −0.716953
\(399\) −33.6254 −1.68337
\(400\) −2.71164 −0.135582
\(401\) −24.4429 −1.22062 −0.610311 0.792162i \(-0.708955\pi\)
−0.610311 + 0.792162i \(0.708955\pi\)
\(402\) −20.7014 −1.03249
\(403\) −18.3795 −0.915548
\(404\) 11.1625 0.555356
\(405\) −10.5941 −0.526425
\(406\) −10.9687 −0.544366
\(407\) 6.21321 0.307977
\(408\) 10.2231 0.506120
\(409\) −11.7592 −0.581455 −0.290727 0.956806i \(-0.593897\pi\)
−0.290727 + 0.956806i \(0.593897\pi\)
\(410\) 12.4296 0.613853
\(411\) 10.0954 0.497968
\(412\) 5.38566 0.265333
\(413\) 22.0172 1.08340
\(414\) −0.560757 −0.0275597
\(415\) −16.9355 −0.831333
\(416\) −3.25138 −0.159412
\(417\) 19.7217 0.965774
\(418\) −8.58608 −0.419959
\(419\) 17.5087 0.855356 0.427678 0.903931i \(-0.359332\pi\)
0.427678 + 0.903931i \(0.359332\pi\)
\(420\) −6.43928 −0.314205
\(421\) −14.4704 −0.705245 −0.352623 0.935766i \(-0.614710\pi\)
−0.352623 + 0.935766i \(0.614710\pi\)
\(422\) 20.1435 0.980570
\(423\) 6.74207 0.327811
\(424\) 10.9686 0.532683
\(425\) 17.7496 0.860981
\(426\) 2.74425 0.132960
\(427\) 15.4660 0.748452
\(428\) 5.56524 0.269006
\(429\) −5.51948 −0.266483
\(430\) 16.0437 0.773694
\(431\) 0.00182411 8.78642e−5 0 4.39321e−5 1.00000i \(-0.499986\pi\)
4.39321e−5 1.00000i \(0.499986\pi\)
\(432\) 5.56122 0.267564
\(433\) 23.2150 1.11564 0.557820 0.829962i \(-0.311638\pi\)
0.557820 + 0.829962i \(0.311638\pi\)
\(434\) 15.4068 0.739552
\(435\) 9.50816 0.455881
\(436\) 18.0035 0.862213
\(437\) 7.89936 0.377878
\(438\) −6.99004 −0.333997
\(439\) 15.3362 0.731956 0.365978 0.930624i \(-0.380735\pi\)
0.365978 + 0.930624i \(0.380735\pi\)
\(440\) −1.64424 −0.0783860
\(441\) −0.240228 −0.0114394
\(442\) 21.2826 1.01231
\(443\) −24.5279 −1.16535 −0.582677 0.812704i \(-0.697995\pi\)
−0.582677 + 0.812704i \(0.697995\pi\)
\(444\) 8.92773 0.423691
\(445\) 18.2756 0.866345
\(446\) −14.8615 −0.703713
\(447\) −3.76528 −0.178092
\(448\) 2.72551 0.128768
\(449\) 35.2692 1.66446 0.832228 0.554433i \(-0.187065\pi\)
0.832228 + 0.554433i \(0.187065\pi\)
\(450\) 1.52057 0.0716803
\(451\) −8.93092 −0.420541
\(452\) −10.3281 −0.485795
\(453\) 20.6499 0.970215
\(454\) −3.92557 −0.184236
\(455\) −13.4053 −0.628452
\(456\) −12.3373 −0.577746
\(457\) 37.3570 1.74749 0.873744 0.486386i \(-0.161685\pi\)
0.873744 + 0.486386i \(0.161685\pi\)
\(458\) 20.5271 0.959167
\(459\) −36.4021 −1.69910
\(460\) 1.51273 0.0705315
\(461\) −10.2337 −0.476629 −0.238315 0.971188i \(-0.576595\pi\)
−0.238315 + 0.971188i \(0.576595\pi\)
\(462\) 4.62677 0.215257
\(463\) −31.0320 −1.44218 −0.721089 0.692843i \(-0.756358\pi\)
−0.721089 + 0.692843i \(0.756358\pi\)
\(464\) −4.02445 −0.186830
\(465\) −13.3554 −0.619340
\(466\) −29.5168 −1.36734
\(467\) 28.9904 1.34152 0.670758 0.741677i \(-0.265969\pi\)
0.670758 + 0.741677i \(0.265969\pi\)
\(468\) 1.82323 0.0842790
\(469\) 36.1260 1.66814
\(470\) −18.1879 −0.838943
\(471\) 36.1546 1.66591
\(472\) 8.07821 0.371830
\(473\) −11.5277 −0.530046
\(474\) −23.6976 −1.08847
\(475\) −21.4202 −0.982827
\(476\) −17.8404 −0.817712
\(477\) −6.15072 −0.281622
\(478\) 15.8106 0.723160
\(479\) 20.6800 0.944894 0.472447 0.881359i \(-0.343371\pi\)
0.472447 + 0.881359i \(0.343371\pi\)
\(480\) −2.36260 −0.107837
\(481\) 18.5858 0.847440
\(482\) 17.8829 0.814546
\(483\) −4.25672 −0.193688
\(484\) −9.81858 −0.446299
\(485\) 9.11901 0.414073
\(486\) −5.74587 −0.260638
\(487\) −16.5595 −0.750381 −0.375190 0.926948i \(-0.622423\pi\)
−0.375190 + 0.926948i \(0.622423\pi\)
\(488\) 5.67453 0.256874
\(489\) −29.6083 −1.33893
\(490\) 0.648054 0.0292761
\(491\) −15.7102 −0.708992 −0.354496 0.935057i \(-0.615348\pi\)
−0.354496 + 0.935057i \(0.615348\pi\)
\(492\) −12.8328 −0.578547
\(493\) 26.3428 1.18642
\(494\) −25.6838 −1.15557
\(495\) 0.922018 0.0414416
\(496\) 5.65283 0.253820
\(497\) −4.78899 −0.214816
\(498\) 17.4849 0.783519
\(499\) −43.5807 −1.95094 −0.975470 0.220133i \(-0.929351\pi\)
−0.975470 + 0.220133i \(0.929351\pi\)
\(500\) −11.6657 −0.521704
\(501\) −20.3733 −0.910213
\(502\) −3.89626 −0.173899
\(503\) 13.2458 0.590603 0.295301 0.955404i \(-0.404580\pi\)
0.295301 + 0.955404i \(0.404580\pi\)
\(504\) −1.52835 −0.0680780
\(505\) 16.8859 0.751414
\(506\) −1.08693 −0.0483201
\(507\) 3.79289 0.168448
\(508\) −1.13819 −0.0504988
\(509\) −1.41738 −0.0628243 −0.0314121 0.999507i \(-0.510000\pi\)
−0.0314121 + 0.999507i \(0.510000\pi\)
\(510\) 15.4649 0.684796
\(511\) 12.1983 0.539621
\(512\) 1.00000 0.0441942
\(513\) 43.9301 1.93956
\(514\) 2.54566 0.112284
\(515\) 8.14707 0.359003
\(516\) −16.5641 −0.729195
\(517\) 13.0684 0.574747
\(518\) −15.5798 −0.684536
\(519\) 2.51570 0.110427
\(520\) −4.91847 −0.215689
\(521\) 21.3336 0.934642 0.467321 0.884088i \(-0.345219\pi\)
0.467321 + 0.884088i \(0.345219\pi\)
\(522\) 2.25674 0.0987746
\(523\) −15.4468 −0.675441 −0.337720 0.941246i \(-0.609656\pi\)
−0.337720 + 0.941246i \(0.609656\pi\)
\(524\) 1.00000 0.0436852
\(525\) 11.5427 0.503764
\(526\) 2.59768 0.113264
\(527\) −37.0017 −1.61182
\(528\) 1.69758 0.0738777
\(529\) 1.00000 0.0434783
\(530\) 16.5926 0.720735
\(531\) −4.52991 −0.196581
\(532\) 21.5298 0.933435
\(533\) −26.7154 −1.15717
\(534\) −18.8685 −0.816518
\(535\) 8.41872 0.363973
\(536\) 13.2548 0.572519
\(537\) 17.1339 0.739382
\(538\) 3.84494 0.165767
\(539\) −0.465641 −0.0200566
\(540\) 8.41264 0.362022
\(541\) −29.0401 −1.24853 −0.624266 0.781212i \(-0.714602\pi\)
−0.624266 + 0.781212i \(0.714602\pi\)
\(542\) 19.5477 0.839647
\(543\) −3.36237 −0.144293
\(544\) −6.54570 −0.280645
\(545\) 27.2346 1.16660
\(546\) 13.8402 0.592307
\(547\) −6.02558 −0.257635 −0.128818 0.991668i \(-0.541118\pi\)
−0.128818 + 0.991668i \(0.541118\pi\)
\(548\) −6.46391 −0.276124
\(549\) −3.18203 −0.135806
\(550\) 2.94737 0.125676
\(551\) −31.7906 −1.35432
\(552\) −1.56181 −0.0664750
\(553\) 41.3546 1.75858
\(554\) 7.78713 0.330843
\(555\) 13.5053 0.573267
\(556\) −12.6275 −0.535524
\(557\) 36.2804 1.53725 0.768626 0.639699i \(-0.220941\pi\)
0.768626 + 0.639699i \(0.220941\pi\)
\(558\) −3.16986 −0.134191
\(559\) −34.4833 −1.45849
\(560\) 4.12297 0.174227
\(561\) −11.1119 −0.469143
\(562\) −7.12347 −0.300485
\(563\) −42.2236 −1.77951 −0.889757 0.456435i \(-0.849126\pi\)
−0.889757 + 0.456435i \(0.849126\pi\)
\(564\) 18.7779 0.790692
\(565\) −15.6237 −0.657295
\(566\) −13.2971 −0.558920
\(567\) −19.0875 −0.801600
\(568\) −1.75710 −0.0737263
\(569\) −39.2330 −1.64473 −0.822365 0.568960i \(-0.807346\pi\)
−0.822365 + 0.568960i \(0.807346\pi\)
\(570\) −18.6630 −0.781708
\(571\) 2.40972 0.100843 0.0504217 0.998728i \(-0.483943\pi\)
0.0504217 + 0.998728i \(0.483943\pi\)
\(572\) 3.53403 0.147765
\(573\) −17.9265 −0.748891
\(574\) 22.3945 0.934728
\(575\) −2.71164 −0.113083
\(576\) −0.560757 −0.0233649
\(577\) −7.43139 −0.309373 −0.154686 0.987964i \(-0.549437\pi\)
−0.154686 + 0.987964i \(0.549437\pi\)
\(578\) 25.8462 1.07506
\(579\) −23.3141 −0.968899
\(580\) −6.08792 −0.252787
\(581\) −30.5129 −1.26589
\(582\) −9.41483 −0.390257
\(583\) −11.9221 −0.493764
\(584\) 4.47561 0.185202
\(585\) 2.75806 0.114032
\(586\) 33.6550 1.39027
\(587\) 8.13279 0.335676 0.167838 0.985815i \(-0.446321\pi\)
0.167838 + 0.985815i \(0.446321\pi\)
\(588\) −0.669077 −0.0275923
\(589\) 44.6538 1.83993
\(590\) 12.2202 0.503097
\(591\) 36.6021 1.50561
\(592\) −5.71628 −0.234938
\(593\) −22.0230 −0.904374 −0.452187 0.891923i \(-0.649356\pi\)
−0.452187 + 0.891923i \(0.649356\pi\)
\(594\) −6.04467 −0.248016
\(595\) −26.9877 −1.10639
\(596\) 2.41085 0.0987522
\(597\) 22.3388 0.914266
\(598\) −3.25138 −0.132959
\(599\) 10.9285 0.446526 0.223263 0.974758i \(-0.428329\pi\)
0.223263 + 0.974758i \(0.428329\pi\)
\(600\) 4.23506 0.172896
\(601\) −41.1819 −1.67984 −0.839922 0.542707i \(-0.817400\pi\)
−0.839922 + 0.542707i \(0.817400\pi\)
\(602\) 28.9061 1.17812
\(603\) −7.43270 −0.302683
\(604\) −13.2218 −0.537986
\(605\) −14.8529 −0.603856
\(606\) −17.4337 −0.708196
\(607\) −24.2073 −0.982544 −0.491272 0.871006i \(-0.663468\pi\)
−0.491272 + 0.871006i \(0.663468\pi\)
\(608\) 7.89936 0.320361
\(609\) 17.1310 0.694181
\(610\) 8.58406 0.347558
\(611\) 39.0919 1.58149
\(612\) 3.67054 0.148373
\(613\) 28.9450 1.16908 0.584538 0.811366i \(-0.301276\pi\)
0.584538 + 0.811366i \(0.301276\pi\)
\(614\) 11.9374 0.481756
\(615\) −19.4126 −0.782791
\(616\) −2.96244 −0.119360
\(617\) 34.8958 1.40485 0.702426 0.711757i \(-0.252100\pi\)
0.702426 + 0.711757i \(0.252100\pi\)
\(618\) −8.41137 −0.338355
\(619\) −6.87238 −0.276224 −0.138112 0.990417i \(-0.544103\pi\)
−0.138112 + 0.990417i \(0.544103\pi\)
\(620\) 8.55122 0.343425
\(621\) 5.56122 0.223164
\(622\) 30.3911 1.21857
\(623\) 32.9273 1.31921
\(624\) 5.07803 0.203284
\(625\) −4.08883 −0.163553
\(626\) 26.0508 1.04120
\(627\) 13.4098 0.535536
\(628\) −23.1492 −0.923753
\(629\) 37.4171 1.49192
\(630\) −2.31198 −0.0921115
\(631\) −9.21077 −0.366675 −0.183337 0.983050i \(-0.558690\pi\)
−0.183337 + 0.983050i \(0.558690\pi\)
\(632\) 15.1732 0.603556
\(633\) −31.4603 −1.25043
\(634\) 3.62877 0.144117
\(635\) −1.72177 −0.0683264
\(636\) −17.1309 −0.679282
\(637\) −1.39289 −0.0551883
\(638\) 4.37430 0.173180
\(639\) 0.985306 0.0389781
\(640\) 1.51273 0.0597960
\(641\) 15.4426 0.609946 0.304973 0.952361i \(-0.401353\pi\)
0.304973 + 0.952361i \(0.401353\pi\)
\(642\) −8.69183 −0.343039
\(643\) −25.2905 −0.997360 −0.498680 0.866786i \(-0.666182\pi\)
−0.498680 + 0.866786i \(0.666182\pi\)
\(644\) 2.72551 0.107400
\(645\) −25.0571 −0.986623
\(646\) −51.7069 −2.03438
\(647\) −3.05479 −0.120096 −0.0600480 0.998195i \(-0.519125\pi\)
−0.0600480 + 0.998195i \(0.519125\pi\)
\(648\) −7.00328 −0.275115
\(649\) −8.78048 −0.344664
\(650\) 8.81657 0.345814
\(651\) −24.0625 −0.943085
\(652\) 18.9577 0.742442
\(653\) −1.47574 −0.0577500 −0.0288750 0.999583i \(-0.509192\pi\)
−0.0288750 + 0.999583i \(0.509192\pi\)
\(654\) −28.1181 −1.09950
\(655\) 1.51273 0.0591074
\(656\) 8.21663 0.320805
\(657\) −2.50973 −0.0979137
\(658\) −32.7693 −1.27748
\(659\) 9.09470 0.354279 0.177140 0.984186i \(-0.443316\pi\)
0.177140 + 0.984186i \(0.443316\pi\)
\(660\) 2.56799 0.0999587
\(661\) −30.2407 −1.17623 −0.588113 0.808779i \(-0.700129\pi\)
−0.588113 + 0.808779i \(0.700129\pi\)
\(662\) −3.86538 −0.150232
\(663\) −33.2393 −1.29091
\(664\) −11.1953 −0.434463
\(665\) 32.5688 1.26296
\(666\) 3.20544 0.124208
\(667\) −4.02445 −0.155827
\(668\) 13.0447 0.504715
\(669\) 23.2108 0.897382
\(670\) 20.0509 0.774635
\(671\) −6.16784 −0.238107
\(672\) −4.25672 −0.164207
\(673\) −26.5414 −1.02309 −0.511547 0.859255i \(-0.670928\pi\)
−0.511547 + 0.859255i \(0.670928\pi\)
\(674\) −20.4027 −0.785882
\(675\) −15.0800 −0.580430
\(676\) −2.42852 −0.0934047
\(677\) −21.8123 −0.838314 −0.419157 0.907914i \(-0.637674\pi\)
−0.419157 + 0.907914i \(0.637674\pi\)
\(678\) 16.1306 0.619491
\(679\) 16.4298 0.630519
\(680\) −9.90190 −0.379721
\(681\) 6.13099 0.234940
\(682\) −6.14425 −0.235275
\(683\) 16.8991 0.646625 0.323313 0.946292i \(-0.395203\pi\)
0.323313 + 0.946292i \(0.395203\pi\)
\(684\) −4.42962 −0.169371
\(685\) −9.77817 −0.373604
\(686\) −17.9110 −0.683844
\(687\) −32.0593 −1.22314
\(688\) 10.6057 0.404340
\(689\) −35.6631 −1.35866
\(690\) −2.36260 −0.0899426
\(691\) −37.9433 −1.44343 −0.721716 0.692189i \(-0.756646\pi\)
−0.721716 + 0.692189i \(0.756646\pi\)
\(692\) −1.61076 −0.0612320
\(693\) 1.66121 0.0631042
\(694\) −24.3575 −0.924598
\(695\) −19.1020 −0.724580
\(696\) 6.28542 0.238248
\(697\) −53.7836 −2.03720
\(698\) −31.6986 −1.19981
\(699\) 46.0995 1.74364
\(700\) −7.39059 −0.279338
\(701\) −52.5182 −1.98358 −0.991792 0.127858i \(-0.959190\pi\)
−0.991792 + 0.127858i \(0.959190\pi\)
\(702\) −18.0816 −0.682447
\(703\) −45.1550 −1.70305
\(704\) −1.08693 −0.0409653
\(705\) 28.4059 1.06983
\(706\) −22.3874 −0.842563
\(707\) 30.4236 1.14420
\(708\) −12.6166 −0.474162
\(709\) 36.1311 1.35693 0.678466 0.734632i \(-0.262645\pi\)
0.678466 + 0.734632i \(0.262645\pi\)
\(710\) −2.65802 −0.0997539
\(711\) −8.50846 −0.319092
\(712\) 12.0812 0.452761
\(713\) 5.65283 0.211700
\(714\) 27.8632 1.04275
\(715\) 5.34605 0.199931
\(716\) −10.9706 −0.409989
\(717\) −24.6931 −0.922181
\(718\) 1.91933 0.0716289
\(719\) −14.8378 −0.553356 −0.276678 0.960963i \(-0.589234\pi\)
−0.276678 + 0.960963i \(0.589234\pi\)
\(720\) −0.848275 −0.0316133
\(721\) 14.6787 0.546662
\(722\) 43.3999 1.61518
\(723\) −27.9297 −1.03872
\(724\) 2.15287 0.0800108
\(725\) 10.9128 0.405293
\(726\) 15.3347 0.569125
\(727\) 18.7814 0.696564 0.348282 0.937390i \(-0.386765\pi\)
0.348282 + 0.937390i \(0.386765\pi\)
\(728\) −8.86167 −0.328435
\(729\) 29.9838 1.11051
\(730\) 6.77040 0.250584
\(731\) −69.4220 −2.56767
\(732\) −8.86253 −0.327569
\(733\) 4.43884 0.163952 0.0819761 0.996634i \(-0.473877\pi\)
0.0819761 + 0.996634i \(0.473877\pi\)
\(734\) 25.7720 0.951261
\(735\) −1.01214 −0.0373332
\(736\) 1.00000 0.0368605
\(737\) −14.4071 −0.530691
\(738\) −4.60753 −0.169605
\(739\) 6.63646 0.244126 0.122063 0.992522i \(-0.461049\pi\)
0.122063 + 0.992522i \(0.461049\pi\)
\(740\) −8.64721 −0.317878
\(741\) 40.1132 1.47360
\(742\) 29.8950 1.09748
\(743\) 7.80530 0.286349 0.143174 0.989697i \(-0.454269\pi\)
0.143174 + 0.989697i \(0.454269\pi\)
\(744\) −8.82863 −0.323673
\(745\) 3.64697 0.133615
\(746\) 12.6845 0.464411
\(747\) 6.27785 0.229694
\(748\) 7.11474 0.260141
\(749\) 15.1681 0.554230
\(750\) 18.2195 0.665282
\(751\) 7.88850 0.287855 0.143928 0.989588i \(-0.454027\pi\)
0.143928 + 0.989588i \(0.454027\pi\)
\(752\) −12.0232 −0.438440
\(753\) 6.08521 0.221757
\(754\) 13.0850 0.476528
\(755\) −20.0010 −0.727911
\(756\) 15.1571 0.551260
\(757\) −34.2950 −1.24647 −0.623236 0.782034i \(-0.714182\pi\)
−0.623236 + 0.782034i \(0.714182\pi\)
\(758\) 32.3547 1.17518
\(759\) 1.69758 0.0616182
\(760\) 11.9496 0.433459
\(761\) −34.0557 −1.23452 −0.617260 0.786760i \(-0.711757\pi\)
−0.617260 + 0.786760i \(0.711757\pi\)
\(762\) 1.77763 0.0643967
\(763\) 49.0688 1.77641
\(764\) 11.4780 0.415261
\(765\) 5.55255 0.200753
\(766\) −9.13968 −0.330230
\(767\) −26.2654 −0.948387
\(768\) −1.56181 −0.0563569
\(769\) 9.28676 0.334889 0.167445 0.985881i \(-0.446448\pi\)
0.167445 + 0.985881i \(0.446448\pi\)
\(770\) −4.48139 −0.161498
\(771\) −3.97583 −0.143186
\(772\) 14.9276 0.537256
\(773\) 10.1820 0.366223 0.183111 0.983092i \(-0.441383\pi\)
0.183111 + 0.983092i \(0.441383\pi\)
\(774\) −5.94724 −0.213769
\(775\) −15.3284 −0.550613
\(776\) 6.02816 0.216399
\(777\) 24.3326 0.872928
\(778\) 11.3707 0.407658
\(779\) 64.9061 2.32550
\(780\) 7.68171 0.275049
\(781\) 1.90985 0.0683398
\(782\) −6.54570 −0.234074
\(783\) −22.3808 −0.799826
\(784\) 0.428399 0.0153000
\(785\) −35.0185 −1.24986
\(786\) −1.56181 −0.0557078
\(787\) −35.1319 −1.25232 −0.626159 0.779695i \(-0.715374\pi\)
−0.626159 + 0.779695i \(0.715374\pi\)
\(788\) −23.4357 −0.834863
\(789\) −4.05708 −0.144436
\(790\) 22.9530 0.816630
\(791\) −28.1494 −1.00088
\(792\) 0.609505 0.0216578
\(793\) −18.4501 −0.655181
\(794\) 13.0132 0.461823
\(795\) −25.9144 −0.919089
\(796\) −14.3032 −0.506962
\(797\) 9.67701 0.342777 0.171389 0.985203i \(-0.445175\pi\)
0.171389 + 0.985203i \(0.445175\pi\)
\(798\) −33.6254 −1.19033
\(799\) 78.7001 2.78421
\(800\) −2.71164 −0.0958709
\(801\) −6.77459 −0.239368
\(802\) −24.4429 −0.863109
\(803\) −4.86468 −0.171671
\(804\) −20.7014 −0.730083
\(805\) 4.12297 0.145316
\(806\) −18.3795 −0.647390
\(807\) −6.00506 −0.211388
\(808\) 11.1625 0.392696
\(809\) −31.1101 −1.09377 −0.546887 0.837206i \(-0.684187\pi\)
−0.546887 + 0.837206i \(0.684187\pi\)
\(810\) −10.5941 −0.372239
\(811\) 8.20981 0.288285 0.144143 0.989557i \(-0.453958\pi\)
0.144143 + 0.989557i \(0.453958\pi\)
\(812\) −10.9687 −0.384925
\(813\) −30.5298 −1.07073
\(814\) 6.21321 0.217773
\(815\) 28.6780 1.00455
\(816\) 10.2231 0.357881
\(817\) 83.7786 2.93104
\(818\) −11.7592 −0.411151
\(819\) 4.96924 0.173639
\(820\) 12.4296 0.434059
\(821\) −4.74624 −0.165645 −0.0828224 0.996564i \(-0.526393\pi\)
−0.0828224 + 0.996564i \(0.526393\pi\)
\(822\) 10.0954 0.352117
\(823\) −44.9693 −1.56753 −0.783765 0.621058i \(-0.786703\pi\)
−0.783765 + 0.621058i \(0.786703\pi\)
\(824\) 5.38566 0.187618
\(825\) −4.60322 −0.160264
\(826\) 22.0172 0.766078
\(827\) 45.1189 1.56894 0.784469 0.620168i \(-0.212935\pi\)
0.784469 + 0.620168i \(0.212935\pi\)
\(828\) −0.560757 −0.0194876
\(829\) −33.8643 −1.17616 −0.588078 0.808804i \(-0.700115\pi\)
−0.588078 + 0.808804i \(0.700115\pi\)
\(830\) −16.9355 −0.587841
\(831\) −12.1620 −0.421895
\(832\) −3.25138 −0.112721
\(833\) −2.80417 −0.0971589
\(834\) 19.7217 0.682906
\(835\) 19.7332 0.682894
\(836\) −8.58608 −0.296956
\(837\) 31.4366 1.08661
\(838\) 17.5087 0.604828
\(839\) −34.6650 −1.19677 −0.598384 0.801209i \(-0.704190\pi\)
−0.598384 + 0.801209i \(0.704190\pi\)
\(840\) −6.43928 −0.222176
\(841\) −12.8038 −0.441511
\(842\) −14.4704 −0.498684
\(843\) 11.1255 0.383182
\(844\) 20.1435 0.693368
\(845\) −3.67371 −0.126379
\(846\) 6.74207 0.231797
\(847\) −26.7606 −0.919506
\(848\) 10.9686 0.376663
\(849\) 20.7676 0.712741
\(850\) 17.7496 0.608805
\(851\) −5.71628 −0.195952
\(852\) 2.74425 0.0940166
\(853\) −53.5648 −1.83402 −0.917012 0.398860i \(-0.869406\pi\)
−0.917012 + 0.398860i \(0.869406\pi\)
\(854\) 15.4660 0.529235
\(855\) −6.70083 −0.229164
\(856\) 5.56524 0.190216
\(857\) 13.0609 0.446151 0.223076 0.974801i \(-0.428390\pi\)
0.223076 + 0.974801i \(0.428390\pi\)
\(858\) −5.51948 −0.188432
\(859\) −8.65611 −0.295342 −0.147671 0.989037i \(-0.547178\pi\)
−0.147671 + 0.989037i \(0.547178\pi\)
\(860\) 16.0437 0.547084
\(861\) −34.9759 −1.19198
\(862\) 0.00182411 6.21294e−5 0
\(863\) 16.0251 0.545502 0.272751 0.962085i \(-0.412067\pi\)
0.272751 + 0.962085i \(0.412067\pi\)
\(864\) 5.56122 0.189196
\(865\) −2.43666 −0.0828488
\(866\) 23.2150 0.788877
\(867\) −40.3668 −1.37093
\(868\) 15.4068 0.522942
\(869\) −16.4922 −0.559460
\(870\) 9.50816 0.322357
\(871\) −43.0963 −1.46026
\(872\) 18.0035 0.609677
\(873\) −3.38033 −0.114407
\(874\) 7.89936 0.267200
\(875\) −31.7948 −1.07486
\(876\) −6.99004 −0.236171
\(877\) −12.2416 −0.413369 −0.206684 0.978408i \(-0.566267\pi\)
−0.206684 + 0.978408i \(0.566267\pi\)
\(878\) 15.3362 0.517571
\(879\) −52.5626 −1.77289
\(880\) −1.64424 −0.0554273
\(881\) 12.0892 0.407295 0.203647 0.979044i \(-0.434720\pi\)
0.203647 + 0.979044i \(0.434720\pi\)
\(882\) −0.240228 −0.00808889
\(883\) 31.5017 1.06012 0.530058 0.847961i \(-0.322170\pi\)
0.530058 + 0.847961i \(0.322170\pi\)
\(884\) 21.2826 0.715810
\(885\) −19.0856 −0.641555
\(886\) −24.5279 −0.824029
\(887\) −30.6375 −1.02871 −0.514354 0.857578i \(-0.671968\pi\)
−0.514354 + 0.857578i \(0.671968\pi\)
\(888\) 8.92773 0.299595
\(889\) −3.10214 −0.104042
\(890\) 18.2756 0.612599
\(891\) 7.61210 0.255015
\(892\) −14.8615 −0.497600
\(893\) −94.9754 −3.17823
\(894\) −3.76528 −0.125930
\(895\) −16.5955 −0.554727
\(896\) 2.72551 0.0910529
\(897\) 5.07803 0.169551
\(898\) 35.2692 1.17695
\(899\) −22.7495 −0.758739
\(900\) 1.52057 0.0506856
\(901\) −71.7972 −2.39191
\(902\) −8.93092 −0.297367
\(903\) −45.1457 −1.50235
\(904\) −10.3281 −0.343509
\(905\) 3.25672 0.108257
\(906\) 20.6499 0.686046
\(907\) 34.8927 1.15859 0.579296 0.815117i \(-0.303327\pi\)
0.579296 + 0.815117i \(0.303327\pi\)
\(908\) −3.92557 −0.130275
\(909\) −6.25946 −0.207613
\(910\) −13.4053 −0.444383
\(911\) 32.4180 1.07406 0.537028 0.843564i \(-0.319547\pi\)
0.537028 + 0.843564i \(0.319547\pi\)
\(912\) −12.3373 −0.408528
\(913\) 12.1686 0.402721
\(914\) 37.3570 1.23566
\(915\) −13.4066 −0.443210
\(916\) 20.5271 0.678233
\(917\) 2.72551 0.0900042
\(918\) −36.4021 −1.20145
\(919\) 35.8162 1.18147 0.590734 0.806866i \(-0.298838\pi\)
0.590734 + 0.806866i \(0.298838\pi\)
\(920\) 1.51273 0.0498733
\(921\) −18.6440 −0.614340
\(922\) −10.2337 −0.337028
\(923\) 5.71300 0.188046
\(924\) 4.62677 0.152210
\(925\) 15.5005 0.509653
\(926\) −31.0320 −1.01977
\(927\) −3.02005 −0.0991913
\(928\) −4.02445 −0.132109
\(929\) −0.851646 −0.0279416 −0.0139708 0.999902i \(-0.504447\pi\)
−0.0139708 + 0.999902i \(0.504447\pi\)
\(930\) −13.3554 −0.437940
\(931\) 3.38408 0.110909
\(932\) −29.5168 −0.966854
\(933\) −47.4650 −1.55393
\(934\) 28.9904 0.948595
\(935\) 10.7627 0.351978
\(936\) 1.82323 0.0595942
\(937\) 43.1395 1.40931 0.704653 0.709552i \(-0.251103\pi\)
0.704653 + 0.709552i \(0.251103\pi\)
\(938\) 36.1260 1.17956
\(939\) −40.6863 −1.32775
\(940\) −18.1879 −0.593222
\(941\) −23.5991 −0.769309 −0.384655 0.923061i \(-0.625679\pi\)
−0.384655 + 0.923061i \(0.625679\pi\)
\(942\) 36.1546 1.17798
\(943\) 8.21663 0.267570
\(944\) 8.07821 0.262923
\(945\) 22.9287 0.745871
\(946\) −11.5277 −0.374799
\(947\) −13.2680 −0.431152 −0.215576 0.976487i \(-0.569163\pi\)
−0.215576 + 0.976487i \(0.569163\pi\)
\(948\) −23.6976 −0.769662
\(949\) −14.5519 −0.472375
\(950\) −21.4202 −0.694964
\(951\) −5.66744 −0.183779
\(952\) −17.8404 −0.578210
\(953\) 18.6019 0.602573 0.301287 0.953534i \(-0.402584\pi\)
0.301287 + 0.953534i \(0.402584\pi\)
\(954\) −6.15072 −0.199137
\(955\) 17.3632 0.561861
\(956\) 15.8106 0.511351
\(957\) −6.83182 −0.220841
\(958\) 20.6800 0.668141
\(959\) −17.6174 −0.568897
\(960\) −2.36260 −0.0762525
\(961\) 0.954489 0.0307900
\(962\) 18.5858 0.599230
\(963\) −3.12074 −0.100565
\(964\) 17.8829 0.575971
\(965\) 22.5815 0.726924
\(966\) −4.25672 −0.136958
\(967\) −1.23516 −0.0397200 −0.0198600 0.999803i \(-0.506322\pi\)
−0.0198600 + 0.999803i \(0.506322\pi\)
\(968\) −9.81858 −0.315581
\(969\) 80.7562 2.59426
\(970\) 9.11901 0.292794
\(971\) −24.9619 −0.801065 −0.400533 0.916283i \(-0.631175\pi\)
−0.400533 + 0.916283i \(0.631175\pi\)
\(972\) −5.74587 −0.184299
\(973\) −34.4163 −1.10333
\(974\) −16.5595 −0.530599
\(975\) −13.7698 −0.440986
\(976\) 5.67453 0.181637
\(977\) 48.8232 1.56199 0.780996 0.624536i \(-0.214712\pi\)
0.780996 + 0.624536i \(0.214712\pi\)
\(978\) −29.6083 −0.946769
\(979\) −13.1314 −0.419682
\(980\) 0.648054 0.0207013
\(981\) −10.0956 −0.322328
\(982\) −15.7102 −0.501333
\(983\) −7.01059 −0.223603 −0.111802 0.993731i \(-0.535662\pi\)
−0.111802 + 0.993731i \(0.535662\pi\)
\(984\) −12.8328 −0.409095
\(985\) −35.4520 −1.12959
\(986\) 26.3428 0.838927
\(987\) 51.1793 1.62906
\(988\) −25.6838 −0.817112
\(989\) 10.6057 0.337243
\(990\) 0.922018 0.0293036
\(991\) 8.68939 0.276028 0.138014 0.990430i \(-0.455928\pi\)
0.138014 + 0.990430i \(0.455928\pi\)
\(992\) 5.65283 0.179478
\(993\) 6.03697 0.191578
\(994\) −4.78899 −0.151898
\(995\) −21.6369 −0.685935
\(996\) 17.4849 0.554031
\(997\) 17.1932 0.544514 0.272257 0.962225i \(-0.412230\pi\)
0.272257 + 0.962225i \(0.412230\pi\)
\(998\) −43.5807 −1.37952
\(999\) −31.7895 −1.00577
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6026.2.a.m.1.11 41
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6026.2.a.m.1.11 41 1.1 even 1 trivial