gp: [N,k,chi] = [6026,2,Mod(1,6026)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6026, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("6026.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [41,41,4,41,9]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
\( p \)
Sign
\(2\)
\( -1 \)
\(23\)
\( -1 \)
\(131\)
\( -1 \)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6026))\):
\( T_{3}^{41} - 4 T_{3}^{40} - 85 T_{3}^{39} + 351 T_{3}^{38} + 3269 T_{3}^{37} - 14026 T_{3}^{36} + \cdots + 13312 \)
T3^41 - 4*T3^40 - 85*T3^39 + 351*T3^38 + 3269*T3^37 - 14026*T3^36 - 75242*T3^35 + 338215*T3^34 + 1155274*T3^33 - 5498736*T3^32 - 12484971*T3^31 + 63806945*T3^30 + 97645702*T3^29 - 545818828*T3^28 - 559612776*T3^27 + 3506706793*T3^26 + 2353553007*T3^25 - 17088120721*T3^24 - 7212263934*T3^23 + 63374807998*T3^22 + 15923017409*T3^21 - 178531154021*T3^20 - 25414829122*T3^19 + 379245880214*T3^18 + 32124625454*T3^17 - 599221576414*T3^16 - 42226188623*T3^15 + 688246279321*T3^14 + 63730936452*T3^13 - 553090792969*T3^12 - 79242685802*T3^11 + 291144491543*T3^10 + 61879265573*T3^9 - 88876082450*T3^8 - 25458673816*T3^7 + 12323624400*T3^6 + 4204666064*T3^5 - 593188448*T3^4 - 227929088*T3^3 + 9813760*T3^2 + 3600384*T3 + 13312
\( T_{5}^{41} - 9 T_{5}^{40} - 100 T_{5}^{39} + 1104 T_{5}^{38} + 3981 T_{5}^{37} - 61305 T_{5}^{36} + \cdots + 1803859328 \)
T5^41 - 9*T5^40 - 100*T5^39 + 1104*T5^38 + 3981*T5^37 - 61305*T5^36 - 66126*T5^35 + 2041057*T5^34 - 441525*T5^33 - 45479997*T5^32 + 46978940*T5^31 + 716796351*T5^30 - 1168020845*T5^29 - 8229378886*T5^28 + 17504382400*T5^27 + 69766803370*T5^26 - 181649474496*T5^25 - 437165178161*T5^24 + 1370769515335*T5^23 + 1997993112879*T5^22 - 7673889189012*T5^21 - 6419516351502*T5^20 + 32047511104062*T5^19 + 13142968797642*T5^18 - 99399442429311*T5^17 - 11052067485352*T5^16 + 225914401553871*T5^15 - 21725934464274*T5^14 - 367464335806141*T5^13 + 84776465948003*T5^12 + 412272230808945*T5^11 - 123551152384032*T5^10 - 301782208582150*T5^9 + 91043191316542*T5^8 + 132594948995615*T5^7 - 31046891562604*T5^6 - 30611123927082*T5^5 + 4013419193572*T5^4 + 2567892692256*T5^3 - 255355907456*T5^2 - 37827895808*T5 + 1803859328