Properties

Label 2-6026-1.1-c1-0-104
Degree $2$
Conductor $6026$
Sign $1$
Analytic cond. $48.1178$
Root an. cond. $6.93670$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 0.425·3-s + 4-s + 2.71·5-s − 0.425·6-s − 0.709·7-s + 8-s − 2.81·9-s + 2.71·10-s + 4.35·11-s − 0.425·12-s − 3.12·13-s − 0.709·14-s − 1.15·15-s + 16-s + 2.44·17-s − 2.81·18-s + 1.64·19-s + 2.71·20-s + 0.301·21-s + 4.35·22-s + 23-s − 0.425·24-s + 2.38·25-s − 3.12·26-s + 2.47·27-s − 0.709·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.245·3-s + 0.5·4-s + 1.21·5-s − 0.173·6-s − 0.268·7-s + 0.353·8-s − 0.939·9-s + 0.859·10-s + 1.31·11-s − 0.122·12-s − 0.865·13-s − 0.189·14-s − 0.298·15-s + 0.250·16-s + 0.594·17-s − 0.664·18-s + 0.377·19-s + 0.607·20-s + 0.0658·21-s + 0.928·22-s + 0.208·23-s − 0.0868·24-s + 0.476·25-s − 0.611·26-s + 0.476·27-s − 0.134·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6026 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6026 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6026\)    =    \(2 \cdot 23 \cdot 131\)
Sign: $1$
Analytic conductor: \(48.1178\)
Root analytic conductor: \(6.93670\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6026,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.734011936\)
\(L(\frac12)\) \(\approx\) \(3.734011936\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
23 \( 1 - T \)
131 \( 1 - T \)
good3 \( 1 + 0.425T + 3T^{2} \)
5 \( 1 - 2.71T + 5T^{2} \)
7 \( 1 + 0.709T + 7T^{2} \)
11 \( 1 - 4.35T + 11T^{2} \)
13 \( 1 + 3.12T + 13T^{2} \)
17 \( 1 - 2.44T + 17T^{2} \)
19 \( 1 - 1.64T + 19T^{2} \)
29 \( 1 + 1.66T + 29T^{2} \)
31 \( 1 - 8.07T + 31T^{2} \)
37 \( 1 - 2.79T + 37T^{2} \)
41 \( 1 + 2.91T + 41T^{2} \)
43 \( 1 + 0.195T + 43T^{2} \)
47 \( 1 - 7.43T + 47T^{2} \)
53 \( 1 - 7.60T + 53T^{2} \)
59 \( 1 - 4.52T + 59T^{2} \)
61 \( 1 + 14.6T + 61T^{2} \)
67 \( 1 + 5.81T + 67T^{2} \)
71 \( 1 - 7.57T + 71T^{2} \)
73 \( 1 + 1.23T + 73T^{2} \)
79 \( 1 - 15.5T + 79T^{2} \)
83 \( 1 - 0.456T + 83T^{2} \)
89 \( 1 - 9.41T + 89T^{2} \)
97 \( 1 - 13.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.979338156216233510703883712665, −7.11509009650277853083335056816, −6.33166766414162760492012571638, −6.01812755866032558971525497910, −5.27350106587921891086181347951, −4.62717761802945078072776067156, −3.57593146332814915299642949256, −2.81371366941968328561968020115, −2.03061929809865358591775965061, −0.948501090835917052768207831778, 0.948501090835917052768207831778, 2.03061929809865358591775965061, 2.81371366941968328561968020115, 3.57593146332814915299642949256, 4.62717761802945078072776067156, 5.27350106587921891086181347951, 6.01812755866032558971525497910, 6.33166766414162760492012571638, 7.11509009650277853083335056816, 7.979338156216233510703883712665

Graph of the $Z$-function along the critical line