Properties

Label 6.8
Level 6
Weight 8
Dimension 1
Nonzero newspaces 1
Newforms 1
Sturm bound 16
Trace bound 0

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 6 = 2 \cdot 3 \)
Weight: \( k \) = \( 8 \)
Nonzero newspaces: \( 1 \)
Newforms: \( 1 \)
Sturm bound: \(16\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(6))\).

Total New Old
Modular forms 9 1 8
Cusp forms 5 1 4
Eisenstein series 4 0 4

Trace form

\( q + 8q^{2} + 27q^{3} + 64q^{4} - 114q^{5} + 216q^{6} - 1576q^{7} + 512q^{8} + 729q^{9} + O(q^{10}) \) \( q + 8q^{2} + 27q^{3} + 64q^{4} - 114q^{5} + 216q^{6} - 1576q^{7} + 512q^{8} + 729q^{9} - 912q^{10} + 7332q^{11} + 1728q^{12} - 3802q^{13} - 12608q^{14} - 3078q^{15} + 4096q^{16} - 6606q^{17} + 5832q^{18} + 24860q^{19} - 7296q^{20} - 42552q^{21} + 58656q^{22} + 41448q^{23} + 13824q^{24} - 65129q^{25} - 30416q^{26} + 19683q^{27} - 100864q^{28} - 41610q^{29} - 24624q^{30} + 33152q^{31} + 32768q^{32} + 197964q^{33} - 52848q^{34} + 179664q^{35} + 46656q^{36} - 36466q^{37} + 198880q^{38} - 102654q^{39} - 58368q^{40} - 639078q^{41} - 340416q^{42} - 156412q^{43} + 469248q^{44} - 83106q^{45} + 331584q^{46} - 433776q^{47} + 110592q^{48} + 1660233q^{49} - 521032q^{50} - 178362q^{51} - 243328q^{52} + 786078q^{53} + 157464q^{54} - 835848q^{55} - 806912q^{56} + 671220q^{57} - 332880q^{58} + 745140q^{59} - 196992q^{60} - 1660618q^{61} + 265216q^{62} - 1148904q^{63} + 262144q^{64} + 433428q^{65} + 1583712q^{66} - 3290836q^{67} - 422784q^{68} + 1119096q^{69} + 1437312q^{70} + 5716152q^{71} + 373248q^{72} + 2659898q^{73} - 291728q^{74} - 1758483q^{75} + 1591040q^{76} - 11555232q^{77} - 821232q^{78} + 3807440q^{79} - 466944q^{80} + 531441q^{81} - 5112624q^{82} + 2229468q^{83} - 2723328q^{84} + 753084q^{85} - 1251296q^{86} - 1123470q^{87} + 3753984q^{88} + 5991210q^{89} - 664848q^{90} + 5991952q^{91} + 2652672q^{92} + 895104q^{93} - 3470208q^{94} - 2834040q^{95} + 884736q^{96} - 4060126q^{97} + 13281864q^{98} + 5345028q^{99} + O(q^{100}) \)

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(6))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
6.8.a \(\chi_{6}(1, \cdot)\) 6.8.a.a 1 1

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_1(6))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_1(6)) \cong \) \(S_{8}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 2}\)