Properties

Label 3.8
Level 3
Weight 8
Dimension 1
Nonzero newspaces 1
Newforms 1
Sturm bound 5
Trace bound 0

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 3 \)
Weight: \( k \) = \( 8 \)
Nonzero newspaces: \( 1 \)
Newforms: \( 1 \)
Sturm bound: \(5\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(3))\).

Total New Old
Modular forms 3 1 2
Cusp forms 1 1 0
Eisenstein series 2 0 2

Trace form

\( q + 6q^{2} - 27q^{3} - 92q^{4} + 390q^{5} - 162q^{6} - 64q^{7} - 1320q^{8} + 729q^{9} + O(q^{10}) \) \( q + 6q^{2} - 27q^{3} - 92q^{4} + 390q^{5} - 162q^{6} - 64q^{7} - 1320q^{8} + 729q^{9} + 2340q^{10} - 948q^{11} + 2484q^{12} - 5098q^{13} - 384q^{14} - 10530q^{15} + 3856q^{16} + 28386q^{17} + 4374q^{18} - 8620q^{19} - 35880q^{20} + 1728q^{21} - 5688q^{22} - 15288q^{23} + 35640q^{24} + 73975q^{25} - 30588q^{26} - 19683q^{27} + 5888q^{28} + 36510q^{29} - 63180q^{30} - 276808q^{31} + 192096q^{32} + 25596q^{33} + 170316q^{34} - 24960q^{35} - 67068q^{36} + 268526q^{37} - 51720q^{38} + 137646q^{39} - 514800q^{40} - 629718q^{41} + 10368q^{42} + 685772q^{43} + 87216q^{44} + 284310q^{45} - 91728q^{46} + 583296q^{47} - 104112q^{48} - 819447q^{49} + 443850q^{50} - 766422q^{51} + 469016q^{52} - 428058q^{53} - 118098q^{54} - 369720q^{55} + 84480q^{56} + 232740q^{57} + 219060q^{58} + 1306380q^{59} + 968760q^{60} + 300662q^{61} - 1660848q^{62} - 46656q^{63} + 659008q^{64} - 1988220q^{65} + 153576q^{66} - 507244q^{67} - 2611512q^{68} + 412776q^{69} - 149760q^{70} + 5560632q^{71} - 962280q^{72} + 1369082q^{73} + 1611156q^{74} - 1997325q^{75} + 793040q^{76} + 60672q^{77} + 825876q^{78} - 6913720q^{79} + 1503840q^{80} + 531441q^{81} - 3778308q^{82} - 4376748q^{83} - 158976q^{84} + 11070540q^{85} + 4114632q^{86} - 985770q^{87} + 1251360q^{88} - 8528310q^{89} + 1705860q^{90} + 326272q^{91} + 1406496q^{92} + 7473816q^{93} + 3499776q^{94} - 3361800q^{95} - 5186592q^{96} - 8826814q^{97} - 4916682q^{98} - 691092q^{99} + O(q^{100}) \)

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(3))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
3.8.a \(\chi_{3}(1, \cdot)\) 3.8.a.a 1 1