Properties

Label 6.8.a
Level $6$
Weight $8$
Character orbit 6.a
Rep. character $\chi_{6}(1,\cdot)$
Character field $\Q$
Dimension $1$
Newform subspaces $1$
Sturm bound $8$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 6 = 2 \cdot 3 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 6.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(8\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(6))\).

Total New Old
Modular forms 9 1 8
Cusp forms 5 1 4
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)FrickeDim
\(-\)\(-\)\(+\)\(1\)
Plus space\(+\)\(1\)
Minus space\(-\)\(0\)

Trace form

\( q + 8 q^{2} + 27 q^{3} + 64 q^{4} - 114 q^{5} + 216 q^{6} - 1576 q^{7} + 512 q^{8} + 729 q^{9} - 912 q^{10} + 7332 q^{11} + 1728 q^{12} - 3802 q^{13} - 12608 q^{14} - 3078 q^{15} + 4096 q^{16} - 6606 q^{17}+ \cdots + 5345028 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(6))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3
6.8.a.a 6.a 1.a $1$ $1.874$ \(\Q\) None 6.8.a.a \(8\) \(27\) \(-114\) \(-1576\) $-$ $-$ $\mathrm{SU}(2)$ \(q+8q^{2}+3^{3}q^{3}+2^{6}q^{4}-114q^{5}+\cdots\)

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_0(6))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_0(6)) \simeq \) \(S_{8}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 2}\)