Properties

Label 588.3.g.h.295.9
Level $588$
Weight $3$
Character 588.295
Analytic conductor $16.022$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [588,3,Mod(295,588)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(588, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("588.295"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 588.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,4,0,12,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.0218395444\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 295.9
Character \(\chi\) \(=\) 588.295
Dual form 588.3.g.h.295.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.249300 - 1.98440i) q^{2} -1.73205i q^{3} +(-3.87570 + 0.989422i) q^{4} -4.12200 q^{5} +(-3.43708 + 0.431800i) q^{6} +(2.92962 + 7.44428i) q^{8} -3.00000 q^{9} +(1.02761 + 8.17970i) q^{10} +15.1066i q^{11} +(1.71373 + 6.71291i) q^{12} +5.62702 q^{13} +7.13951i q^{15} +(14.0421 - 7.66940i) q^{16} +29.0822 q^{17} +(0.747900 + 5.95320i) q^{18} -7.26627i q^{19} +(15.9756 - 4.07840i) q^{20} +(29.9775 - 3.76607i) q^{22} -25.3100i q^{23} +(12.8939 - 5.07425i) q^{24} -8.00912 q^{25} +(-1.40281 - 11.1663i) q^{26} +5.19615i q^{27} -8.59966 q^{29} +(14.1677 - 1.77988i) q^{30} +16.6913i q^{31} +(-18.7199 - 25.9532i) q^{32} +26.1653 q^{33} +(-7.25018 - 57.7107i) q^{34} +(11.6271 - 2.96827i) q^{36} -22.4645 q^{37} +(-14.4192 + 1.81148i) q^{38} -9.74628i q^{39} +(-12.0759 - 30.6853i) q^{40} +49.2315 q^{41} +70.5845i q^{43} +(-14.9468 - 58.5485i) q^{44} +12.3660 q^{45} +(-50.2252 + 6.30978i) q^{46} -50.1714i q^{47} +(-13.2838 - 24.3216i) q^{48} +(1.99667 + 15.8933i) q^{50} -50.3718i q^{51} +(-21.8086 + 5.56750i) q^{52} +100.195 q^{53} +(10.3113 - 1.29540i) q^{54} -62.2693i q^{55} -12.5855 q^{57} +(2.14389 + 17.0652i) q^{58} -76.7285i q^{59} +(-7.06399 - 27.6706i) q^{60} +111.159 q^{61} +(33.1222 - 4.16113i) q^{62} +(-46.8346 + 43.6179i) q^{64} -23.1946 q^{65} +(-6.52302 - 51.9226i) q^{66} +89.7844i q^{67} +(-112.714 + 28.7745i) q^{68} -43.8382 q^{69} -52.9119i q^{71} +(-8.78887 - 22.3328i) q^{72} +32.8246 q^{73} +(5.60039 + 44.5785i) q^{74} +13.8722i q^{75} +(7.18940 + 28.1619i) q^{76} +(-19.3405 + 2.42975i) q^{78} +16.2076i q^{79} +(-57.8815 + 31.6133i) q^{80} +9.00000 q^{81} +(-12.2734 - 97.6950i) q^{82} -25.6034i q^{83} -119.877 q^{85} +(140.068 - 17.5967i) q^{86} +14.8950i q^{87} +(-112.458 + 44.2565i) q^{88} +96.7198 q^{89} +(-3.08284 - 24.5391i) q^{90} +(25.0423 + 98.0940i) q^{92} +28.9101 q^{93} +(-99.5603 + 12.5077i) q^{94} +29.9515i q^{95} +(-44.9522 + 32.4238i) q^{96} -54.1899 q^{97} -45.3197i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 4 q^{2} + 12 q^{4} - 20 q^{8} - 72 q^{9} - 60 q^{16} - 12 q^{18} + 168 q^{22} + 120 q^{25} + 64 q^{29} - 236 q^{32} - 36 q^{36} - 192 q^{37} - 360 q^{44} - 72 q^{46} + 532 q^{50} + 432 q^{53} + 240 q^{58}+ \cdots - 96 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.249300 1.98440i −0.124650 0.992201i
\(3\) 1.73205i 0.577350i
\(4\) −3.87570 + 0.989422i −0.968925 + 0.247356i
\(5\) −4.12200 −0.824400 −0.412200 0.911093i \(-0.635240\pi\)
−0.412200 + 0.911093i \(0.635240\pi\)
\(6\) −3.43708 + 0.431800i −0.572847 + 0.0719667i
\(7\) 0 0
\(8\) 2.92962 + 7.44428i 0.366203 + 0.930535i
\(9\) −3.00000 −0.333333
\(10\) 1.02761 + 8.17970i 0.102761 + 0.817970i
\(11\) 15.1066i 1.37332i 0.726977 + 0.686662i \(0.240925\pi\)
−0.726977 + 0.686662i \(0.759075\pi\)
\(12\) 1.71373 + 6.71291i 0.142811 + 0.559409i
\(13\) 5.62702 0.432848 0.216424 0.976300i \(-0.430561\pi\)
0.216424 + 0.976300i \(0.430561\pi\)
\(14\) 0 0
\(15\) 7.13951i 0.475968i
\(16\) 14.0421 7.66940i 0.877630 0.479338i
\(17\) 29.0822 1.71072 0.855358 0.518037i \(-0.173337\pi\)
0.855358 + 0.518037i \(0.173337\pi\)
\(18\) 0.747900 + 5.95320i 0.0415500 + 0.330734i
\(19\) 7.26627i 0.382435i −0.981548 0.191218i \(-0.938756\pi\)
0.981548 0.191218i \(-0.0612436\pi\)
\(20\) 15.9756 4.07840i 0.798782 0.203920i
\(21\) 0 0
\(22\) 29.9775 3.76607i 1.36261 0.171185i
\(23\) 25.3100i 1.10043i −0.835021 0.550217i \(-0.814545\pi\)
0.835021 0.550217i \(-0.185455\pi\)
\(24\) 12.8939 5.07425i 0.537245 0.211427i
\(25\) −8.00912 −0.320365
\(26\) −1.40281 11.1663i −0.0539544 0.429472i
\(27\) 5.19615i 0.192450i
\(28\) 0 0
\(29\) −8.59966 −0.296540 −0.148270 0.988947i \(-0.547370\pi\)
−0.148270 + 0.988947i \(0.547370\pi\)
\(30\) 14.1677 1.77988i 0.472255 0.0593293i
\(31\) 16.6913i 0.538428i 0.963080 + 0.269214i \(0.0867639\pi\)
−0.963080 + 0.269214i \(0.913236\pi\)
\(32\) −18.7199 25.9532i −0.584996 0.811036i
\(33\) 26.1653 0.792889
\(34\) −7.25018 57.7107i −0.213241 1.69737i
\(35\) 0 0
\(36\) 11.6271 2.96827i 0.322975 0.0824518i
\(37\) −22.4645 −0.607147 −0.303574 0.952808i \(-0.598180\pi\)
−0.303574 + 0.952808i \(0.598180\pi\)
\(38\) −14.4192 + 1.81148i −0.379452 + 0.0476705i
\(39\) 9.74628i 0.249905i
\(40\) −12.0759 30.6853i −0.301898 0.767133i
\(41\) 49.2315 1.20077 0.600384 0.799712i \(-0.295014\pi\)
0.600384 + 0.799712i \(0.295014\pi\)
\(42\) 0 0
\(43\) 70.5845i 1.64150i 0.571287 + 0.820750i \(0.306444\pi\)
−0.571287 + 0.820750i \(0.693556\pi\)
\(44\) −14.9468 58.5485i −0.339699 1.33065i
\(45\) 12.3660 0.274800
\(46\) −50.2252 + 6.30978i −1.09185 + 0.137169i
\(47\) 50.1714i 1.06748i −0.845649 0.533739i \(-0.820787\pi\)
0.845649 0.533739i \(-0.179213\pi\)
\(48\) −13.2838 24.3216i −0.276746 0.506700i
\(49\) 0 0
\(50\) 1.99667 + 15.8933i 0.0399334 + 0.317866i
\(51\) 50.3718i 0.987683i
\(52\) −21.8086 + 5.56750i −0.419397 + 0.107067i
\(53\) 100.195 1.89046 0.945232 0.326399i \(-0.105835\pi\)
0.945232 + 0.326399i \(0.105835\pi\)
\(54\) 10.3113 1.29540i 0.190949 0.0239889i
\(55\) 62.2693i 1.13217i
\(56\) 0 0
\(57\) −12.5855 −0.220799
\(58\) 2.14389 + 17.0652i 0.0369637 + 0.294227i
\(59\) 76.7285i 1.30048i −0.759728 0.650241i \(-0.774668\pi\)
0.759728 0.650241i \(-0.225332\pi\)
\(60\) −7.06399 27.6706i −0.117733 0.461177i
\(61\) 111.159 1.82227 0.911135 0.412107i \(-0.135207\pi\)
0.911135 + 0.412107i \(0.135207\pi\)
\(62\) 33.1222 4.16113i 0.534229 0.0671150i
\(63\) 0 0
\(64\) −46.8346 + 43.6179i −0.731791 + 0.681529i
\(65\) −23.1946 −0.356840
\(66\) −6.52302 51.9226i −0.0988336 0.786705i
\(67\) 89.7844i 1.34007i 0.742331 + 0.670033i \(0.233720\pi\)
−0.742331 + 0.670033i \(0.766280\pi\)
\(68\) −112.714 + 28.7745i −1.65756 + 0.423155i
\(69\) −43.8382 −0.635336
\(70\) 0 0
\(71\) 52.9119i 0.745238i −0.927984 0.372619i \(-0.878460\pi\)
0.927984 0.372619i \(-0.121540\pi\)
\(72\) −8.78887 22.3328i −0.122068 0.310178i
\(73\) 32.8246 0.449652 0.224826 0.974399i \(-0.427819\pi\)
0.224826 + 0.974399i \(0.427819\pi\)
\(74\) 5.60039 + 44.5785i 0.0756809 + 0.602412i
\(75\) 13.8722i 0.184963i
\(76\) 7.18940 + 28.1619i 0.0945974 + 0.370551i
\(77\) 0 0
\(78\) −19.3405 + 2.42975i −0.247956 + 0.0311506i
\(79\) 16.2076i 0.205160i 0.994725 + 0.102580i \(0.0327097\pi\)
−0.994725 + 0.102580i \(0.967290\pi\)
\(80\) −57.8815 + 31.6133i −0.723519 + 0.395166i
\(81\) 9.00000 0.111111
\(82\) −12.2734 97.6950i −0.149676 1.19140i
\(83\) 25.6034i 0.308475i −0.988034 0.154238i \(-0.950708\pi\)
0.988034 0.154238i \(-0.0492921\pi\)
\(84\) 0 0
\(85\) −119.877 −1.41031
\(86\) 140.068 17.5967i 1.62870 0.204613i
\(87\) 14.8950i 0.171207i
\(88\) −112.458 + 44.2565i −1.27793 + 0.502915i
\(89\) 96.7198 1.08674 0.543370 0.839493i \(-0.317148\pi\)
0.543370 + 0.839493i \(0.317148\pi\)
\(90\) −3.08284 24.5391i −0.0342538 0.272657i
\(91\) 0 0
\(92\) 25.0423 + 98.0940i 0.272199 + 1.06624i
\(93\) 28.9101 0.310862
\(94\) −99.5603 + 12.5077i −1.05915 + 0.133061i
\(95\) 29.9515i 0.315279i
\(96\) −44.9522 + 32.4238i −0.468252 + 0.337748i
\(97\) −54.1899 −0.558659 −0.279329 0.960195i \(-0.590112\pi\)
−0.279329 + 0.960195i \(0.590112\pi\)
\(98\) 0 0
\(99\) 45.3197i 0.457775i
\(100\) 31.0409 7.92440i 0.310409 0.0792440i
\(101\) −97.3975 −0.964331 −0.482166 0.876080i \(-0.660150\pi\)
−0.482166 + 0.876080i \(0.660150\pi\)
\(102\) −99.9579 + 12.5577i −0.979979 + 0.123115i
\(103\) 61.5579i 0.597650i 0.954308 + 0.298825i \(0.0965946\pi\)
−0.954308 + 0.298825i \(0.903405\pi\)
\(104\) 16.4850 + 41.8891i 0.158510 + 0.402780i
\(105\) 0 0
\(106\) −24.9785 198.826i −0.235646 1.87572i
\(107\) 67.2613i 0.628610i −0.949322 0.314305i \(-0.898229\pi\)
0.949322 0.314305i \(-0.101771\pi\)
\(108\) −5.14119 20.1387i −0.0476036 0.186470i
\(109\) 170.761 1.56661 0.783305 0.621637i \(-0.213532\pi\)
0.783305 + 0.621637i \(0.213532\pi\)
\(110\) −123.567 + 15.5237i −1.12334 + 0.141125i
\(111\) 38.9096i 0.350537i
\(112\) 0 0
\(113\) 23.9776 0.212191 0.106095 0.994356i \(-0.466165\pi\)
0.106095 + 0.994356i \(0.466165\pi\)
\(114\) 3.13757 + 24.9748i 0.0275226 + 0.219077i
\(115\) 104.328i 0.907199i
\(116\) 33.3297 8.50869i 0.287325 0.0733508i
\(117\) −16.8811 −0.144283
\(118\) −152.260 + 19.1284i −1.29034 + 0.162105i
\(119\) 0 0
\(120\) −53.1485 + 20.9161i −0.442905 + 0.174301i
\(121\) −107.208 −0.886020
\(122\) −27.7118 220.583i −0.227146 1.80806i
\(123\) 85.2714i 0.693264i
\(124\) −16.5147 64.6903i −0.133183 0.521696i
\(125\) 136.064 1.08851
\(126\) 0 0
\(127\) 6.99328i 0.0550652i 0.999621 + 0.0275326i \(0.00876501\pi\)
−0.999621 + 0.0275326i \(0.991235\pi\)
\(128\) 98.2312 + 82.0648i 0.767431 + 0.641131i
\(129\) 122.256 0.947721
\(130\) 5.78240 + 46.0273i 0.0444800 + 0.354056i
\(131\) 90.8145i 0.693240i 0.938006 + 0.346620i \(0.112671\pi\)
−0.938006 + 0.346620i \(0.887329\pi\)
\(132\) −101.409 + 25.8886i −0.768250 + 0.196126i
\(133\) 0 0
\(134\) 178.168 22.3832i 1.32961 0.167039i
\(135\) 21.4185i 0.158656i
\(136\) 85.1998 + 216.496i 0.626469 + 1.59188i
\(137\) 257.139 1.87693 0.938465 0.345375i \(-0.112248\pi\)
0.938465 + 0.345375i \(0.112248\pi\)
\(138\) 10.9289 + 86.9926i 0.0791946 + 0.630381i
\(139\) 144.504i 1.03960i −0.854289 0.519798i \(-0.826007\pi\)
0.854289 0.519798i \(-0.173993\pi\)
\(140\) 0 0
\(141\) −86.8995 −0.616308
\(142\) −104.998 + 13.1909i −0.739425 + 0.0928938i
\(143\) 85.0049i 0.594440i
\(144\) −42.1263 + 23.0082i −0.292543 + 0.159779i
\(145\) 35.4478 0.244468
\(146\) −8.18316 65.1371i −0.0560490 0.446145i
\(147\) 0 0
\(148\) 87.0655 22.2268i 0.588280 0.150181i
\(149\) −7.22195 −0.0484695 −0.0242347 0.999706i \(-0.507715\pi\)
−0.0242347 + 0.999706i \(0.507715\pi\)
\(150\) 27.5280 3.45834i 0.183520 0.0230556i
\(151\) 173.071i 1.14616i −0.819499 0.573081i \(-0.805748\pi\)
0.819499 0.573081i \(-0.194252\pi\)
\(152\) 54.0921 21.2874i 0.355869 0.140049i
\(153\) −87.2465 −0.570239
\(154\) 0 0
\(155\) 68.8014i 0.443880i
\(156\) 9.64319 + 37.7737i 0.0618153 + 0.242139i
\(157\) 238.100 1.51656 0.758281 0.651928i \(-0.226039\pi\)
0.758281 + 0.651928i \(0.226039\pi\)
\(158\) 32.1624 4.04056i 0.203560 0.0255731i
\(159\) 173.542i 1.09146i
\(160\) 77.1633 + 106.979i 0.482271 + 0.668618i
\(161\) 0 0
\(162\) −2.24370 17.8596i −0.0138500 0.110245i
\(163\) 306.628i 1.88115i 0.339581 + 0.940577i \(0.389715\pi\)
−0.339581 + 0.940577i \(0.610285\pi\)
\(164\) −190.806 + 48.7107i −1.16345 + 0.297017i
\(165\) −107.854 −0.653658
\(166\) −50.8075 + 6.38294i −0.306069 + 0.0384514i
\(167\) 259.352i 1.55301i 0.630113 + 0.776503i \(0.283008\pi\)
−0.630113 + 0.776503i \(0.716992\pi\)
\(168\) 0 0
\(169\) −137.337 −0.812643
\(170\) 29.8853 + 237.884i 0.175796 + 1.39932i
\(171\) 21.7988i 0.127478i
\(172\) −69.8379 273.564i −0.406034 1.59049i
\(173\) −46.0046 −0.265923 −0.132961 0.991121i \(-0.542449\pi\)
−0.132961 + 0.991121i \(0.542449\pi\)
\(174\) 29.5577 3.71333i 0.169872 0.0213410i
\(175\) 0 0
\(176\) 115.858 + 212.128i 0.658286 + 1.20527i
\(177\) −132.898 −0.750834
\(178\) −24.1122 191.931i −0.135462 1.07826i
\(179\) 56.0284i 0.313008i −0.987677 0.156504i \(-0.949978\pi\)
0.987677 0.156504i \(-0.0500224\pi\)
\(180\) −47.9269 + 12.2352i −0.266261 + 0.0679733i
\(181\) 90.7676 0.501478 0.250739 0.968055i \(-0.419326\pi\)
0.250739 + 0.968055i \(0.419326\pi\)
\(182\) 0 0
\(183\) 192.532i 1.05209i
\(184\) 188.415 74.1487i 1.02399 0.402982i
\(185\) 92.5985 0.500532
\(186\) −7.20729 57.3693i −0.0387489 0.308437i
\(187\) 439.332i 2.34937i
\(188\) 49.6407 + 194.449i 0.264046 + 1.03431i
\(189\) 0 0
\(190\) 59.4359 7.46692i 0.312821 0.0392996i
\(191\) 147.135i 0.770342i 0.922845 + 0.385171i \(0.125858\pi\)
−0.922845 + 0.385171i \(0.874142\pi\)
\(192\) 75.5483 + 81.1200i 0.393481 + 0.422500i
\(193\) −231.648 −1.20025 −0.600124 0.799907i \(-0.704882\pi\)
−0.600124 + 0.799907i \(0.704882\pi\)
\(194\) 13.5095 + 107.534i 0.0696368 + 0.554301i
\(195\) 40.1742i 0.206021i
\(196\) 0 0
\(197\) 270.736 1.37429 0.687147 0.726519i \(-0.258863\pi\)
0.687147 + 0.726519i \(0.258863\pi\)
\(198\) −89.9325 + 11.2982i −0.454205 + 0.0570616i
\(199\) 339.228i 1.70466i −0.523000 0.852332i \(-0.675187\pi\)
0.523000 0.852332i \(-0.324813\pi\)
\(200\) −23.4637 59.6221i −0.117318 0.298110i
\(201\) 155.511 0.773687
\(202\) 24.2812 + 193.276i 0.120204 + 0.956810i
\(203\) 0 0
\(204\) 49.8390 + 195.226i 0.244309 + 0.956990i
\(205\) −202.932 −0.989913
\(206\) 122.156 15.3464i 0.592989 0.0744970i
\(207\) 75.9300i 0.366812i
\(208\) 79.0151 43.1559i 0.379880 0.207480i
\(209\) 109.768 0.525207
\(210\) 0 0
\(211\) 160.362i 0.760008i 0.924985 + 0.380004i \(0.124077\pi\)
−0.924985 + 0.380004i \(0.875923\pi\)
\(212\) −388.324 + 99.1348i −1.83172 + 0.467617i
\(213\) −91.6461 −0.430263
\(214\) −133.473 + 16.7682i −0.623708 + 0.0783562i
\(215\) 290.949i 1.35325i
\(216\) −38.6816 + 15.2228i −0.179082 + 0.0704758i
\(217\) 0 0
\(218\) −42.5706 338.858i −0.195278 1.55439i
\(219\) 56.8538i 0.259606i
\(220\) 61.6106 + 241.337i 0.280048 + 1.09699i
\(221\) 163.646 0.740479
\(222\) 77.2122 9.70015i 0.347803 0.0436944i
\(223\) 185.744i 0.832935i 0.909151 + 0.416467i \(0.136732\pi\)
−0.909151 + 0.416467i \(0.863268\pi\)
\(224\) 0 0
\(225\) 24.0273 0.106788
\(226\) −5.97761 47.5811i −0.0264496 0.210536i
\(227\) 267.195i 1.17707i 0.808471 + 0.588536i \(0.200296\pi\)
−0.808471 + 0.588536i \(0.799704\pi\)
\(228\) 48.7778 12.4524i 0.213938 0.0546158i
\(229\) −78.2349 −0.341637 −0.170819 0.985303i \(-0.554641\pi\)
−0.170819 + 0.985303i \(0.554641\pi\)
\(230\) 207.028 26.0089i 0.900123 0.113082i
\(231\) 0 0
\(232\) −25.1937 64.0183i −0.108594 0.275941i
\(233\) 10.1047 0.0433676 0.0216838 0.999765i \(-0.493097\pi\)
0.0216838 + 0.999765i \(0.493097\pi\)
\(234\) 4.20844 + 33.4988i 0.0179848 + 0.143157i
\(235\) 206.807i 0.880029i
\(236\) 75.9169 + 297.377i 0.321682 + 1.26007i
\(237\) 28.0724 0.118449
\(238\) 0 0
\(239\) 105.518i 0.441497i 0.975331 + 0.220749i \(0.0708500\pi\)
−0.975331 + 0.220749i \(0.929150\pi\)
\(240\) 54.7558 + 100.254i 0.228149 + 0.417724i
\(241\) −196.652 −0.815985 −0.407993 0.912985i \(-0.633771\pi\)
−0.407993 + 0.912985i \(0.633771\pi\)
\(242\) 26.7270 + 212.745i 0.110442 + 0.879110i
\(243\) 15.5885i 0.0641500i
\(244\) −430.817 + 109.983i −1.76564 + 0.450749i
\(245\) 0 0
\(246\) −169.213 + 21.2582i −0.687857 + 0.0864153i
\(247\) 40.8874i 0.165536i
\(248\) −124.255 + 48.8991i −0.501026 + 0.197174i
\(249\) −44.3465 −0.178098
\(250\) −33.9206 270.005i −0.135683 1.08002i
\(251\) 318.909i 1.27056i 0.772284 + 0.635278i \(0.219114\pi\)
−0.772284 + 0.635278i \(0.780886\pi\)
\(252\) 0 0
\(253\) 382.347 1.51125
\(254\) 13.8775 1.74342i 0.0546358 0.00686388i
\(255\) 207.633i 0.814245i
\(256\) 138.360 215.389i 0.540471 0.841363i
\(257\) −143.444 −0.558147 −0.279073 0.960270i \(-0.590027\pi\)
−0.279073 + 0.960270i \(0.590027\pi\)
\(258\) −30.4784 242.605i −0.118133 0.940329i
\(259\) 0 0
\(260\) 89.8952 22.9492i 0.345751 0.0882662i
\(261\) 25.7990 0.0988466
\(262\) 180.212 22.6400i 0.687833 0.0864123i
\(263\) 203.715i 0.774582i −0.921957 0.387291i \(-0.873411\pi\)
0.921957 0.387291i \(-0.126589\pi\)
\(264\) 76.6546 + 194.782i 0.290358 + 0.737811i
\(265\) −413.002 −1.55850
\(266\) 0 0
\(267\) 167.524i 0.627430i
\(268\) −88.8347 347.977i −0.331473 1.29842i
\(269\) −182.663 −0.679044 −0.339522 0.940598i \(-0.610265\pi\)
−0.339522 + 0.940598i \(0.610265\pi\)
\(270\) −42.5030 + 5.33964i −0.157418 + 0.0197764i
\(271\) 289.203i 1.06717i 0.845747 + 0.533584i \(0.179155\pi\)
−0.845747 + 0.533584i \(0.820845\pi\)
\(272\) 408.374 223.043i 1.50138 0.820011i
\(273\) 0 0
\(274\) −64.1048 510.268i −0.233959 1.86229i
\(275\) 120.990i 0.439965i
\(276\) 169.904 43.3745i 0.615593 0.157154i
\(277\) −289.032 −1.04344 −0.521719 0.853117i \(-0.674709\pi\)
−0.521719 + 0.853117i \(0.674709\pi\)
\(278\) −286.754 + 36.0248i −1.03149 + 0.129586i
\(279\) 50.0738i 0.179476i
\(280\) 0 0
\(281\) −145.700 −0.518504 −0.259252 0.965810i \(-0.583476\pi\)
−0.259252 + 0.965810i \(0.583476\pi\)
\(282\) 21.6640 + 172.443i 0.0768228 + 0.611502i
\(283\) 292.987i 1.03529i −0.855595 0.517645i \(-0.826809\pi\)
0.855595 0.517645i \(-0.173191\pi\)
\(284\) 52.3522 + 205.071i 0.184339 + 0.722079i
\(285\) 51.8776 0.182027
\(286\) 168.684 21.1917i 0.589804 0.0740969i
\(287\) 0 0
\(288\) 56.1596 + 77.8595i 0.194999 + 0.270345i
\(289\) 556.773 1.92655
\(290\) −8.83713 70.3426i −0.0304729 0.242561i
\(291\) 93.8596i 0.322542i
\(292\) −127.218 + 32.4773i −0.435678 + 0.111224i
\(293\) −47.6676 −0.162688 −0.0813440 0.996686i \(-0.525921\pi\)
−0.0813440 + 0.996686i \(0.525921\pi\)
\(294\) 0 0
\(295\) 316.275i 1.07212i
\(296\) −65.8124 167.232i −0.222339 0.564972i
\(297\) −78.4960 −0.264296
\(298\) 1.80043 + 14.3312i 0.00604172 + 0.0480914i
\(299\) 142.420i 0.476321i
\(300\) −13.7255 53.7645i −0.0457515 0.179215i
\(301\) 0 0
\(302\) −343.441 + 43.1465i −1.13722 + 0.142869i
\(303\) 168.697i 0.556757i
\(304\) −55.7279 102.034i −0.183316 0.335637i
\(305\) −458.195 −1.50228
\(306\) 21.7505 + 173.132i 0.0710802 + 0.565791i
\(307\) 285.922i 0.931342i −0.884958 0.465671i \(-0.845813\pi\)
0.884958 0.465671i \(-0.154187\pi\)
\(308\) 0 0
\(309\) 106.621 0.345053
\(310\) −136.530 + 17.1522i −0.440418 + 0.0553296i
\(311\) 68.5345i 0.220368i 0.993911 + 0.110184i \(0.0351440\pi\)
−0.993911 + 0.110184i \(0.964856\pi\)
\(312\) 72.5541 28.5529i 0.232545 0.0915158i
\(313\) −220.945 −0.705894 −0.352947 0.935643i \(-0.614820\pi\)
−0.352947 + 0.935643i \(0.614820\pi\)
\(314\) −59.3584 472.487i −0.189039 1.50473i
\(315\) 0 0
\(316\) −16.0362 62.8158i −0.0507474 0.198784i
\(317\) 209.864 0.662031 0.331015 0.943625i \(-0.392609\pi\)
0.331015 + 0.943625i \(0.392609\pi\)
\(318\) −344.377 + 43.2640i −1.08295 + 0.136050i
\(319\) 129.911i 0.407246i
\(320\) 193.052 179.793i 0.603289 0.561853i
\(321\) −116.500 −0.362928
\(322\) 0 0
\(323\) 211.319i 0.654238i
\(324\) −34.8813 + 8.90480i −0.107658 + 0.0274839i
\(325\) −45.0674 −0.138669
\(326\) 608.473 76.4423i 1.86648 0.234486i
\(327\) 295.766i 0.904483i
\(328\) 144.230 + 366.493i 0.439725 + 1.11736i
\(329\) 0 0
\(330\) 26.8879 + 214.025i 0.0814784 + 0.648560i
\(331\) 37.7245i 0.113971i 0.998375 + 0.0569856i \(0.0181489\pi\)
−0.998375 + 0.0569856i \(0.981851\pi\)
\(332\) 25.3326 + 99.2313i 0.0763031 + 0.298889i
\(333\) 67.3934 0.202382
\(334\) 514.659 64.6564i 1.54089 0.193582i
\(335\) 370.091i 1.10475i
\(336\) 0 0
\(337\) −323.798 −0.960826 −0.480413 0.877042i \(-0.659513\pi\)
−0.480413 + 0.877042i \(0.659513\pi\)
\(338\) 34.2380 + 272.531i 0.101296 + 0.806305i
\(339\) 41.5304i 0.122509i
\(340\) 464.606 118.609i 1.36649 0.348849i
\(341\) −252.148 −0.739436
\(342\) 43.2576 5.43444i 0.126484 0.0158902i
\(343\) 0 0
\(344\) −525.451 + 206.786i −1.52747 + 0.601122i
\(345\) 180.701 0.523771
\(346\) 11.4690 + 91.2917i 0.0331473 + 0.263849i
\(347\) 580.940i 1.67418i 0.547065 + 0.837090i \(0.315745\pi\)
−0.547065 + 0.837090i \(0.684255\pi\)
\(348\) −14.7375 57.7287i −0.0423491 0.165887i
\(349\) 240.951 0.690405 0.345203 0.938528i \(-0.387810\pi\)
0.345203 + 0.938528i \(0.387810\pi\)
\(350\) 0 0
\(351\) 29.2388i 0.0833015i
\(352\) 392.063 282.793i 1.11382 0.803389i
\(353\) −367.181 −1.04017 −0.520087 0.854113i \(-0.674100\pi\)
−0.520087 + 0.854113i \(0.674100\pi\)
\(354\) 33.1314 + 263.722i 0.0935914 + 0.744978i
\(355\) 218.103i 0.614374i
\(356\) −374.857 + 95.6967i −1.05297 + 0.268811i
\(357\) 0 0
\(358\) −111.183 + 13.9679i −0.310567 + 0.0390164i
\(359\) 243.016i 0.676925i −0.940980 0.338463i \(-0.890093\pi\)
0.940980 0.338463i \(-0.109907\pi\)
\(360\) 36.2277 + 92.0560i 0.100633 + 0.255711i
\(361\) 308.201 0.853743
\(362\) −22.6283 180.119i −0.0625092 0.497567i
\(363\) 185.690i 0.511544i
\(364\) 0 0
\(365\) −135.303 −0.370693
\(366\) −382.061 + 47.9983i −1.04388 + 0.131143i
\(367\) 646.859i 1.76256i −0.472597 0.881279i \(-0.656683\pi\)
0.472597 0.881279i \(-0.343317\pi\)
\(368\) −194.113 355.405i −0.527480 0.965775i
\(369\) −147.694 −0.400256
\(370\) −23.0848 183.753i −0.0623913 0.496629i
\(371\) 0 0
\(372\) −112.047 + 28.6043i −0.301202 + 0.0768933i
\(373\) 250.103 0.670518 0.335259 0.942126i \(-0.391176\pi\)
0.335259 + 0.942126i \(0.391176\pi\)
\(374\) 871.811 109.525i 2.33105 0.292849i
\(375\) 235.669i 0.628451i
\(376\) 373.490 146.983i 0.993325 0.390913i
\(377\) −48.3904 −0.128357
\(378\) 0 0
\(379\) 410.032i 1.08188i 0.841062 + 0.540939i \(0.181931\pi\)
−0.841062 + 0.540939i \(0.818069\pi\)
\(380\) −29.6347 116.083i −0.0779861 0.305482i
\(381\) 12.1127 0.0317919
\(382\) 291.976 36.6808i 0.764334 0.0960231i
\(383\) 674.627i 1.76143i −0.473647 0.880715i \(-0.657063\pi\)
0.473647 0.880715i \(-0.342937\pi\)
\(384\) 142.140 170.141i 0.370157 0.443077i
\(385\) 0 0
\(386\) 57.7497 + 459.682i 0.149611 + 1.19089i
\(387\) 211.754i 0.547167i
\(388\) 210.024 53.6167i 0.541298 0.138187i
\(389\) −386.485 −0.993534 −0.496767 0.867884i \(-0.665480\pi\)
−0.496767 + 0.867884i \(0.665480\pi\)
\(390\) 79.7217 10.0154i 0.204415 0.0256806i
\(391\) 736.070i 1.88253i
\(392\) 0 0
\(393\) 157.295 0.400242
\(394\) −67.4944 537.249i −0.171306 1.36358i
\(395\) 66.8078i 0.169134i
\(396\) 44.8403 + 175.646i 0.113233 + 0.443549i
\(397\) −502.153 −1.26487 −0.632435 0.774613i \(-0.717944\pi\)
−0.632435 + 0.774613i \(0.717944\pi\)
\(398\) −673.165 + 84.5696i −1.69137 + 0.212486i
\(399\) 0 0
\(400\) −112.465 + 61.4251i −0.281162 + 0.153563i
\(401\) −70.7612 −0.176462 −0.0882309 0.996100i \(-0.528121\pi\)
−0.0882309 + 0.996100i \(0.528121\pi\)
\(402\) −38.7689 308.597i −0.0964401 0.767653i
\(403\) 93.9221i 0.233057i
\(404\) 377.483 96.3672i 0.934364 0.238533i
\(405\) −37.0980 −0.0916000
\(406\) 0 0
\(407\) 339.361i 0.833810i
\(408\) 374.982 147.570i 0.919073 0.361692i
\(409\) 15.0088 0.0366962 0.0183481 0.999832i \(-0.494159\pi\)
0.0183481 + 0.999832i \(0.494159\pi\)
\(410\) 50.5910 + 402.699i 0.123393 + 0.982192i
\(411\) 445.378i 1.08365i
\(412\) −60.9068 238.580i −0.147832 0.579078i
\(413\) 0 0
\(414\) 150.676 18.9293i 0.363951 0.0457230i
\(415\) 105.537i 0.254307i
\(416\) −105.337 146.039i −0.253214 0.351055i
\(417\) −250.288 −0.600212
\(418\) −27.3652 217.824i −0.0654671 0.521111i
\(419\) 20.8129i 0.0496729i 0.999692 + 0.0248364i \(0.00790650\pi\)
−0.999692 + 0.0248364i \(0.992093\pi\)
\(420\) 0 0
\(421\) 101.765 0.241723 0.120862 0.992669i \(-0.461434\pi\)
0.120862 + 0.992669i \(0.461434\pi\)
\(422\) 318.222 39.9782i 0.754081 0.0947350i
\(423\) 150.514i 0.355826i
\(424\) 293.532 + 745.877i 0.692293 + 1.75914i
\(425\) −232.922 −0.548053
\(426\) 22.8473 + 181.863i 0.0536323 + 0.426907i
\(427\) 0 0
\(428\) 66.5498 + 260.685i 0.155490 + 0.609076i
\(429\) 147.233 0.343200
\(430\) −577.361 + 72.5337i −1.34270 + 0.168683i
\(431\) 446.365i 1.03565i −0.855486 0.517825i \(-0.826742\pi\)
0.855486 0.517825i \(-0.173258\pi\)
\(432\) 39.8514 + 72.9648i 0.0922486 + 0.168900i
\(433\) 70.4995 0.162816 0.0814082 0.996681i \(-0.474058\pi\)
0.0814082 + 0.996681i \(0.474058\pi\)
\(434\) 0 0
\(435\) 61.3974i 0.141143i
\(436\) −661.817 + 168.954i −1.51793 + 0.387510i
\(437\) −183.909 −0.420845
\(438\) −112.821 + 14.1736i −0.257582 + 0.0323599i
\(439\) 117.803i 0.268343i 0.990958 + 0.134172i \(0.0428373\pi\)
−0.990958 + 0.134172i \(0.957163\pi\)
\(440\) 463.550 182.425i 1.05352 0.414603i
\(441\) 0 0
\(442\) −40.7969 324.739i −0.0923007 0.734704i
\(443\) 398.375i 0.899266i −0.893213 0.449633i \(-0.851555\pi\)
0.893213 0.449633i \(-0.148445\pi\)
\(444\) −38.4980 150.802i −0.0867072 0.339644i
\(445\) −398.679 −0.895908
\(446\) 368.592 46.3061i 0.826438 0.103825i
\(447\) 12.5088i 0.0279839i
\(448\) 0 0
\(449\) 171.356 0.381640 0.190820 0.981625i \(-0.438885\pi\)
0.190820 + 0.981625i \(0.438885\pi\)
\(450\) −5.99001 47.6799i −0.0133111 0.105955i
\(451\) 743.719i 1.64904i
\(452\) −92.9299 + 23.7239i −0.205597 + 0.0524866i
\(453\) −299.767 −0.661737
\(454\) 530.223 66.6118i 1.16789 0.146722i
\(455\) 0 0
\(456\) −36.8709 93.6903i −0.0808572 0.205461i
\(457\) −375.430 −0.821511 −0.410755 0.911746i \(-0.634735\pi\)
−0.410755 + 0.911746i \(0.634735\pi\)
\(458\) 19.5039 + 155.249i 0.0425850 + 0.338973i
\(459\) 151.115i 0.329228i
\(460\) −103.224 404.343i −0.224401 0.879007i
\(461\) −353.738 −0.767328 −0.383664 0.923473i \(-0.625338\pi\)
−0.383664 + 0.923473i \(0.625338\pi\)
\(462\) 0 0
\(463\) 741.091i 1.60063i 0.599581 + 0.800314i \(0.295334\pi\)
−0.599581 + 0.800314i \(0.704666\pi\)
\(464\) −120.757 + 65.9543i −0.260252 + 0.142143i
\(465\) −119.168 −0.256274
\(466\) −2.51909 20.0517i −0.00540577 0.0430294i
\(467\) 390.491i 0.836169i 0.908408 + 0.418085i \(0.137298\pi\)
−0.908408 + 0.418085i \(0.862702\pi\)
\(468\) 65.4259 16.7025i 0.139799 0.0356891i
\(469\) 0 0
\(470\) 410.388 51.5569i 0.873165 0.109695i
\(471\) 412.402i 0.875588i
\(472\) 571.188 224.785i 1.21014 0.476240i
\(473\) −1066.29 −2.25431
\(474\) −6.99845 55.7069i −0.0147647 0.117525i
\(475\) 58.1964i 0.122519i
\(476\) 0 0
\(477\) −300.584 −0.630155
\(478\) 209.390 26.3056i 0.438054 0.0550326i
\(479\) 171.800i 0.358664i −0.983789 0.179332i \(-0.942606\pi\)
0.983789 0.179332i \(-0.0573936\pi\)
\(480\) 185.293 133.651i 0.386027 0.278439i
\(481\) −126.408 −0.262802
\(482\) 49.0254 + 390.237i 0.101713 + 0.809621i
\(483\) 0 0
\(484\) 415.508 106.074i 0.858487 0.219162i
\(485\) 223.371 0.460558
\(486\) −30.9338 + 3.88620i −0.0636497 + 0.00799630i
\(487\) 104.317i 0.214204i −0.994248 0.107102i \(-0.965843\pi\)
0.994248 0.107102i \(-0.0341571\pi\)
\(488\) 325.652 + 827.495i 0.667321 + 1.69569i
\(489\) 531.095 1.08608
\(490\) 0 0
\(491\) 142.568i 0.290362i −0.989405 0.145181i \(-0.953624\pi\)
0.989405 0.145181i \(-0.0463764\pi\)
\(492\) 84.3694 + 330.486i 0.171483 + 0.671720i
\(493\) −250.097 −0.507296
\(494\) −81.1370 + 10.1932i −0.164245 + 0.0206341i
\(495\) 186.808i 0.377390i
\(496\) 128.012 + 234.380i 0.258089 + 0.472541i
\(497\) 0 0
\(498\) 11.0556 + 88.0012i 0.0221999 + 0.176709i
\(499\) 560.161i 1.12257i −0.827624 0.561283i \(-0.810308\pi\)
0.827624 0.561283i \(-0.189692\pi\)
\(500\) −527.341 + 134.624i −1.05468 + 0.269249i
\(501\) 449.211 0.896629
\(502\) 632.844 79.5041i 1.26065 0.158375i
\(503\) 646.893i 1.28607i −0.765837 0.643035i \(-0.777675\pi\)
0.765837 0.643035i \(-0.222325\pi\)
\(504\) 0 0
\(505\) 401.472 0.794995
\(506\) −95.3191 758.731i −0.188378 1.49947i
\(507\) 237.874i 0.469180i
\(508\) −6.91931 27.1039i −0.0136207 0.0533541i
\(509\) 724.945 1.42425 0.712126 0.702051i \(-0.247732\pi\)
0.712126 + 0.702051i \(0.247732\pi\)
\(510\) 412.026 51.7628i 0.807895 0.101496i
\(511\) 0 0
\(512\) −461.911 220.866i −0.902171 0.431379i
\(513\) 37.7566 0.0735997
\(514\) 35.7605 + 284.650i 0.0695730 + 0.553794i
\(515\) 253.742i 0.492702i
\(516\) −473.827 + 120.963i −0.918270 + 0.234424i
\(517\) 757.918 1.46599
\(518\) 0 0
\(519\) 79.6824i 0.153531i
\(520\) −67.9513 172.667i −0.130676 0.332052i
\(521\) 927.588 1.78040 0.890199 0.455571i \(-0.150565\pi\)
0.890199 + 0.455571i \(0.150565\pi\)
\(522\) −6.43168 51.1955i −0.0123212 0.0980757i
\(523\) 462.924i 0.885131i 0.896736 + 0.442566i \(0.145932\pi\)
−0.896736 + 0.442566i \(0.854068\pi\)
\(524\) −89.8538 351.970i −0.171477 0.671698i
\(525\) 0 0
\(526\) −404.253 + 50.7862i −0.768541 + 0.0965516i
\(527\) 485.419i 0.921098i
\(528\) 367.416 200.673i 0.695864 0.380062i
\(529\) −111.596 −0.210957
\(530\) 102.961 + 819.562i 0.194267 + 1.54634i
\(531\) 230.185i 0.433494i
\(532\) 0 0
\(533\) 277.026 0.519749
\(534\) −332.434 + 41.7636i −0.622536 + 0.0782090i
\(535\) 277.251i 0.518226i
\(536\) −668.380 + 263.034i −1.24698 + 0.490736i
\(537\) −97.0441 −0.180715
\(538\) 45.5378 + 362.476i 0.0846428 + 0.673748i
\(539\) 0 0
\(540\) 21.1920 + 83.0118i 0.0392444 + 0.153726i
\(541\) 77.5318 0.143312 0.0716560 0.997429i \(-0.477172\pi\)
0.0716560 + 0.997429i \(0.477172\pi\)
\(542\) 573.894 72.0982i 1.05885 0.133022i
\(543\) 157.214i 0.289529i
\(544\) −544.415 754.774i −1.00076 1.38745i
\(545\) −703.875 −1.29151
\(546\) 0 0
\(547\) 791.000i 1.44607i −0.690812 0.723035i \(-0.742747\pi\)
0.690812 0.723035i \(-0.257253\pi\)
\(548\) −996.595 + 254.419i −1.81860 + 0.464269i
\(549\) −333.476 −0.607424
\(550\) −240.093 + 30.1629i −0.436533 + 0.0548416i
\(551\) 62.4874i 0.113407i
\(552\) −128.429 326.344i −0.232662 0.591203i
\(553\) 0 0
\(554\) 72.0557 + 573.556i 0.130064 + 1.03530i
\(555\) 160.385i 0.288983i
\(556\) 142.975 + 560.054i 0.257150 + 1.00729i
\(557\) 422.621 0.758745 0.379373 0.925244i \(-0.376140\pi\)
0.379373 + 0.925244i \(0.376140\pi\)
\(558\) −99.3666 + 12.4834i −0.178076 + 0.0223717i
\(559\) 397.180i 0.710520i
\(560\) 0 0
\(561\) 760.945 1.35641
\(562\) 36.3229 + 289.127i 0.0646315 + 0.514461i
\(563\) 83.1996i 0.147779i −0.997266 0.0738895i \(-0.976459\pi\)
0.997266 0.0738895i \(-0.0235412\pi\)
\(564\) 336.796 85.9803i 0.597157 0.152447i
\(565\) −98.8356 −0.174930
\(566\) −581.404 + 73.0417i −1.02722 + 0.129049i
\(567\) 0 0
\(568\) 393.891 155.012i 0.693470 0.272908i
\(569\) 183.560 0.322601 0.161300 0.986905i \(-0.448431\pi\)
0.161300 + 0.986905i \(0.448431\pi\)
\(570\) −12.9331 102.946i −0.0226896 0.180607i
\(571\) 670.736i 1.17467i 0.809344 + 0.587334i \(0.199823\pi\)
−0.809344 + 0.587334i \(0.800177\pi\)
\(572\) −84.1058 329.454i −0.147038 0.575968i
\(573\) 254.846 0.444757
\(574\) 0 0
\(575\) 202.711i 0.352540i
\(576\) 140.504 130.854i 0.243930 0.227176i
\(577\) −466.399 −0.808316 −0.404158 0.914689i \(-0.632435\pi\)
−0.404158 + 0.914689i \(0.632435\pi\)
\(578\) −138.803 1104.86i −0.240144 1.91152i
\(579\) 401.226i 0.692963i
\(580\) −137.385 + 35.0728i −0.236871 + 0.0604704i
\(581\) 0 0
\(582\) 186.255 23.3992i 0.320026 0.0402048i
\(583\) 1513.60i 2.59622i
\(584\) 96.1636 + 244.355i 0.164664 + 0.418417i
\(585\) 69.5837 0.118947
\(586\) 11.8835 + 94.5916i 0.0202790 + 0.161419i
\(587\) 275.534i 0.469393i −0.972069 0.234696i \(-0.924590\pi\)
0.972069 0.234696i \(-0.0754096\pi\)
\(588\) 0 0
\(589\) 121.283 0.205914
\(590\) 627.616 78.8473i 1.06376 0.133639i
\(591\) 468.928i 0.793449i
\(592\) −315.448 + 172.289i −0.532851 + 0.291029i
\(593\) 62.1721 0.104843 0.0524217 0.998625i \(-0.483306\pi\)
0.0524217 + 0.998625i \(0.483306\pi\)
\(594\) 19.5691 + 155.768i 0.0329445 + 0.262235i
\(595\) 0 0
\(596\) 27.9901 7.14556i 0.0469633 0.0119892i
\(597\) −587.561 −0.984189
\(598\) −282.618 + 35.5052i −0.472606 + 0.0593733i
\(599\) 201.686i 0.336705i −0.985727 0.168353i \(-0.946155\pi\)
0.985727 0.168353i \(-0.0538447\pi\)
\(600\) −103.269 + 40.6403i −0.172114 + 0.0677338i
\(601\) 129.981 0.216274 0.108137 0.994136i \(-0.465511\pi\)
0.108137 + 0.994136i \(0.465511\pi\)
\(602\) 0 0
\(603\) 269.353i 0.446689i
\(604\) 171.240 + 670.769i 0.283510 + 1.11055i
\(605\) 441.913 0.730435
\(606\) 334.763 42.0562i 0.552415 0.0693997i
\(607\) 1058.19i 1.74331i −0.490116 0.871657i \(-0.663046\pi\)
0.490116 0.871657i \(-0.336954\pi\)
\(608\) −188.583 + 136.024i −0.310169 + 0.223723i
\(609\) 0 0
\(610\) 114.228 + 909.244i 0.187259 + 1.49056i
\(611\) 282.316i 0.462055i
\(612\) 338.141 86.3236i 0.552518 0.141052i
\(613\) −121.671 −0.198485 −0.0992425 0.995063i \(-0.531642\pi\)
−0.0992425 + 0.995063i \(0.531642\pi\)
\(614\) −567.384 + 71.2803i −0.924078 + 0.116092i
\(615\) 351.489i 0.571527i
\(616\) 0 0
\(617\) 18.6957 0.0303010 0.0151505 0.999885i \(-0.495177\pi\)
0.0151505 + 0.999885i \(0.495177\pi\)
\(618\) −26.5807 211.580i −0.0430109 0.342362i
\(619\) 58.1063i 0.0938712i −0.998898 0.0469356i \(-0.985054\pi\)
0.998898 0.0469356i \(-0.0149456\pi\)
\(620\) 68.0737 + 266.654i 0.109796 + 0.430086i
\(621\) 131.515 0.211779
\(622\) 136.000 17.0856i 0.218649 0.0274689i
\(623\) 0 0
\(624\) −74.7482 136.858i −0.119789 0.219324i
\(625\) −360.626 −0.577002
\(626\) 55.0815 + 438.443i 0.0879896 + 0.700388i
\(627\) 190.124i 0.303229i
\(628\) −922.805 + 235.582i −1.46943 + 0.375130i
\(629\) −653.315 −1.03866
\(630\) 0 0
\(631\) 837.654i 1.32750i 0.747954 + 0.663751i \(0.231036\pi\)
−0.747954 + 0.663751i \(0.768964\pi\)
\(632\) −120.654 + 47.4822i −0.190908 + 0.0751300i
\(633\) 277.755 0.438791
\(634\) −52.3190 416.454i −0.0825221 0.656867i
\(635\) 28.8263i 0.0453958i
\(636\) 171.706 + 672.597i 0.269979 + 1.05754i
\(637\) 0 0
\(638\) −257.796 + 32.3869i −0.404069 + 0.0507631i
\(639\) 158.736i 0.248413i
\(640\) −404.909 338.271i −0.632670 0.528549i
\(641\) 549.160 0.856724 0.428362 0.903607i \(-0.359091\pi\)
0.428362 + 0.903607i \(0.359091\pi\)
\(642\) 29.0434 + 231.183i 0.0452390 + 0.360098i
\(643\) 347.476i 0.540398i 0.962805 + 0.270199i \(0.0870895\pi\)
−0.962805 + 0.270199i \(0.912911\pi\)
\(644\) 0 0
\(645\) −503.939 −0.781301
\(646\) −419.341 + 52.6818i −0.649135 + 0.0815507i
\(647\) 763.785i 1.18050i −0.807220 0.590251i \(-0.799029\pi\)
0.807220 0.590251i \(-0.200971\pi\)
\(648\) 26.3666 + 66.9985i 0.0406892 + 0.103393i
\(649\) 1159.10 1.78598
\(650\) 11.2353 + 89.4319i 0.0172851 + 0.137588i
\(651\) 0 0
\(652\) −303.385 1188.40i −0.465314 1.82270i
\(653\) 146.645 0.224571 0.112286 0.993676i \(-0.464183\pi\)
0.112286 + 0.993676i \(0.464183\pi\)
\(654\) −586.919 + 73.7344i −0.897429 + 0.112744i
\(655\) 374.337i 0.571507i
\(656\) 691.313 377.576i 1.05383 0.575573i
\(657\) −98.4737 −0.149884
\(658\) 0 0
\(659\) 850.491i 1.29058i −0.763938 0.645289i \(-0.776737\pi\)
0.763938 0.645289i \(-0.223263\pi\)
\(660\) 418.008 106.713i 0.633345 0.161686i
\(661\) 63.0551 0.0953935 0.0476967 0.998862i \(-0.484812\pi\)
0.0476967 + 0.998862i \(0.484812\pi\)
\(662\) 74.8605 9.40470i 0.113082 0.0142065i
\(663\) 283.443i 0.427516i
\(664\) 190.599 75.0084i 0.287047 0.112965i
\(665\) 0 0
\(666\) −16.8012 133.736i −0.0252270 0.200804i
\(667\) 217.657i 0.326323i
\(668\) −256.609 1005.17i −0.384145 1.50475i
\(669\) 321.719 0.480895
\(670\) −734.410 + 92.2637i −1.09613 + 0.137707i
\(671\) 1679.22i 2.50257i
\(672\) 0 0
\(673\) −371.202 −0.551563 −0.275781 0.961220i \(-0.588937\pi\)
−0.275781 + 0.961220i \(0.588937\pi\)
\(674\) 80.7229 + 642.546i 0.119767 + 0.953332i
\(675\) 41.6166i 0.0616542i
\(676\) 532.276 135.884i 0.787390 0.201012i
\(677\) 643.778 0.950928 0.475464 0.879735i \(-0.342280\pi\)
0.475464 + 0.879735i \(0.342280\pi\)
\(678\) −82.4130 + 10.3535i −0.121553 + 0.0152707i
\(679\) 0 0
\(680\) −351.194 892.396i −0.516461 1.31235i
\(681\) 462.796 0.679583
\(682\) 62.8604 + 500.363i 0.0921707 + 0.733669i
\(683\) 446.466i 0.653684i 0.945079 + 0.326842i \(0.105984\pi\)
−0.945079 + 0.326842i \(0.894016\pi\)
\(684\) −21.5682 84.4856i −0.0315325 0.123517i
\(685\) −1059.93 −1.54734
\(686\) 0 0
\(687\) 135.507i 0.197244i
\(688\) 541.341 + 991.154i 0.786833 + 1.44063i
\(689\) 563.797 0.818283
\(690\) −45.0488 358.584i −0.0652881 0.519686i
\(691\) 361.559i 0.523240i 0.965171 + 0.261620i \(0.0842567\pi\)
−0.965171 + 0.261620i \(0.915743\pi\)
\(692\) 178.300 45.5180i 0.257659 0.0657775i
\(693\) 0 0
\(694\) 1152.82 144.828i 1.66112 0.208686i
\(695\) 595.645i 0.857044i
\(696\) −110.883 + 43.6368i −0.159314 + 0.0626966i
\(697\) 1431.76 2.05417
\(698\) −60.0692 478.144i −0.0860590 0.685021i
\(699\) 17.5018i 0.0250383i
\(700\) 0 0
\(701\) −1266.88 −1.80724 −0.903621 0.428333i \(-0.859101\pi\)
−0.903621 + 0.428333i \(0.859101\pi\)
\(702\) 58.0216 7.28924i 0.0826519 0.0103835i
\(703\) 163.233i 0.232194i
\(704\) −658.916 707.511i −0.935960 1.00499i
\(705\) 358.200 0.508085
\(706\) 91.5382 + 728.635i 0.129658 + 1.03206i
\(707\) 0 0
\(708\) 515.071 131.492i 0.727502 0.185723i
\(709\) −294.589 −0.415499 −0.207750 0.978182i \(-0.566614\pi\)
−0.207750 + 0.978182i \(0.566614\pi\)
\(710\) 432.803 54.3730i 0.609582 0.0765817i
\(711\) 48.6228i 0.0683866i
\(712\) 283.353 + 720.010i 0.397967 + 1.01125i
\(713\) 422.456 0.592505
\(714\) 0 0
\(715\) 350.390i 0.490056i
\(716\) 55.4357 + 217.149i 0.0774242 + 0.303281i
\(717\) 182.762 0.254898
\(718\) −482.242 + 60.5839i −0.671646 + 0.0843787i
\(719\) 1017.96i 1.41580i 0.706311 + 0.707902i \(0.250358\pi\)
−0.706311 + 0.707902i \(0.749642\pi\)
\(720\) 173.644 94.8399i 0.241173 0.131722i
\(721\) 0 0
\(722\) −76.8346 611.595i −0.106419 0.847085i
\(723\) 340.612i 0.471109i
\(724\) −351.788 + 89.8074i −0.485895 + 0.124043i
\(725\) 68.8756 0.0950009
\(726\) 368.484 46.2926i 0.507554 0.0637639i
\(727\) 335.755i 0.461836i −0.972973 0.230918i \(-0.925827\pi\)
0.972973 0.230918i \(-0.0741730\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) 33.7310 + 268.495i 0.0462068 + 0.367802i
\(731\) 2052.75i 2.80814i
\(732\) 190.496 + 746.197i 0.260240 + 1.01939i
\(733\) −1053.67 −1.43747 −0.718737 0.695282i \(-0.755280\pi\)
−0.718737 + 0.695282i \(0.755280\pi\)
\(734\) −1283.63 + 161.262i −1.74881 + 0.219703i
\(735\) 0 0
\(736\) −656.875 + 473.800i −0.892493 + 0.643750i
\(737\) −1356.33 −1.84034
\(738\) 36.8202 + 293.085i 0.0498919 + 0.397134i
\(739\) 255.139i 0.345249i 0.984988 + 0.172624i \(0.0552247\pi\)
−0.984988 + 0.172624i \(0.944775\pi\)
\(740\) −358.884 + 91.6190i −0.484978 + 0.123809i
\(741\) −70.8191 −0.0955723
\(742\) 0 0
\(743\) 534.992i 0.720044i 0.932944 + 0.360022i \(0.117231\pi\)
−0.932944 + 0.360022i \(0.882769\pi\)
\(744\) 84.6958 + 215.215i 0.113838 + 0.289268i
\(745\) 29.7689 0.0399582
\(746\) −62.3507 496.305i −0.0835801 0.665289i
\(747\) 76.8103i 0.102825i
\(748\) −434.685 1702.72i −0.581129 2.27636i
\(749\) 0 0
\(750\) −467.662 + 58.7523i −0.623549 + 0.0783363i
\(751\) 287.539i 0.382874i 0.981505 + 0.191437i \(0.0613148\pi\)
−0.981505 + 0.191437i \(0.938685\pi\)
\(752\) −384.785 704.512i −0.511682 0.936851i
\(753\) 552.367 0.733556
\(754\) 12.0637 + 96.0260i 0.0159996 + 0.127355i
\(755\) 713.397i 0.944896i
\(756\) 0 0
\(757\) 80.9110 0.106884 0.0534418 0.998571i \(-0.482981\pi\)
0.0534418 + 0.998571i \(0.482981\pi\)
\(758\) 813.668 102.221i 1.07344 0.134856i
\(759\) 662.245i 0.872523i
\(760\) −222.968 + 87.7467i −0.293379 + 0.115456i
\(761\) −424.134 −0.557338 −0.278669 0.960387i \(-0.589893\pi\)
−0.278669 + 0.960387i \(0.589893\pi\)
\(762\) −3.01970 24.0365i −0.00396286 0.0315440i
\(763\) 0 0
\(764\) −145.579 570.252i −0.190548 0.746403i
\(765\) 359.630 0.470105
\(766\) −1338.73 + 168.185i −1.74769 + 0.219562i
\(767\) 431.753i 0.562911i
\(768\) −373.065 239.647i −0.485761 0.312041i
\(769\) 1140.50 1.48310 0.741550 0.670898i \(-0.234091\pi\)
0.741550 + 0.670898i \(0.234091\pi\)
\(770\) 0 0
\(771\) 248.452i 0.322246i
\(772\) 897.797 229.197i 1.16295 0.296888i
\(773\) −639.533 −0.827339 −0.413669 0.910427i \(-0.635753\pi\)
−0.413669 + 0.910427i \(0.635753\pi\)
\(774\) −420.204 + 52.7901i −0.542899 + 0.0682043i
\(775\) 133.682i 0.172493i
\(776\) −158.756 403.405i −0.204582 0.519851i
\(777\) 0 0
\(778\) 96.3506 + 766.941i 0.123844 + 0.985786i
\(779\) 357.729i 0.459216i
\(780\) −39.7492 155.703i −0.0509605 0.199619i
\(781\) 799.317 1.02345
\(782\) −1460.66 + 183.502i −1.86785 + 0.234657i
\(783\) 44.6851i 0.0570691i
\(784\) 0 0
\(785\) −981.449 −1.25025
\(786\) −39.2137 312.137i −0.0498902 0.397121i
\(787\) 91.9978i 0.116897i −0.998290 0.0584484i \(-0.981385\pi\)
0.998290 0.0584484i \(-0.0186153\pi\)
\(788\) −1049.29 + 267.872i −1.33159 + 0.339939i
\(789\) −352.845 −0.447205
\(790\) −132.573 + 16.6552i −0.167815 + 0.0210825i
\(791\) 0 0
\(792\) 337.373 132.770i 0.425976 0.167638i
\(793\) 625.491 0.788765
\(794\) 125.187 + 996.474i 0.157666 + 1.25501i
\(795\) 715.341i 0.899800i
\(796\) 335.640 + 1314.75i 0.421658 + 1.65169i
\(797\) −453.032 −0.568422 −0.284211 0.958762i \(-0.591732\pi\)
−0.284211 + 0.958762i \(0.591732\pi\)
\(798\) 0 0
\(799\) 1459.09i 1.82615i
\(800\) 149.930 + 207.862i 0.187412 + 0.259827i
\(801\) −290.160 −0.362247
\(802\) 17.6408 + 140.419i 0.0219959 + 0.175086i
\(803\) 495.866i 0.617517i
\(804\) −602.714 + 153.866i −0.749645 + 0.191376i
\(805\) 0 0
\(806\) 186.379 23.4148i 0.231240 0.0290506i
\(807\) 316.381i 0.392046i
\(808\) −285.338 725.054i −0.353141 0.897344i
\(809\) 189.784 0.234590 0.117295 0.993097i \(-0.462578\pi\)
0.117295 + 0.993097i \(0.462578\pi\)
\(810\) 9.24853 + 73.6173i 0.0114179 + 0.0908856i
\(811\) 561.951i 0.692912i 0.938066 + 0.346456i \(0.112615\pi\)
−0.938066 + 0.346456i \(0.887385\pi\)
\(812\) 0 0
\(813\) 500.914 0.616130
\(814\) −673.428 + 84.6026i −0.827307 + 0.103934i
\(815\) 1263.92i 1.55082i
\(816\) −386.322 707.325i −0.473434 0.866820i
\(817\) 512.886 0.627767
\(818\) −3.74168 29.7834i −0.00457418 0.0364100i
\(819\) 0 0
\(820\) 786.504 200.786i 0.959151 0.244860i
\(821\) −935.573 −1.13955 −0.569776 0.821800i \(-0.692970\pi\)
−0.569776 + 0.821800i \(0.692970\pi\)
\(822\) −883.809 + 111.033i −1.07519 + 0.135076i
\(823\) 140.769i 0.171044i −0.996336 0.0855219i \(-0.972744\pi\)
0.996336 0.0855219i \(-0.0272558\pi\)
\(824\) −458.254 + 180.341i −0.556134 + 0.218861i
\(825\) −209.561 −0.254014
\(826\) 0 0
\(827\) 134.169i 0.162236i −0.996705 0.0811179i \(-0.974151\pi\)
0.996705 0.0811179i \(-0.0258490\pi\)
\(828\) −75.1268 294.282i −0.0907329 0.355413i
\(829\) 684.732 0.825973 0.412986 0.910737i \(-0.364486\pi\)
0.412986 + 0.910737i \(0.364486\pi\)
\(830\) 209.429 26.3105i 0.252324 0.0316994i
\(831\) 500.619i 0.602429i
\(832\) −263.539 + 245.438i −0.316754 + 0.294998i
\(833\) 0 0
\(834\) 62.3968 + 496.672i 0.0748163 + 0.595530i
\(835\) 1069.05i 1.28030i
\(836\) −425.429 + 108.607i −0.508886 + 0.129913i
\(837\) −86.7304 −0.103621
\(838\) 41.3012 5.18866i 0.0492855 0.00619172i
\(839\) 1310.69i 1.56221i −0.624402 0.781103i \(-0.714657\pi\)
0.624402 0.781103i \(-0.285343\pi\)
\(840\) 0 0
\(841\) −767.046 −0.912064
\(842\) −25.3701 201.944i −0.0301308 0.239838i
\(843\) 252.359i 0.299359i
\(844\) −158.665 621.514i −0.187992 0.736391i
\(845\) 566.102 0.669943
\(846\) 298.681 37.5232i 0.353051 0.0443537i
\(847\) 0 0
\(848\) 1406.94 768.433i 1.65913 0.906171i
\(849\) −507.469 −0.597725
\(850\) 58.0675 + 462.212i 0.0683148 + 0.543779i
\(851\) 568.575i 0.668126i
\(852\) 355.193 90.6766i 0.416893 0.106428i
\(853\) 404.635 0.474367 0.237183 0.971465i \(-0.423776\pi\)
0.237183 + 0.971465i \(0.423776\pi\)
\(854\) 0 0
\(855\) 89.8546i 0.105093i
\(856\) 500.712 197.050i 0.584944 0.230199i
\(857\) −87.5256 −0.102130 −0.0510651 0.998695i \(-0.516262\pi\)
−0.0510651 + 0.998695i \(0.516262\pi\)
\(858\) −36.7051 292.169i −0.0427799 0.340523i
\(859\) 246.795i 0.287305i −0.989628 0.143652i \(-0.954115\pi\)
0.989628 0.143652i \(-0.0458847\pi\)
\(860\) 287.872 + 1127.63i 0.334735 + 1.31120i
\(861\) 0 0
\(862\) −885.768 + 111.279i −1.02757 + 0.129094i
\(863\) 96.6734i 0.112020i −0.998430 0.0560101i \(-0.982162\pi\)
0.998430 0.0560101i \(-0.0178379\pi\)
\(864\) 134.857 97.2713i 0.156084 0.112583i
\(865\) 189.631 0.219227
\(866\) −17.5755 139.899i −0.0202951 0.161547i
\(867\) 964.359i 1.11229i
\(868\) 0 0
\(869\) −244.841 −0.281751
\(870\) −121.837 + 15.3064i −0.140043 + 0.0175935i
\(871\) 505.218i 0.580044i
\(872\) 500.264 + 1271.19i 0.573697 + 1.45779i
\(873\) 162.570 0.186220
\(874\) 45.8485 + 364.950i 0.0524583 + 0.417563i
\(875\) 0 0
\(876\) 56.2524 + 220.348i 0.0642151 + 0.251539i
\(877\) −1301.53 −1.48408 −0.742038 0.670358i \(-0.766141\pi\)
−0.742038 + 0.670358i \(0.766141\pi\)
\(878\) 233.768 29.3682i 0.266250 0.0334490i
\(879\) 82.5627i 0.0939279i
\(880\) −477.568 874.391i −0.542691 0.993626i
\(881\) 1145.10 1.29977 0.649885 0.760032i \(-0.274817\pi\)
0.649885 + 0.760032i \(0.274817\pi\)
\(882\) 0 0
\(883\) 1139.35i 1.29032i −0.764049 0.645158i \(-0.776792\pi\)
0.764049 0.645158i \(-0.223208\pi\)
\(884\) −634.242 + 161.915i −0.717469 + 0.183162i
\(885\) 547.804 0.618988
\(886\) −790.535 + 99.3148i −0.892252 + 0.112093i
\(887\) 1063.01i 1.19844i −0.800585 0.599219i \(-0.795478\pi\)
0.800585 0.599219i \(-0.204522\pi\)
\(888\) −289.654 + 113.990i −0.326187 + 0.128368i
\(889\) 0 0
\(890\) 99.3907 + 791.140i 0.111675 + 0.888921i
\(891\) 135.959i 0.152592i
\(892\) −183.780 719.889i −0.206031 0.807051i
\(893\) −364.559 −0.408241
\(894\) 24.8225 3.11844i 0.0277656 0.00348819i
\(895\) 230.949i 0.258044i
\(896\) 0 0
\(897\) −246.678 −0.275004
\(898\) −42.7191 340.040i −0.0475714 0.378664i
\(899\) 143.539i 0.159665i
\(900\) −93.1228 + 23.7732i −0.103470 + 0.0264147i
\(901\) 2913.88 3.23405
\(902\) 1475.84 185.409i 1.63618 0.205553i
\(903\) 0 0
\(904\) 70.2452 + 178.496i 0.0777049 + 0.197451i
\(905\) −374.144 −0.413419
\(906\) 74.7319 + 594.858i 0.0824855 + 0.656576i
\(907\) 737.550i 0.813175i 0.913612 + 0.406587i \(0.133281\pi\)
−0.913612 + 0.406587i \(0.866719\pi\)
\(908\) −264.369 1035.57i −0.291155 1.14049i
\(909\) 292.192 0.321444
\(910\) 0 0
\(911\) 1529.04i 1.67842i 0.543807 + 0.839210i \(0.316982\pi\)
−0.543807 + 0.839210i \(0.683018\pi\)
\(912\) −176.727 + 96.5236i −0.193780 + 0.105837i
\(913\) 386.780 0.423637
\(914\) 93.5947 + 745.005i 0.102401 + 0.815103i
\(915\) 793.618i 0.867342i
\(916\) 303.215 77.4073i 0.331021 0.0845058i
\(917\) 0 0
\(918\) 299.874 37.6731i 0.326660 0.0410382i
\(919\) 637.406i 0.693586i −0.937942 0.346793i \(-0.887271\pi\)
0.937942 0.346793i \(-0.112729\pi\)
\(920\) −776.646 + 305.641i −0.844180 + 0.332219i
\(921\) −495.231 −0.537710
\(922\) 88.1869 + 701.959i 0.0956474 + 0.761343i
\(923\) 297.736i 0.322574i
\(924\) 0 0
\(925\) 179.920 0.194509
\(926\) 1470.62 184.754i 1.58814 0.199518i
\(927\) 184.674i 0.199217i
\(928\) 160.984 + 223.188i 0.173475 + 0.240505i
\(929\) −39.1354 −0.0421264 −0.0210632 0.999778i \(-0.506705\pi\)
−0.0210632 + 0.999778i \(0.506705\pi\)
\(930\) 29.7085 + 236.476i 0.0319446 + 0.254276i
\(931\) 0 0
\(932\) −39.1626 + 9.99777i −0.0420200 + 0.0107272i
\(933\) 118.705 0.127230
\(934\) 774.891 97.3493i 0.829648 0.104228i
\(935\) 1810.93i 1.93682i
\(936\) −49.4551 125.667i −0.0528367 0.134260i
\(937\) −1699.52 −1.81378 −0.906892 0.421363i \(-0.861552\pi\)
−0.906892 + 0.421363i \(0.861552\pi\)
\(938\) 0 0
\(939\) 382.687i 0.407548i
\(940\) −204.619 801.521i −0.217680 0.852681i
\(941\) 647.545 0.688145 0.344073 0.938943i \(-0.388193\pi\)
0.344073 + 0.938943i \(0.388193\pi\)
\(942\) −818.371 + 102.812i −0.868759 + 0.109142i
\(943\) 1246.05i 1.32137i
\(944\) −588.462 1077.43i −0.623371 1.14134i
\(945\) 0 0
\(946\) 265.826 + 2115.95i 0.281000 + 2.23673i
\(947\) 887.073i 0.936719i 0.883538 + 0.468360i \(0.155155\pi\)
−0.883538 + 0.468360i \(0.844845\pi\)
\(948\) −108.800 + 27.7755i −0.114768 + 0.0292990i
\(949\) 184.704 0.194631
\(950\) 115.485 14.5083i 0.121563 0.0152719i
\(951\) 363.495i 0.382224i
\(952\) 0 0
\(953\) 160.697 0.168622 0.0843109 0.996439i \(-0.473131\pi\)
0.0843109 + 0.996439i \(0.473131\pi\)
\(954\) 74.9355 + 596.479i 0.0785487 + 0.625240i
\(955\) 606.492i 0.635070i
\(956\) −104.402 408.955i −0.109207 0.427778i
\(957\) −225.013 −0.235123
\(958\) −340.920 + 42.8297i −0.355867 + 0.0447074i
\(959\) 0 0
\(960\) −311.410 334.376i −0.324386 0.348309i
\(961\) 682.401 0.710095
\(962\) 31.5135 + 250.844i 0.0327583 + 0.260753i
\(963\) 201.784i 0.209537i
\(964\) 762.166 194.572i 0.790628 0.201838i
\(965\) 954.852 0.989484
\(966\) 0 0
\(967\) 333.092i 0.344459i −0.985057 0.172230i \(-0.944903\pi\)
0.985057 0.172230i \(-0.0550971\pi\)
\(968\) −314.080 798.090i −0.324463 0.824473i
\(969\) −366.015 −0.377724
\(970\) −55.6863 443.257i −0.0574085 0.456966i
\(971\) 487.020i 0.501566i 0.968043 + 0.250783i \(0.0806880\pi\)
−0.968043 + 0.250783i \(0.919312\pi\)
\(972\) 15.4236 + 60.4162i 0.0158679 + 0.0621566i
\(973\) 0 0
\(974\) −207.008 + 26.0063i −0.212533 + 0.0267005i
\(975\) 78.0591i 0.0800606i
\(976\) 1560.90 852.520i 1.59928 0.873483i
\(977\) 1664.91 1.70410 0.852050 0.523460i \(-0.175359\pi\)
0.852050 + 0.523460i \(0.175359\pi\)
\(978\) −132.402 1053.91i −0.135380 1.07761i
\(979\) 1461.10i 1.49245i
\(980\) 0 0
\(981\) −512.282 −0.522204
\(982\) −282.911 + 35.5421i −0.288097 + 0.0361935i
\(983\) 1495.73i 1.52160i 0.648987 + 0.760800i \(0.275193\pi\)
−0.648987 + 0.760800i \(0.724807\pi\)
\(984\) 634.784 249.813i 0.645106 0.253875i
\(985\) −1115.97 −1.13297
\(986\) 62.3491 + 496.292i 0.0632344 + 0.503339i
\(987\) 0 0
\(988\) 40.4549 + 158.467i 0.0409463 + 0.160392i
\(989\) 1786.49 1.80636
\(990\) 370.702 46.5712i 0.374446 0.0470416i
\(991\) 1417.01i 1.42988i −0.699188 0.714938i \(-0.746455\pi\)
0.699188 0.714938i \(-0.253545\pi\)
\(992\) 433.191 312.458i 0.436685 0.314978i
\(993\) 65.3407 0.0658013
\(994\) 0 0
\(995\) 1398.30i 1.40533i
\(996\) 171.874 43.8774i 0.172564 0.0440536i
\(997\) 1705.20 1.71034 0.855168 0.518351i \(-0.173454\pi\)
0.855168 + 0.518351i \(0.173454\pi\)
\(998\) −1111.58 + 139.648i −1.11381 + 0.139928i
\(999\) 116.729i 0.116846i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.3.g.h.295.9 24
4.3 odd 2 inner 588.3.g.h.295.12 yes 24
7.6 odd 2 inner 588.3.g.h.295.10 yes 24
28.27 even 2 inner 588.3.g.h.295.11 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
588.3.g.h.295.9 24 1.1 even 1 trivial
588.3.g.h.295.10 yes 24 7.6 odd 2 inner
588.3.g.h.295.11 yes 24 28.27 even 2 inner
588.3.g.h.295.12 yes 24 4.3 odd 2 inner