Properties

Label 588.3.g.h.295.10
Level $588$
Weight $3$
Character 588.295
Analytic conductor $16.022$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [588,3,Mod(295,588)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("588.295"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(588, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 588.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,4,0,12,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.0218395444\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 295.10
Character \(\chi\) \(=\) 588.295
Dual form 588.3.g.h.295.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.249300 - 1.98440i) q^{2} +1.73205i q^{3} +(-3.87570 + 0.989422i) q^{4} +4.12200 q^{5} +(3.43708 - 0.431800i) q^{6} +(2.92962 + 7.44428i) q^{8} -3.00000 q^{9} +(-1.02761 - 8.17970i) q^{10} +15.1066i q^{11} +(-1.71373 - 6.71291i) q^{12} -5.62702 q^{13} +7.13951i q^{15} +(14.0421 - 7.66940i) q^{16} -29.0822 q^{17} +(0.747900 + 5.95320i) q^{18} +7.26627i q^{19} +(-15.9756 + 4.07840i) q^{20} +(29.9775 - 3.76607i) q^{22} -25.3100i q^{23} +(-12.8939 + 5.07425i) q^{24} -8.00912 q^{25} +(1.40281 + 11.1663i) q^{26} -5.19615i q^{27} -8.59966 q^{29} +(14.1677 - 1.77988i) q^{30} -16.6913i q^{31} +(-18.7199 - 25.9532i) q^{32} -26.1653 q^{33} +(7.25018 + 57.7107i) q^{34} +(11.6271 - 2.96827i) q^{36} -22.4645 q^{37} +(14.4192 - 1.81148i) q^{38} -9.74628i q^{39} +(12.0759 + 30.6853i) q^{40} -49.2315 q^{41} +70.5845i q^{43} +(-14.9468 - 58.5485i) q^{44} -12.3660 q^{45} +(-50.2252 + 6.30978i) q^{46} +50.1714i q^{47} +(13.2838 + 24.3216i) q^{48} +(1.99667 + 15.8933i) q^{50} -50.3718i q^{51} +(21.8086 - 5.56750i) q^{52} +100.195 q^{53} +(-10.3113 + 1.29540i) q^{54} +62.2693i q^{55} -12.5855 q^{57} +(2.14389 + 17.0652i) q^{58} +76.7285i q^{59} +(-7.06399 - 27.6706i) q^{60} -111.159 q^{61} +(-33.1222 + 4.16113i) q^{62} +(-46.8346 + 43.6179i) q^{64} -23.1946 q^{65} +(6.52302 + 51.9226i) q^{66} +89.7844i q^{67} +(112.714 - 28.7745i) q^{68} +43.8382 q^{69} -52.9119i q^{71} +(-8.78887 - 22.3328i) q^{72} -32.8246 q^{73} +(5.60039 + 44.5785i) q^{74} -13.8722i q^{75} +(-7.18940 - 28.1619i) q^{76} +(-19.3405 + 2.42975i) q^{78} +16.2076i q^{79} +(57.8815 - 31.6133i) q^{80} +9.00000 q^{81} +(12.2734 + 97.6950i) q^{82} +25.6034i q^{83} -119.877 q^{85} +(140.068 - 17.5967i) q^{86} -14.8950i q^{87} +(-112.458 + 44.2565i) q^{88} -96.7198 q^{89} +(3.08284 + 24.5391i) q^{90} +(25.0423 + 98.0940i) q^{92} +28.9101 q^{93} +(99.5603 - 12.5077i) q^{94} +29.9515i q^{95} +(44.9522 - 32.4238i) q^{96} +54.1899 q^{97} -45.3197i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 4 q^{2} + 12 q^{4} - 20 q^{8} - 72 q^{9} - 60 q^{16} - 12 q^{18} + 168 q^{22} + 120 q^{25} + 64 q^{29} - 236 q^{32} - 36 q^{36} - 192 q^{37} - 360 q^{44} - 72 q^{46} + 532 q^{50} + 432 q^{53} + 240 q^{58}+ \cdots - 96 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.249300 1.98440i −0.124650 0.992201i
\(3\) 1.73205i 0.577350i
\(4\) −3.87570 + 0.989422i −0.968925 + 0.247356i
\(5\) 4.12200 0.824400 0.412200 0.911093i \(-0.364760\pi\)
0.412200 + 0.911093i \(0.364760\pi\)
\(6\) 3.43708 0.431800i 0.572847 0.0719667i
\(7\) 0 0
\(8\) 2.92962 + 7.44428i 0.366203 + 0.930535i
\(9\) −3.00000 −0.333333
\(10\) −1.02761 8.17970i −0.102761 0.817970i
\(11\) 15.1066i 1.37332i 0.726977 + 0.686662i \(0.240925\pi\)
−0.726977 + 0.686662i \(0.759075\pi\)
\(12\) −1.71373 6.71291i −0.142811 0.559409i
\(13\) −5.62702 −0.432848 −0.216424 0.976300i \(-0.569439\pi\)
−0.216424 + 0.976300i \(0.569439\pi\)
\(14\) 0 0
\(15\) 7.13951i 0.475968i
\(16\) 14.0421 7.66940i 0.877630 0.479338i
\(17\) −29.0822 −1.71072 −0.855358 0.518037i \(-0.826663\pi\)
−0.855358 + 0.518037i \(0.826663\pi\)
\(18\) 0.747900 + 5.95320i 0.0415500 + 0.330734i
\(19\) 7.26627i 0.382435i 0.981548 + 0.191218i \(0.0612436\pi\)
−0.981548 + 0.191218i \(0.938756\pi\)
\(20\) −15.9756 + 4.07840i −0.798782 + 0.203920i
\(21\) 0 0
\(22\) 29.9775 3.76607i 1.36261 0.171185i
\(23\) 25.3100i 1.10043i −0.835021 0.550217i \(-0.814545\pi\)
0.835021 0.550217i \(-0.185455\pi\)
\(24\) −12.8939 + 5.07425i −0.537245 + 0.211427i
\(25\) −8.00912 −0.320365
\(26\) 1.40281 + 11.1663i 0.0539544 + 0.429472i
\(27\) 5.19615i 0.192450i
\(28\) 0 0
\(29\) −8.59966 −0.296540 −0.148270 0.988947i \(-0.547370\pi\)
−0.148270 + 0.988947i \(0.547370\pi\)
\(30\) 14.1677 1.77988i 0.472255 0.0593293i
\(31\) 16.6913i 0.538428i −0.963080 0.269214i \(-0.913236\pi\)
0.963080 0.269214i \(-0.0867639\pi\)
\(32\) −18.7199 25.9532i −0.584996 0.811036i
\(33\) −26.1653 −0.792889
\(34\) 7.25018 + 57.7107i 0.213241 + 1.69737i
\(35\) 0 0
\(36\) 11.6271 2.96827i 0.322975 0.0824518i
\(37\) −22.4645 −0.607147 −0.303574 0.952808i \(-0.598180\pi\)
−0.303574 + 0.952808i \(0.598180\pi\)
\(38\) 14.4192 1.81148i 0.379452 0.0476705i
\(39\) 9.74628i 0.249905i
\(40\) 12.0759 + 30.6853i 0.301898 + 0.767133i
\(41\) −49.2315 −1.20077 −0.600384 0.799712i \(-0.704986\pi\)
−0.600384 + 0.799712i \(0.704986\pi\)
\(42\) 0 0
\(43\) 70.5845i 1.64150i 0.571287 + 0.820750i \(0.306444\pi\)
−0.571287 + 0.820750i \(0.693556\pi\)
\(44\) −14.9468 58.5485i −0.339699 1.33065i
\(45\) −12.3660 −0.274800
\(46\) −50.2252 + 6.30978i −1.09185 + 0.137169i
\(47\) 50.1714i 1.06748i 0.845649 + 0.533739i \(0.179213\pi\)
−0.845649 + 0.533739i \(0.820787\pi\)
\(48\) 13.2838 + 24.3216i 0.276746 + 0.506700i
\(49\) 0 0
\(50\) 1.99667 + 15.8933i 0.0399334 + 0.317866i
\(51\) 50.3718i 0.987683i
\(52\) 21.8086 5.56750i 0.419397 0.107067i
\(53\) 100.195 1.89046 0.945232 0.326399i \(-0.105835\pi\)
0.945232 + 0.326399i \(0.105835\pi\)
\(54\) −10.3113 + 1.29540i −0.190949 + 0.0239889i
\(55\) 62.2693i 1.13217i
\(56\) 0 0
\(57\) −12.5855 −0.220799
\(58\) 2.14389 + 17.0652i 0.0369637 + 0.294227i
\(59\) 76.7285i 1.30048i 0.759728 + 0.650241i \(0.225332\pi\)
−0.759728 + 0.650241i \(0.774668\pi\)
\(60\) −7.06399 27.6706i −0.117733 0.461177i
\(61\) −111.159 −1.82227 −0.911135 0.412107i \(-0.864793\pi\)
−0.911135 + 0.412107i \(0.864793\pi\)
\(62\) −33.1222 + 4.16113i −0.534229 + 0.0671150i
\(63\) 0 0
\(64\) −46.8346 + 43.6179i −0.731791 + 0.681529i
\(65\) −23.1946 −0.356840
\(66\) 6.52302 + 51.9226i 0.0988336 + 0.786705i
\(67\) 89.7844i 1.34007i 0.742331 + 0.670033i \(0.233720\pi\)
−0.742331 + 0.670033i \(0.766280\pi\)
\(68\) 112.714 28.7745i 1.65756 0.423155i
\(69\) 43.8382 0.635336
\(70\) 0 0
\(71\) 52.9119i 0.745238i −0.927984 0.372619i \(-0.878460\pi\)
0.927984 0.372619i \(-0.121540\pi\)
\(72\) −8.78887 22.3328i −0.122068 0.310178i
\(73\) −32.8246 −0.449652 −0.224826 0.974399i \(-0.572181\pi\)
−0.224826 + 0.974399i \(0.572181\pi\)
\(74\) 5.60039 + 44.5785i 0.0756809 + 0.602412i
\(75\) 13.8722i 0.184963i
\(76\) −7.18940 28.1619i −0.0945974 0.370551i
\(77\) 0 0
\(78\) −19.3405 + 2.42975i −0.247956 + 0.0311506i
\(79\) 16.2076i 0.205160i 0.994725 + 0.102580i \(0.0327097\pi\)
−0.994725 + 0.102580i \(0.967290\pi\)
\(80\) 57.8815 31.6133i 0.723519 0.395166i
\(81\) 9.00000 0.111111
\(82\) 12.2734 + 97.6950i 0.149676 + 1.19140i
\(83\) 25.6034i 0.308475i 0.988034 + 0.154238i \(0.0492921\pi\)
−0.988034 + 0.154238i \(0.950708\pi\)
\(84\) 0 0
\(85\) −119.877 −1.41031
\(86\) 140.068 17.5967i 1.62870 0.204613i
\(87\) 14.8950i 0.171207i
\(88\) −112.458 + 44.2565i −1.27793 + 0.502915i
\(89\) −96.7198 −1.08674 −0.543370 0.839493i \(-0.682852\pi\)
−0.543370 + 0.839493i \(0.682852\pi\)
\(90\) 3.08284 + 24.5391i 0.0342538 + 0.272657i
\(91\) 0 0
\(92\) 25.0423 + 98.0940i 0.272199 + 1.06624i
\(93\) 28.9101 0.310862
\(94\) 99.5603 12.5077i 1.05915 0.133061i
\(95\) 29.9515i 0.315279i
\(96\) 44.9522 32.4238i 0.468252 0.337748i
\(97\) 54.1899 0.558659 0.279329 0.960195i \(-0.409888\pi\)
0.279329 + 0.960195i \(0.409888\pi\)
\(98\) 0 0
\(99\) 45.3197i 0.457775i
\(100\) 31.0409 7.92440i 0.310409 0.0792440i
\(101\) 97.3975 0.964331 0.482166 0.876080i \(-0.339850\pi\)
0.482166 + 0.876080i \(0.339850\pi\)
\(102\) −99.9579 + 12.5577i −0.979979 + 0.123115i
\(103\) 61.5579i 0.597650i −0.954308 0.298825i \(-0.903405\pi\)
0.954308 0.298825i \(-0.0965946\pi\)
\(104\) −16.4850 41.8891i −0.158510 0.402780i
\(105\) 0 0
\(106\) −24.9785 198.826i −0.235646 1.87572i
\(107\) 67.2613i 0.628610i −0.949322 0.314305i \(-0.898229\pi\)
0.949322 0.314305i \(-0.101771\pi\)
\(108\) 5.14119 + 20.1387i 0.0476036 + 0.186470i
\(109\) 170.761 1.56661 0.783305 0.621637i \(-0.213532\pi\)
0.783305 + 0.621637i \(0.213532\pi\)
\(110\) 123.567 15.5237i 1.12334 0.141125i
\(111\) 38.9096i 0.350537i
\(112\) 0 0
\(113\) 23.9776 0.212191 0.106095 0.994356i \(-0.466165\pi\)
0.106095 + 0.994356i \(0.466165\pi\)
\(114\) 3.13757 + 24.9748i 0.0275226 + 0.219077i
\(115\) 104.328i 0.907199i
\(116\) 33.3297 8.50869i 0.287325 0.0733508i
\(117\) 16.8811 0.144283
\(118\) 152.260 19.1284i 1.29034 0.162105i
\(119\) 0 0
\(120\) −53.1485 + 20.9161i −0.442905 + 0.174301i
\(121\) −107.208 −0.886020
\(122\) 27.7118 + 220.583i 0.227146 + 1.80806i
\(123\) 85.2714i 0.693264i
\(124\) 16.5147 + 64.6903i 0.133183 + 0.521696i
\(125\) −136.064 −1.08851
\(126\) 0 0
\(127\) 6.99328i 0.0550652i 0.999621 + 0.0275326i \(0.00876501\pi\)
−0.999621 + 0.0275326i \(0.991235\pi\)
\(128\) 98.2312 + 82.0648i 0.767431 + 0.641131i
\(129\) −122.256 −0.947721
\(130\) 5.78240 + 46.0273i 0.0444800 + 0.354056i
\(131\) 90.8145i 0.693240i −0.938006 0.346620i \(-0.887329\pi\)
0.938006 0.346620i \(-0.112671\pi\)
\(132\) 101.409 25.8886i 0.768250 0.196126i
\(133\) 0 0
\(134\) 178.168 22.3832i 1.32961 0.167039i
\(135\) 21.4185i 0.158656i
\(136\) −85.1998 216.496i −0.626469 1.59188i
\(137\) 257.139 1.87693 0.938465 0.345375i \(-0.112248\pi\)
0.938465 + 0.345375i \(0.112248\pi\)
\(138\) −10.9289 86.9926i −0.0791946 0.630381i
\(139\) 144.504i 1.03960i 0.854289 + 0.519798i \(0.173993\pi\)
−0.854289 + 0.519798i \(0.826007\pi\)
\(140\) 0 0
\(141\) −86.8995 −0.616308
\(142\) −104.998 + 13.1909i −0.739425 + 0.0928938i
\(143\) 85.0049i 0.594440i
\(144\) −42.1263 + 23.0082i −0.292543 + 0.159779i
\(145\) −35.4478 −0.244468
\(146\) 8.18316 + 65.1371i 0.0560490 + 0.446145i
\(147\) 0 0
\(148\) 87.0655 22.2268i 0.588280 0.150181i
\(149\) −7.22195 −0.0484695 −0.0242347 0.999706i \(-0.507715\pi\)
−0.0242347 + 0.999706i \(0.507715\pi\)
\(150\) −27.5280 + 3.45834i −0.183520 + 0.0230556i
\(151\) 173.071i 1.14616i −0.819499 0.573081i \(-0.805748\pi\)
0.819499 0.573081i \(-0.194252\pi\)
\(152\) −54.0921 + 21.2874i −0.355869 + 0.140049i
\(153\) 87.2465 0.570239
\(154\) 0 0
\(155\) 68.8014i 0.443880i
\(156\) 9.64319 + 37.7737i 0.0618153 + 0.242139i
\(157\) −238.100 −1.51656 −0.758281 0.651928i \(-0.773961\pi\)
−0.758281 + 0.651928i \(0.773961\pi\)
\(158\) 32.1624 4.04056i 0.203560 0.0255731i
\(159\) 173.542i 1.09146i
\(160\) −77.1633 106.979i −0.482271 0.668618i
\(161\) 0 0
\(162\) −2.24370 17.8596i −0.0138500 0.110245i
\(163\) 306.628i 1.88115i 0.339581 + 0.940577i \(0.389715\pi\)
−0.339581 + 0.940577i \(0.610285\pi\)
\(164\) 190.806 48.7107i 1.16345 0.297017i
\(165\) −107.854 −0.653658
\(166\) 50.8075 6.38294i 0.306069 0.0384514i
\(167\) 259.352i 1.55301i −0.630113 0.776503i \(-0.716992\pi\)
0.630113 0.776503i \(-0.283008\pi\)
\(168\) 0 0
\(169\) −137.337 −0.812643
\(170\) 29.8853 + 237.884i 0.175796 + 1.39932i
\(171\) 21.7988i 0.127478i
\(172\) −69.8379 273.564i −0.406034 1.59049i
\(173\) 46.0046 0.265923 0.132961 0.991121i \(-0.457551\pi\)
0.132961 + 0.991121i \(0.457551\pi\)
\(174\) −29.5577 + 3.71333i −0.169872 + 0.0213410i
\(175\) 0 0
\(176\) 115.858 + 212.128i 0.658286 + 1.20527i
\(177\) −132.898 −0.750834
\(178\) 24.1122 + 191.931i 0.135462 + 1.07826i
\(179\) 56.0284i 0.313008i −0.987677 0.156504i \(-0.949978\pi\)
0.987677 0.156504i \(-0.0500224\pi\)
\(180\) 47.9269 12.2352i 0.266261 0.0679733i
\(181\) −90.7676 −0.501478 −0.250739 0.968055i \(-0.580674\pi\)
−0.250739 + 0.968055i \(0.580674\pi\)
\(182\) 0 0
\(183\) 192.532i 1.05209i
\(184\) 188.415 74.1487i 1.02399 0.402982i
\(185\) −92.5985 −0.500532
\(186\) −7.20729 57.3693i −0.0387489 0.308437i
\(187\) 439.332i 2.34937i
\(188\) −49.6407 194.449i −0.264046 1.03431i
\(189\) 0 0
\(190\) 59.4359 7.46692i 0.312821 0.0392996i
\(191\) 147.135i 0.770342i 0.922845 + 0.385171i \(0.125858\pi\)
−0.922845 + 0.385171i \(0.874142\pi\)
\(192\) −75.5483 81.1200i −0.393481 0.422500i
\(193\) −231.648 −1.20025 −0.600124 0.799907i \(-0.704882\pi\)
−0.600124 + 0.799907i \(0.704882\pi\)
\(194\) −13.5095 107.534i −0.0696368 0.554301i
\(195\) 40.1742i 0.206021i
\(196\) 0 0
\(197\) 270.736 1.37429 0.687147 0.726519i \(-0.258863\pi\)
0.687147 + 0.726519i \(0.258863\pi\)
\(198\) −89.9325 + 11.2982i −0.454205 + 0.0570616i
\(199\) 339.228i 1.70466i 0.523000 + 0.852332i \(0.324813\pi\)
−0.523000 + 0.852332i \(0.675187\pi\)
\(200\) −23.4637 59.6221i −0.117318 0.298110i
\(201\) −155.511 −0.773687
\(202\) −24.2812 193.276i −0.120204 0.956810i
\(203\) 0 0
\(204\) 49.8390 + 195.226i 0.244309 + 0.956990i
\(205\) −202.932 −0.989913
\(206\) −122.156 + 15.3464i −0.592989 + 0.0744970i
\(207\) 75.9300i 0.366812i
\(208\) −79.0151 + 43.1559i −0.379880 + 0.207480i
\(209\) −109.768 −0.525207
\(210\) 0 0
\(211\) 160.362i 0.760008i 0.924985 + 0.380004i \(0.124077\pi\)
−0.924985 + 0.380004i \(0.875923\pi\)
\(212\) −388.324 + 99.1348i −1.83172 + 0.467617i
\(213\) 91.6461 0.430263
\(214\) −133.473 + 16.7682i −0.623708 + 0.0783562i
\(215\) 290.949i 1.35325i
\(216\) 38.6816 15.2228i 0.179082 0.0704758i
\(217\) 0 0
\(218\) −42.5706 338.858i −0.195278 1.55439i
\(219\) 56.8538i 0.259606i
\(220\) −61.6106 241.337i −0.280048 1.09699i
\(221\) 163.646 0.740479
\(222\) −77.2122 + 9.70015i −0.347803 + 0.0436944i
\(223\) 185.744i 0.832935i −0.909151 0.416467i \(-0.863268\pi\)
0.909151 0.416467i \(-0.136732\pi\)
\(224\) 0 0
\(225\) 24.0273 0.106788
\(226\) −5.97761 47.5811i −0.0264496 0.210536i
\(227\) 267.195i 1.17707i −0.808471 0.588536i \(-0.799704\pi\)
0.808471 0.588536i \(-0.200296\pi\)
\(228\) 48.7778 12.4524i 0.213938 0.0546158i
\(229\) 78.2349 0.341637 0.170819 0.985303i \(-0.445359\pi\)
0.170819 + 0.985303i \(0.445359\pi\)
\(230\) −207.028 + 26.0089i −0.900123 + 0.113082i
\(231\) 0 0
\(232\) −25.1937 64.0183i −0.108594 0.275941i
\(233\) 10.1047 0.0433676 0.0216838 0.999765i \(-0.493097\pi\)
0.0216838 + 0.999765i \(0.493097\pi\)
\(234\) −4.20844 33.4988i −0.0179848 0.143157i
\(235\) 206.807i 0.880029i
\(236\) −75.9169 297.377i −0.321682 1.26007i
\(237\) −28.0724 −0.118449
\(238\) 0 0
\(239\) 105.518i 0.441497i 0.975331 + 0.220749i \(0.0708500\pi\)
−0.975331 + 0.220749i \(0.929150\pi\)
\(240\) 54.7558 + 100.254i 0.228149 + 0.417724i
\(241\) 196.652 0.815985 0.407993 0.912985i \(-0.366229\pi\)
0.407993 + 0.912985i \(0.366229\pi\)
\(242\) 26.7270 + 212.745i 0.110442 + 0.879110i
\(243\) 15.5885i 0.0641500i
\(244\) 430.817 109.983i 1.76564 0.450749i
\(245\) 0 0
\(246\) −169.213 + 21.2582i −0.687857 + 0.0864153i
\(247\) 40.8874i 0.165536i
\(248\) 124.255 48.8991i 0.501026 0.197174i
\(249\) −44.3465 −0.178098
\(250\) 33.9206 + 270.005i 0.135683 + 1.08002i
\(251\) 318.909i 1.27056i −0.772284 0.635278i \(-0.780886\pi\)
0.772284 0.635278i \(-0.219114\pi\)
\(252\) 0 0
\(253\) 382.347 1.51125
\(254\) 13.8775 1.74342i 0.0546358 0.00686388i
\(255\) 207.633i 0.814245i
\(256\) 138.360 215.389i 0.540471 0.841363i
\(257\) 143.444 0.558147 0.279073 0.960270i \(-0.409973\pi\)
0.279073 + 0.960270i \(0.409973\pi\)
\(258\) 30.4784 + 242.605i 0.118133 + 0.940329i
\(259\) 0 0
\(260\) 89.8952 22.9492i 0.345751 0.0882662i
\(261\) 25.7990 0.0988466
\(262\) −180.212 + 22.6400i −0.687833 + 0.0864123i
\(263\) 203.715i 0.774582i −0.921957 0.387291i \(-0.873411\pi\)
0.921957 0.387291i \(-0.126589\pi\)
\(264\) −76.6546 194.782i −0.290358 0.737811i
\(265\) 413.002 1.55850
\(266\) 0 0
\(267\) 167.524i 0.627430i
\(268\) −88.8347 347.977i −0.331473 1.29842i
\(269\) 182.663 0.679044 0.339522 0.940598i \(-0.389735\pi\)
0.339522 + 0.940598i \(0.389735\pi\)
\(270\) −42.5030 + 5.33964i −0.157418 + 0.0197764i
\(271\) 289.203i 1.06717i −0.845747 0.533584i \(-0.820845\pi\)
0.845747 0.533584i \(-0.179155\pi\)
\(272\) −408.374 + 223.043i −1.50138 + 0.820011i
\(273\) 0 0
\(274\) −64.1048 510.268i −0.233959 1.86229i
\(275\) 120.990i 0.439965i
\(276\) −169.904 + 43.3745i −0.615593 + 0.157154i
\(277\) −289.032 −1.04344 −0.521719 0.853117i \(-0.674709\pi\)
−0.521719 + 0.853117i \(0.674709\pi\)
\(278\) 286.754 36.0248i 1.03149 0.129586i
\(279\) 50.0738i 0.179476i
\(280\) 0 0
\(281\) −145.700 −0.518504 −0.259252 0.965810i \(-0.583476\pi\)
−0.259252 + 0.965810i \(0.583476\pi\)
\(282\) 21.6640 + 172.443i 0.0768228 + 0.611502i
\(283\) 292.987i 1.03529i 0.855595 + 0.517645i \(0.173191\pi\)
−0.855595 + 0.517645i \(0.826809\pi\)
\(284\) 52.3522 + 205.071i 0.184339 + 0.722079i
\(285\) −51.8776 −0.182027
\(286\) −168.684 + 21.1917i −0.589804 + 0.0740969i
\(287\) 0 0
\(288\) 56.1596 + 77.8595i 0.194999 + 0.270345i
\(289\) 556.773 1.92655
\(290\) 8.83713 + 70.3426i 0.0304729 + 0.242561i
\(291\) 93.8596i 0.322542i
\(292\) 127.218 32.4773i 0.435678 0.111224i
\(293\) 47.6676 0.162688 0.0813440 0.996686i \(-0.474079\pi\)
0.0813440 + 0.996686i \(0.474079\pi\)
\(294\) 0 0
\(295\) 316.275i 1.07212i
\(296\) −65.8124 167.232i −0.222339 0.564972i
\(297\) 78.4960 0.264296
\(298\) 1.80043 + 14.3312i 0.00604172 + 0.0480914i
\(299\) 142.420i 0.476321i
\(300\) 13.7255 + 53.7645i 0.0457515 + 0.179215i
\(301\) 0 0
\(302\) −343.441 + 43.1465i −1.13722 + 0.142869i
\(303\) 168.697i 0.556757i
\(304\) 55.7279 + 102.034i 0.183316 + 0.335637i
\(305\) −458.195 −1.50228
\(306\) −21.7505 173.132i −0.0710802 0.565791i
\(307\) 285.922i 0.931342i 0.884958 + 0.465671i \(0.154187\pi\)
−0.884958 + 0.465671i \(0.845813\pi\)
\(308\) 0 0
\(309\) 106.621 0.345053
\(310\) −136.530 + 17.1522i −0.440418 + 0.0553296i
\(311\) 68.5345i 0.220368i −0.993911 0.110184i \(-0.964856\pi\)
0.993911 0.110184i \(-0.0351440\pi\)
\(312\) 72.5541 28.5529i 0.232545 0.0915158i
\(313\) 220.945 0.705894 0.352947 0.935643i \(-0.385180\pi\)
0.352947 + 0.935643i \(0.385180\pi\)
\(314\) 59.3584 + 472.487i 0.189039 + 1.50473i
\(315\) 0 0
\(316\) −16.0362 62.8158i −0.0507474 0.198784i
\(317\) 209.864 0.662031 0.331015 0.943625i \(-0.392609\pi\)
0.331015 + 0.943625i \(0.392609\pi\)
\(318\) 344.377 43.2640i 1.08295 0.136050i
\(319\) 129.911i 0.407246i
\(320\) −193.052 + 179.793i −0.603289 + 0.561853i
\(321\) 116.500 0.362928
\(322\) 0 0
\(323\) 211.319i 0.654238i
\(324\) −34.8813 + 8.90480i −0.107658 + 0.0274839i
\(325\) 45.0674 0.138669
\(326\) 608.473 76.4423i 1.86648 0.234486i
\(327\) 295.766i 0.904483i
\(328\) −144.230 366.493i −0.439725 1.11736i
\(329\) 0 0
\(330\) 26.8879 + 214.025i 0.0814784 + 0.648560i
\(331\) 37.7245i 0.113971i 0.998375 + 0.0569856i \(0.0181489\pi\)
−0.998375 + 0.0569856i \(0.981851\pi\)
\(332\) −25.3326 99.2313i −0.0763031 0.298889i
\(333\) 67.3934 0.202382
\(334\) −514.659 + 64.6564i −1.54089 + 0.193582i
\(335\) 370.091i 1.10475i
\(336\) 0 0
\(337\) −323.798 −0.960826 −0.480413 0.877042i \(-0.659513\pi\)
−0.480413 + 0.877042i \(0.659513\pi\)
\(338\) 34.2380 + 272.531i 0.101296 + 0.806305i
\(339\) 41.5304i 0.122509i
\(340\) 464.606 118.609i 1.36649 0.348849i
\(341\) 252.148 0.739436
\(342\) −43.2576 + 5.43444i −0.126484 + 0.0158902i
\(343\) 0 0
\(344\) −525.451 + 206.786i −1.52747 + 0.601122i
\(345\) 180.701 0.523771
\(346\) −11.4690 91.2917i −0.0331473 0.263849i
\(347\) 580.940i 1.67418i 0.547065 + 0.837090i \(0.315745\pi\)
−0.547065 + 0.837090i \(0.684255\pi\)
\(348\) 14.7375 + 57.7287i 0.0423491 + 0.165887i
\(349\) −240.951 −0.690405 −0.345203 0.938528i \(-0.612190\pi\)
−0.345203 + 0.938528i \(0.612190\pi\)
\(350\) 0 0
\(351\) 29.2388i 0.0833015i
\(352\) 392.063 282.793i 1.11382 0.803389i
\(353\) 367.181 1.04017 0.520087 0.854113i \(-0.325900\pi\)
0.520087 + 0.854113i \(0.325900\pi\)
\(354\) 33.1314 + 263.722i 0.0935914 + 0.744978i
\(355\) 218.103i 0.614374i
\(356\) 374.857 95.6967i 1.05297 0.268811i
\(357\) 0 0
\(358\) −111.183 + 13.9679i −0.310567 + 0.0390164i
\(359\) 243.016i 0.676925i −0.940980 0.338463i \(-0.890093\pi\)
0.940980 0.338463i \(-0.109907\pi\)
\(360\) −36.2277 92.0560i −0.100633 0.255711i
\(361\) 308.201 0.853743
\(362\) 22.6283 + 180.119i 0.0625092 + 0.497567i
\(363\) 185.690i 0.511544i
\(364\) 0 0
\(365\) −135.303 −0.370693
\(366\) −382.061 + 47.9983i −1.04388 + 0.131143i
\(367\) 646.859i 1.76256i 0.472597 + 0.881279i \(0.343317\pi\)
−0.472597 + 0.881279i \(0.656683\pi\)
\(368\) −194.113 355.405i −0.527480 0.965775i
\(369\) 147.694 0.400256
\(370\) 23.0848 + 183.753i 0.0623913 + 0.496629i
\(371\) 0 0
\(372\) −112.047 + 28.6043i −0.301202 + 0.0768933i
\(373\) 250.103 0.670518 0.335259 0.942126i \(-0.391176\pi\)
0.335259 + 0.942126i \(0.391176\pi\)
\(374\) −871.811 + 109.525i −2.33105 + 0.292849i
\(375\) 235.669i 0.628451i
\(376\) −373.490 + 146.983i −0.993325 + 0.390913i
\(377\) 48.3904 0.128357
\(378\) 0 0
\(379\) 410.032i 1.08188i 0.841062 + 0.540939i \(0.181931\pi\)
−0.841062 + 0.540939i \(0.818069\pi\)
\(380\) −29.6347 116.083i −0.0779861 0.305482i
\(381\) −12.1127 −0.0317919
\(382\) 291.976 36.6808i 0.764334 0.0960231i
\(383\) 674.627i 1.76143i 0.473647 + 0.880715i \(0.342937\pi\)
−0.473647 + 0.880715i \(0.657063\pi\)
\(384\) −142.140 + 170.141i −0.370157 + 0.443077i
\(385\) 0 0
\(386\) 57.7497 + 459.682i 0.149611 + 1.19089i
\(387\) 211.754i 0.547167i
\(388\) −210.024 + 53.6167i −0.541298 + 0.138187i
\(389\) −386.485 −0.993534 −0.496767 0.867884i \(-0.665480\pi\)
−0.496767 + 0.867884i \(0.665480\pi\)
\(390\) −79.7217 + 10.0154i −0.204415 + 0.0256806i
\(391\) 736.070i 1.88253i
\(392\) 0 0
\(393\) 157.295 0.400242
\(394\) −67.4944 537.249i −0.171306 1.36358i
\(395\) 66.8078i 0.169134i
\(396\) 44.8403 + 175.646i 0.113233 + 0.443549i
\(397\) 502.153 1.26487 0.632435 0.774613i \(-0.282056\pi\)
0.632435 + 0.774613i \(0.282056\pi\)
\(398\) 673.165 84.5696i 1.69137 0.212486i
\(399\) 0 0
\(400\) −112.465 + 61.4251i −0.281162 + 0.153563i
\(401\) −70.7612 −0.176462 −0.0882309 0.996100i \(-0.528121\pi\)
−0.0882309 + 0.996100i \(0.528121\pi\)
\(402\) 38.7689 + 308.597i 0.0964401 + 0.767653i
\(403\) 93.9221i 0.233057i
\(404\) −377.483 + 96.3672i −0.934364 + 0.238533i
\(405\) 37.0980 0.0916000
\(406\) 0 0
\(407\) 339.361i 0.833810i
\(408\) 374.982 147.570i 0.919073 0.361692i
\(409\) −15.0088 −0.0366962 −0.0183481 0.999832i \(-0.505841\pi\)
−0.0183481 + 0.999832i \(0.505841\pi\)
\(410\) 50.5910 + 402.699i 0.123393 + 0.982192i
\(411\) 445.378i 1.08365i
\(412\) 60.9068 + 238.580i 0.147832 + 0.579078i
\(413\) 0 0
\(414\) 150.676 18.9293i 0.363951 0.0457230i
\(415\) 105.537i 0.254307i
\(416\) 105.337 + 146.039i 0.253214 + 0.351055i
\(417\) −250.288 −0.600212
\(418\) 27.3652 + 217.824i 0.0654671 + 0.521111i
\(419\) 20.8129i 0.0496729i −0.999692 0.0248364i \(-0.992093\pi\)
0.999692 0.0248364i \(-0.00790650\pi\)
\(420\) 0 0
\(421\) 101.765 0.241723 0.120862 0.992669i \(-0.461434\pi\)
0.120862 + 0.992669i \(0.461434\pi\)
\(422\) 318.222 39.9782i 0.754081 0.0947350i
\(423\) 150.514i 0.355826i
\(424\) 293.532 + 745.877i 0.692293 + 1.75914i
\(425\) 232.922 0.548053
\(426\) −22.8473 181.863i −0.0536323 0.426907i
\(427\) 0 0
\(428\) 66.5498 + 260.685i 0.155490 + 0.609076i
\(429\) 147.233 0.343200
\(430\) 577.361 72.5337i 1.34270 0.168683i
\(431\) 446.365i 1.03565i −0.855486 0.517825i \(-0.826742\pi\)
0.855486 0.517825i \(-0.173258\pi\)
\(432\) −39.8514 72.9648i −0.0922486 0.168900i
\(433\) −70.4995 −0.162816 −0.0814082 0.996681i \(-0.525942\pi\)
−0.0814082 + 0.996681i \(0.525942\pi\)
\(434\) 0 0
\(435\) 61.3974i 0.141143i
\(436\) −661.817 + 168.954i −1.51793 + 0.387510i
\(437\) 183.909 0.420845
\(438\) −112.821 + 14.1736i −0.257582 + 0.0323599i
\(439\) 117.803i 0.268343i −0.990958 0.134172i \(-0.957163\pi\)
0.990958 0.134172i \(-0.0428373\pi\)
\(440\) −463.550 + 182.425i −1.05352 + 0.414603i
\(441\) 0 0
\(442\) −40.7969 324.739i −0.0923007 0.734704i
\(443\) 398.375i 0.899266i −0.893213 0.449633i \(-0.851555\pi\)
0.893213 0.449633i \(-0.148445\pi\)
\(444\) 38.4980 + 150.802i 0.0867072 + 0.339644i
\(445\) −398.679 −0.895908
\(446\) −368.592 + 46.3061i −0.826438 + 0.103825i
\(447\) 12.5088i 0.0279839i
\(448\) 0 0
\(449\) 171.356 0.381640 0.190820 0.981625i \(-0.438885\pi\)
0.190820 + 0.981625i \(0.438885\pi\)
\(450\) −5.99001 47.6799i −0.0133111 0.105955i
\(451\) 743.719i 1.64904i
\(452\) −92.9299 + 23.7239i −0.205597 + 0.0524866i
\(453\) 299.767 0.661737
\(454\) −530.223 + 66.6118i −1.16789 + 0.146722i
\(455\) 0 0
\(456\) −36.8709 93.6903i −0.0808572 0.205461i
\(457\) −375.430 −0.821511 −0.410755 0.911746i \(-0.634735\pi\)
−0.410755 + 0.911746i \(0.634735\pi\)
\(458\) −19.5039 155.249i −0.0425850 0.338973i
\(459\) 151.115i 0.329228i
\(460\) 103.224 + 404.343i 0.224401 + 0.879007i
\(461\) 353.738 0.767328 0.383664 0.923473i \(-0.374662\pi\)
0.383664 + 0.923473i \(0.374662\pi\)
\(462\) 0 0
\(463\) 741.091i 1.60063i 0.599581 + 0.800314i \(0.295334\pi\)
−0.599581 + 0.800314i \(0.704666\pi\)
\(464\) −120.757 + 65.9543i −0.260252 + 0.142143i
\(465\) 119.168 0.256274
\(466\) −2.51909 20.0517i −0.00540577 0.0430294i
\(467\) 390.491i 0.836169i −0.908408 0.418085i \(-0.862702\pi\)
0.908408 0.418085i \(-0.137298\pi\)
\(468\) −65.4259 + 16.7025i −0.139799 + 0.0356891i
\(469\) 0 0
\(470\) 410.388 51.5569i 0.873165 0.109695i
\(471\) 412.402i 0.875588i
\(472\) −571.188 + 224.785i −1.21014 + 0.476240i
\(473\) −1066.29 −2.25431
\(474\) 6.99845 + 55.7069i 0.0147647 + 0.117525i
\(475\) 58.1964i 0.122519i
\(476\) 0 0
\(477\) −300.584 −0.630155
\(478\) 209.390 26.3056i 0.438054 0.0550326i
\(479\) 171.800i 0.358664i 0.983789 + 0.179332i \(0.0573936\pi\)
−0.983789 + 0.179332i \(0.942606\pi\)
\(480\) 185.293 133.651i 0.386027 0.278439i
\(481\) 126.408 0.262802
\(482\) −49.0254 390.237i −0.101713 0.809621i
\(483\) 0 0
\(484\) 415.508 106.074i 0.858487 0.219162i
\(485\) 223.371 0.460558
\(486\) 30.9338 3.88620i 0.0636497 0.00799630i
\(487\) 104.317i 0.214204i −0.994248 0.107102i \(-0.965843\pi\)
0.994248 0.107102i \(-0.0341571\pi\)
\(488\) −325.652 827.495i −0.667321 1.69569i
\(489\) −531.095 −1.08608
\(490\) 0 0
\(491\) 142.568i 0.290362i −0.989405 0.145181i \(-0.953624\pi\)
0.989405 0.145181i \(-0.0463764\pi\)
\(492\) 84.3694 + 330.486i 0.171483 + 0.671720i
\(493\) 250.097 0.507296
\(494\) −81.1370 + 10.1932i −0.164245 + 0.0206341i
\(495\) 186.808i 0.377390i
\(496\) −128.012 234.380i −0.258089 0.472541i
\(497\) 0 0
\(498\) 11.0556 + 88.0012i 0.0221999 + 0.176709i
\(499\) 560.161i 1.12257i −0.827624 0.561283i \(-0.810308\pi\)
0.827624 0.561283i \(-0.189692\pi\)
\(500\) 527.341 134.624i 1.05468 0.269249i
\(501\) 449.211 0.896629
\(502\) −632.844 + 79.5041i −1.26065 + 0.158375i
\(503\) 646.893i 1.28607i 0.765837 + 0.643035i \(0.222325\pi\)
−0.765837 + 0.643035i \(0.777675\pi\)
\(504\) 0 0
\(505\) 401.472 0.794995
\(506\) −95.3191 758.731i −0.188378 1.49947i
\(507\) 237.874i 0.469180i
\(508\) −6.91931 27.1039i −0.0136207 0.0533541i
\(509\) −724.945 −1.42425 −0.712126 0.702051i \(-0.752268\pi\)
−0.712126 + 0.702051i \(0.752268\pi\)
\(510\) −412.026 + 51.7628i −0.807895 + 0.101496i
\(511\) 0 0
\(512\) −461.911 220.866i −0.902171 0.431379i
\(513\) 37.7566 0.0735997
\(514\) −35.7605 284.650i −0.0695730 0.553794i
\(515\) 253.742i 0.492702i
\(516\) 473.827 120.963i 0.918270 0.234424i
\(517\) −757.918 −1.46599
\(518\) 0 0
\(519\) 79.6824i 0.153531i
\(520\) −67.9513 172.667i −0.130676 0.332052i
\(521\) −927.588 −1.78040 −0.890199 0.455571i \(-0.849435\pi\)
−0.890199 + 0.455571i \(0.849435\pi\)
\(522\) −6.43168 51.1955i −0.0123212 0.0980757i
\(523\) 462.924i 0.885131i −0.896736 0.442566i \(-0.854068\pi\)
0.896736 0.442566i \(-0.145932\pi\)
\(524\) 89.8538 + 351.970i 0.171477 + 0.671698i
\(525\) 0 0
\(526\) −404.253 + 50.7862i −0.768541 + 0.0965516i
\(527\) 485.419i 0.921098i
\(528\) −367.416 + 200.673i −0.695864 + 0.380062i
\(529\) −111.596 −0.210957
\(530\) −102.961 819.562i −0.194267 1.54634i
\(531\) 230.185i 0.433494i
\(532\) 0 0
\(533\) 277.026 0.519749
\(534\) −332.434 + 41.7636i −0.622536 + 0.0782090i
\(535\) 277.251i 0.518226i
\(536\) −668.380 + 263.034i −1.24698 + 0.490736i
\(537\) 97.0441 0.180715
\(538\) −45.5378 362.476i −0.0846428 0.673748i
\(539\) 0 0
\(540\) 21.1920 + 83.0118i 0.0392444 + 0.153726i
\(541\) 77.5318 0.143312 0.0716560 0.997429i \(-0.477172\pi\)
0.0716560 + 0.997429i \(0.477172\pi\)
\(542\) −573.894 + 72.0982i −1.05885 + 0.133022i
\(543\) 157.214i 0.289529i
\(544\) 544.415 + 754.774i 1.00076 + 1.38745i
\(545\) 703.875 1.29151
\(546\) 0 0
\(547\) 791.000i 1.44607i −0.690812 0.723035i \(-0.742747\pi\)
0.690812 0.723035i \(-0.257253\pi\)
\(548\) −996.595 + 254.419i −1.81860 + 0.464269i
\(549\) 333.476 0.607424
\(550\) −240.093 + 30.1629i −0.436533 + 0.0548416i
\(551\) 62.4874i 0.113407i
\(552\) 128.429 + 326.344i 0.232662 + 0.591203i
\(553\) 0 0
\(554\) 72.0557 + 573.556i 0.130064 + 1.03530i
\(555\) 160.385i 0.288983i
\(556\) −142.975 560.054i −0.257150 1.00729i
\(557\) 422.621 0.758745 0.379373 0.925244i \(-0.376140\pi\)
0.379373 + 0.925244i \(0.376140\pi\)
\(558\) 99.3666 12.4834i 0.178076 0.0223717i
\(559\) 397.180i 0.710520i
\(560\) 0 0
\(561\) 760.945 1.35641
\(562\) 36.3229 + 289.127i 0.0646315 + 0.514461i
\(563\) 83.1996i 0.147779i 0.997266 + 0.0738895i \(0.0235412\pi\)
−0.997266 + 0.0738895i \(0.976459\pi\)
\(564\) 336.796 85.9803i 0.597157 0.152447i
\(565\) 98.8356 0.174930
\(566\) 581.404 73.0417i 1.02722 0.129049i
\(567\) 0 0
\(568\) 393.891 155.012i 0.693470 0.272908i
\(569\) 183.560 0.322601 0.161300 0.986905i \(-0.448431\pi\)
0.161300 + 0.986905i \(0.448431\pi\)
\(570\) 12.9331 + 102.946i 0.0226896 + 0.180607i
\(571\) 670.736i 1.17467i 0.809344 + 0.587334i \(0.199823\pi\)
−0.809344 + 0.587334i \(0.800177\pi\)
\(572\) 84.1058 + 329.454i 0.147038 + 0.575968i
\(573\) −254.846 −0.444757
\(574\) 0 0
\(575\) 202.711i 0.352540i
\(576\) 140.504 130.854i 0.243930 0.227176i
\(577\) 466.399 0.808316 0.404158 0.914689i \(-0.367565\pi\)
0.404158 + 0.914689i \(0.367565\pi\)
\(578\) −138.803 1104.86i −0.240144 1.91152i
\(579\) 401.226i 0.692963i
\(580\) 137.385 35.0728i 0.236871 0.0604704i
\(581\) 0 0
\(582\) 186.255 23.3992i 0.320026 0.0402048i
\(583\) 1513.60i 2.59622i
\(584\) −96.1636 244.355i −0.164664 0.418417i
\(585\) 69.5837 0.118947
\(586\) −11.8835 94.5916i −0.0202790 0.161419i
\(587\) 275.534i 0.469393i 0.972069 + 0.234696i \(0.0754096\pi\)
−0.972069 + 0.234696i \(0.924590\pi\)
\(588\) 0 0
\(589\) 121.283 0.205914
\(590\) 627.616 78.8473i 1.06376 0.133639i
\(591\) 468.928i 0.793449i
\(592\) −315.448 + 172.289i −0.532851 + 0.291029i
\(593\) −62.1721 −0.104843 −0.0524217 0.998625i \(-0.516694\pi\)
−0.0524217 + 0.998625i \(0.516694\pi\)
\(594\) −19.5691 155.768i −0.0329445 0.262235i
\(595\) 0 0
\(596\) 27.9901 7.14556i 0.0469633 0.0119892i
\(597\) −587.561 −0.984189
\(598\) 282.618 35.5052i 0.472606 0.0593733i
\(599\) 201.686i 0.336705i −0.985727 0.168353i \(-0.946155\pi\)
0.985727 0.168353i \(-0.0538447\pi\)
\(600\) 103.269 40.6403i 0.172114 0.0677338i
\(601\) −129.981 −0.216274 −0.108137 0.994136i \(-0.534489\pi\)
−0.108137 + 0.994136i \(0.534489\pi\)
\(602\) 0 0
\(603\) 269.353i 0.446689i
\(604\) 171.240 + 670.769i 0.283510 + 1.11055i
\(605\) −441.913 −0.730435
\(606\) 334.763 42.0562i 0.552415 0.0693997i
\(607\) 1058.19i 1.74331i 0.490116 + 0.871657i \(0.336954\pi\)
−0.490116 + 0.871657i \(0.663046\pi\)
\(608\) 188.583 136.024i 0.310169 0.223723i
\(609\) 0 0
\(610\) 114.228 + 909.244i 0.187259 + 1.49056i
\(611\) 282.316i 0.462055i
\(612\) −338.141 + 86.3236i −0.552518 + 0.141052i
\(613\) −121.671 −0.198485 −0.0992425 0.995063i \(-0.531642\pi\)
−0.0992425 + 0.995063i \(0.531642\pi\)
\(614\) 567.384 71.2803i 0.924078 0.116092i
\(615\) 351.489i 0.571527i
\(616\) 0 0
\(617\) 18.6957 0.0303010 0.0151505 0.999885i \(-0.495177\pi\)
0.0151505 + 0.999885i \(0.495177\pi\)
\(618\) −26.5807 211.580i −0.0430109 0.342362i
\(619\) 58.1063i 0.0938712i 0.998898 + 0.0469356i \(0.0149456\pi\)
−0.998898 + 0.0469356i \(0.985054\pi\)
\(620\) 68.0737 + 266.654i 0.109796 + 0.430086i
\(621\) −131.515 −0.211779
\(622\) −136.000 + 17.0856i −0.218649 + 0.0274689i
\(623\) 0 0
\(624\) −74.7482 136.858i −0.119789 0.219324i
\(625\) −360.626 −0.577002
\(626\) −55.0815 438.443i −0.0879896 0.700388i
\(627\) 190.124i 0.303229i
\(628\) 922.805 235.582i 1.46943 0.375130i
\(629\) 653.315 1.03866
\(630\) 0 0
\(631\) 837.654i 1.32750i 0.747954 + 0.663751i \(0.231036\pi\)
−0.747954 + 0.663751i \(0.768964\pi\)
\(632\) −120.654 + 47.4822i −0.190908 + 0.0751300i
\(633\) −277.755 −0.438791
\(634\) −52.3190 416.454i −0.0825221 0.656867i
\(635\) 28.8263i 0.0453958i
\(636\) −171.706 672.597i −0.269979 1.05754i
\(637\) 0 0
\(638\) −257.796 + 32.3869i −0.404069 + 0.0507631i
\(639\) 158.736i 0.248413i
\(640\) 404.909 + 338.271i 0.632670 + 0.528549i
\(641\) 549.160 0.856724 0.428362 0.903607i \(-0.359091\pi\)
0.428362 + 0.903607i \(0.359091\pi\)
\(642\) −29.0434 231.183i −0.0452390 0.360098i
\(643\) 347.476i 0.540398i −0.962805 0.270199i \(-0.912911\pi\)
0.962805 0.270199i \(-0.0870895\pi\)
\(644\) 0 0
\(645\) −503.939 −0.781301
\(646\) −419.341 + 52.6818i −0.649135 + 0.0815507i
\(647\) 763.785i 1.18050i 0.807220 + 0.590251i \(0.200971\pi\)
−0.807220 + 0.590251i \(0.799029\pi\)
\(648\) 26.3666 + 66.9985i 0.0406892 + 0.103393i
\(649\) −1159.10 −1.78598
\(650\) −11.2353 89.4319i −0.0172851 0.137588i
\(651\) 0 0
\(652\) −303.385 1188.40i −0.465314 1.82270i
\(653\) 146.645 0.224571 0.112286 0.993676i \(-0.464183\pi\)
0.112286 + 0.993676i \(0.464183\pi\)
\(654\) 586.919 73.7344i 0.897429 0.112744i
\(655\) 374.337i 0.571507i
\(656\) −691.313 + 377.576i −1.05383 + 0.575573i
\(657\) 98.4737 0.149884
\(658\) 0 0
\(659\) 850.491i 1.29058i −0.763938 0.645289i \(-0.776737\pi\)
0.763938 0.645289i \(-0.223263\pi\)
\(660\) 418.008 106.713i 0.633345 0.161686i
\(661\) −63.0551 −0.0953935 −0.0476967 0.998862i \(-0.515188\pi\)
−0.0476967 + 0.998862i \(0.515188\pi\)
\(662\) 74.8605 9.40470i 0.113082 0.0142065i
\(663\) 283.443i 0.427516i
\(664\) −190.599 + 75.0084i −0.287047 + 0.112965i
\(665\) 0 0
\(666\) −16.8012 133.736i −0.0252270 0.200804i
\(667\) 217.657i 0.326323i
\(668\) 256.609 + 1005.17i 0.384145 + 1.50475i
\(669\) 321.719 0.480895
\(670\) 734.410 92.2637i 1.09613 0.137707i
\(671\) 1679.22i 2.50257i
\(672\) 0 0
\(673\) −371.202 −0.551563 −0.275781 0.961220i \(-0.588937\pi\)
−0.275781 + 0.961220i \(0.588937\pi\)
\(674\) 80.7229 + 642.546i 0.119767 + 0.953332i
\(675\) 41.6166i 0.0616542i
\(676\) 532.276 135.884i 0.787390 0.201012i
\(677\) −643.778 −0.950928 −0.475464 0.879735i \(-0.657720\pi\)
−0.475464 + 0.879735i \(0.657720\pi\)
\(678\) 82.4130 10.3535i 0.121553 0.0152707i
\(679\) 0 0
\(680\) −351.194 892.396i −0.516461 1.31235i
\(681\) 462.796 0.679583
\(682\) −62.8604 500.363i −0.0921707 0.733669i
\(683\) 446.466i 0.653684i 0.945079 + 0.326842i \(0.105984\pi\)
−0.945079 + 0.326842i \(0.894016\pi\)
\(684\) 21.5682 + 84.4856i 0.0315325 + 0.123517i
\(685\) 1059.93 1.54734
\(686\) 0 0
\(687\) 135.507i 0.197244i
\(688\) 541.341 + 991.154i 0.786833 + 1.44063i
\(689\) −563.797 −0.818283
\(690\) −45.0488 358.584i −0.0652881 0.519686i
\(691\) 361.559i 0.523240i −0.965171 0.261620i \(-0.915743\pi\)
0.965171 0.261620i \(-0.0842567\pi\)
\(692\) −178.300 + 45.5180i −0.257659 + 0.0657775i
\(693\) 0 0
\(694\) 1152.82 144.828i 1.66112 0.208686i
\(695\) 595.645i 0.857044i
\(696\) 110.883 43.6368i 0.159314 0.0626966i
\(697\) 1431.76 2.05417
\(698\) 60.0692 + 478.144i 0.0860590 + 0.685021i
\(699\) 17.5018i 0.0250383i
\(700\) 0 0
\(701\) −1266.88 −1.80724 −0.903621 0.428333i \(-0.859101\pi\)
−0.903621 + 0.428333i \(0.859101\pi\)
\(702\) 58.0216 7.28924i 0.0826519 0.0103835i
\(703\) 163.233i 0.232194i
\(704\) −658.916 707.511i −0.935960 1.00499i
\(705\) −358.200 −0.508085
\(706\) −91.5382 728.635i −0.129658 1.03206i
\(707\) 0 0
\(708\) 515.071 131.492i 0.727502 0.185723i
\(709\) −294.589 −0.415499 −0.207750 0.978182i \(-0.566614\pi\)
−0.207750 + 0.978182i \(0.566614\pi\)
\(710\) −432.803 + 54.3730i −0.609582 + 0.0765817i
\(711\) 48.6228i 0.0683866i
\(712\) −283.353 720.010i −0.397967 1.01125i
\(713\) −422.456 −0.592505
\(714\) 0 0
\(715\) 350.390i 0.490056i
\(716\) 55.4357 + 217.149i 0.0774242 + 0.303281i
\(717\) −182.762 −0.254898
\(718\) −482.242 + 60.5839i −0.671646 + 0.0843787i
\(719\) 1017.96i 1.41580i −0.706311 0.707902i \(-0.749642\pi\)
0.706311 0.707902i \(-0.250358\pi\)
\(720\) −173.644 + 94.8399i −0.241173 + 0.131722i
\(721\) 0 0
\(722\) −76.8346 611.595i −0.106419 0.847085i
\(723\) 340.612i 0.471109i
\(724\) 351.788 89.8074i 0.485895 0.124043i
\(725\) 68.8756 0.0950009
\(726\) −368.484 + 46.2926i −0.507554 + 0.0637639i
\(727\) 335.755i 0.461836i 0.972973 + 0.230918i \(0.0741730\pi\)
−0.972973 + 0.230918i \(0.925827\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) 33.7310 + 268.495i 0.0462068 + 0.367802i
\(731\) 2052.75i 2.80814i
\(732\) 190.496 + 746.197i 0.260240 + 1.01939i
\(733\) 1053.67 1.43747 0.718737 0.695282i \(-0.244720\pi\)
0.718737 + 0.695282i \(0.244720\pi\)
\(734\) 1283.63 161.262i 1.74881 0.219703i
\(735\) 0 0
\(736\) −656.875 + 473.800i −0.892493 + 0.643750i
\(737\) −1356.33 −1.84034
\(738\) −36.8202 293.085i −0.0498919 0.397134i
\(739\) 255.139i 0.345249i 0.984988 + 0.172624i \(0.0552247\pi\)
−0.984988 + 0.172624i \(0.944775\pi\)
\(740\) 358.884 91.6190i 0.484978 0.123809i
\(741\) 70.8191 0.0955723
\(742\) 0 0
\(743\) 534.992i 0.720044i 0.932944 + 0.360022i \(0.117231\pi\)
−0.932944 + 0.360022i \(0.882769\pi\)
\(744\) 84.6958 + 215.215i 0.113838 + 0.289268i
\(745\) −29.7689 −0.0399582
\(746\) −62.3507 496.305i −0.0835801 0.665289i
\(747\) 76.8103i 0.102825i
\(748\) 434.685 + 1702.72i 0.581129 + 2.27636i
\(749\) 0 0
\(750\) −467.662 + 58.7523i −0.623549 + 0.0783363i
\(751\) 287.539i 0.382874i 0.981505 + 0.191437i \(0.0613148\pi\)
−0.981505 + 0.191437i \(0.938685\pi\)
\(752\) 384.785 + 704.512i 0.511682 + 0.936851i
\(753\) 552.367 0.733556
\(754\) −12.0637 96.0260i −0.0159996 0.127355i
\(755\) 713.397i 0.944896i
\(756\) 0 0
\(757\) 80.9110 0.106884 0.0534418 0.998571i \(-0.482981\pi\)
0.0534418 + 0.998571i \(0.482981\pi\)
\(758\) 813.668 102.221i 1.07344 0.134856i
\(759\) 662.245i 0.872523i
\(760\) −222.968 + 87.7467i −0.293379 + 0.115456i
\(761\) 424.134 0.557338 0.278669 0.960387i \(-0.410107\pi\)
0.278669 + 0.960387i \(0.410107\pi\)
\(762\) 3.01970 + 24.0365i 0.00396286 + 0.0315440i
\(763\) 0 0
\(764\) −145.579 570.252i −0.190548 0.746403i
\(765\) 359.630 0.470105
\(766\) 1338.73 168.185i 1.74769 0.219562i
\(767\) 431.753i 0.562911i
\(768\) 373.065 + 239.647i 0.485761 + 0.312041i
\(769\) −1140.50 −1.48310 −0.741550 0.670898i \(-0.765909\pi\)
−0.741550 + 0.670898i \(0.765909\pi\)
\(770\) 0 0
\(771\) 248.452i 0.322246i
\(772\) 897.797 229.197i 1.16295 0.296888i
\(773\) 639.533 0.827339 0.413669 0.910427i \(-0.364247\pi\)
0.413669 + 0.910427i \(0.364247\pi\)
\(774\) −420.204 + 52.7901i −0.542899 + 0.0682043i
\(775\) 133.682i 0.172493i
\(776\) 158.756 + 403.405i 0.204582 + 0.519851i
\(777\) 0 0
\(778\) 96.3506 + 766.941i 0.123844 + 0.985786i
\(779\) 357.729i 0.459216i
\(780\) 39.7492 + 155.703i 0.0509605 + 0.199619i
\(781\) 799.317 1.02345
\(782\) 1460.66 183.502i 1.86785 0.234657i
\(783\) 44.6851i 0.0570691i
\(784\) 0 0
\(785\) −981.449 −1.25025
\(786\) −39.2137 312.137i −0.0498902 0.397121i
\(787\) 91.9978i 0.116897i 0.998290 + 0.0584484i \(0.0186153\pi\)
−0.998290 + 0.0584484i \(0.981385\pi\)
\(788\) −1049.29 + 267.872i −1.33159 + 0.339939i
\(789\) 352.845 0.447205
\(790\) 132.573 16.6552i 0.167815 0.0210825i
\(791\) 0 0
\(792\) 337.373 132.770i 0.425976 0.167638i
\(793\) 625.491 0.788765
\(794\) −125.187 996.474i −0.157666 1.25501i
\(795\) 715.341i 0.899800i
\(796\) −335.640 1314.75i −0.421658 1.65169i
\(797\) 453.032 0.568422 0.284211 0.958762i \(-0.408268\pi\)
0.284211 + 0.958762i \(0.408268\pi\)
\(798\) 0 0
\(799\) 1459.09i 1.82615i
\(800\) 149.930 + 207.862i 0.187412 + 0.259827i
\(801\) 290.160 0.362247
\(802\) 17.6408 + 140.419i 0.0219959 + 0.175086i
\(803\) 495.866i 0.617517i
\(804\) 602.714 153.866i 0.749645 0.191376i
\(805\) 0 0
\(806\) 186.379 23.4148i 0.231240 0.0290506i
\(807\) 316.381i 0.392046i
\(808\) 285.338 + 725.054i 0.353141 + 0.897344i
\(809\) 189.784 0.234590 0.117295 0.993097i \(-0.462578\pi\)
0.117295 + 0.993097i \(0.462578\pi\)
\(810\) −9.24853 73.6173i −0.0114179 0.0908856i
\(811\) 561.951i 0.692912i −0.938066 0.346456i \(-0.887385\pi\)
0.938066 0.346456i \(-0.112615\pi\)
\(812\) 0 0
\(813\) 500.914 0.616130
\(814\) −673.428 + 84.6026i −0.827307 + 0.103934i
\(815\) 1263.92i 1.55082i
\(816\) −386.322 707.325i −0.473434 0.866820i
\(817\) −512.886 −0.627767
\(818\) 3.74168 + 29.7834i 0.00457418 + 0.0364100i
\(819\) 0 0
\(820\) 786.504 200.786i 0.959151 0.244860i
\(821\) −935.573 −1.13955 −0.569776 0.821800i \(-0.692970\pi\)
−0.569776 + 0.821800i \(0.692970\pi\)
\(822\) 883.809 111.033i 1.07519 0.135076i
\(823\) 140.769i 0.171044i −0.996336 0.0855219i \(-0.972744\pi\)
0.996336 0.0855219i \(-0.0272558\pi\)
\(824\) 458.254 180.341i 0.556134 0.218861i
\(825\) 209.561 0.254014
\(826\) 0 0
\(827\) 134.169i 0.162236i −0.996705 0.0811179i \(-0.974151\pi\)
0.996705 0.0811179i \(-0.0258490\pi\)
\(828\) −75.1268 294.282i −0.0907329 0.355413i
\(829\) −684.732 −0.825973 −0.412986 0.910737i \(-0.635514\pi\)
−0.412986 + 0.910737i \(0.635514\pi\)
\(830\) 209.429 26.3105i 0.252324 0.0316994i
\(831\) 500.619i 0.602429i
\(832\) 263.539 245.438i 0.316754 0.294998i
\(833\) 0 0
\(834\) 62.3968 + 496.672i 0.0748163 + 0.595530i
\(835\) 1069.05i 1.28030i
\(836\) 425.429 108.607i 0.508886 0.129913i
\(837\) −86.7304 −0.103621
\(838\) −41.3012 + 5.18866i −0.0492855 + 0.00619172i
\(839\) 1310.69i 1.56221i 0.624402 + 0.781103i \(0.285343\pi\)
−0.624402 + 0.781103i \(0.714657\pi\)
\(840\) 0 0
\(841\) −767.046 −0.912064
\(842\) −25.3701 201.944i −0.0301308 0.239838i
\(843\) 252.359i 0.299359i
\(844\) −158.665 621.514i −0.187992 0.736391i
\(845\) −566.102 −0.669943
\(846\) −298.681 + 37.5232i −0.353051 + 0.0443537i
\(847\) 0 0
\(848\) 1406.94 768.433i 1.65913 0.906171i
\(849\) −507.469 −0.597725
\(850\) −58.0675 462.212i −0.0683148 0.543779i
\(851\) 568.575i 0.668126i
\(852\) −355.193 + 90.6766i −0.416893 + 0.106428i
\(853\) −404.635 −0.474367 −0.237183 0.971465i \(-0.576224\pi\)
−0.237183 + 0.971465i \(0.576224\pi\)
\(854\) 0 0
\(855\) 89.8546i 0.105093i
\(856\) 500.712 197.050i 0.584944 0.230199i
\(857\) 87.5256 0.102130 0.0510651 0.998695i \(-0.483738\pi\)
0.0510651 + 0.998695i \(0.483738\pi\)
\(858\) −36.7051 292.169i −0.0427799 0.340523i
\(859\) 246.795i 0.287305i 0.989628 + 0.143652i \(0.0458847\pi\)
−0.989628 + 0.143652i \(0.954115\pi\)
\(860\) −287.872 1127.63i −0.334735 1.31120i
\(861\) 0 0
\(862\) −885.768 + 111.279i −1.02757 + 0.129094i
\(863\) 96.6734i 0.112020i −0.998430 0.0560101i \(-0.982162\pi\)
0.998430 0.0560101i \(-0.0178379\pi\)
\(864\) −134.857 + 97.2713i −0.156084 + 0.112583i
\(865\) 189.631 0.219227
\(866\) 17.5755 + 139.899i 0.0202951 + 0.161547i
\(867\) 964.359i 1.11229i
\(868\) 0 0
\(869\) −244.841 −0.281751
\(870\) −121.837 + 15.3064i −0.140043 + 0.0175935i
\(871\) 505.218i 0.580044i
\(872\) 500.264 + 1271.19i 0.573697 + 1.45779i
\(873\) −162.570 −0.186220
\(874\) −45.8485 364.950i −0.0524583 0.417563i
\(875\) 0 0
\(876\) 56.2524 + 220.348i 0.0642151 + 0.251539i
\(877\) −1301.53 −1.48408 −0.742038 0.670358i \(-0.766141\pi\)
−0.742038 + 0.670358i \(0.766141\pi\)
\(878\) −233.768 + 29.3682i −0.266250 + 0.0334490i
\(879\) 82.5627i 0.0939279i
\(880\) 477.568 + 874.391i 0.542691 + 0.993626i
\(881\) −1145.10 −1.29977 −0.649885 0.760032i \(-0.725183\pi\)
−0.649885 + 0.760032i \(0.725183\pi\)
\(882\) 0 0
\(883\) 1139.35i 1.29032i −0.764049 0.645158i \(-0.776792\pi\)
0.764049 0.645158i \(-0.223208\pi\)
\(884\) −634.242 + 161.915i −0.717469 + 0.183162i
\(885\) −547.804 −0.618988
\(886\) −790.535 + 99.3148i −0.892252 + 0.112093i
\(887\) 1063.01i 1.19844i 0.800585 + 0.599219i \(0.204522\pi\)
−0.800585 + 0.599219i \(0.795478\pi\)
\(888\) 289.654 113.990i 0.326187 0.128368i
\(889\) 0 0
\(890\) 99.3907 + 791.140i 0.111675 + 0.888921i
\(891\) 135.959i 0.152592i
\(892\) 183.780 + 719.889i 0.206031 + 0.807051i
\(893\) −364.559 −0.408241
\(894\) −24.8225 + 3.11844i −0.0277656 + 0.00348819i
\(895\) 230.949i 0.258044i
\(896\) 0 0
\(897\) −246.678 −0.275004
\(898\) −42.7191 340.040i −0.0475714 0.378664i
\(899\) 143.539i 0.159665i
\(900\) −93.1228 + 23.7732i −0.103470 + 0.0264147i
\(901\) −2913.88 −3.23405
\(902\) −1475.84 + 185.409i −1.63618 + 0.205553i
\(903\) 0 0
\(904\) 70.2452 + 178.496i 0.0777049 + 0.197451i
\(905\) −374.144 −0.413419
\(906\) −74.7319 594.858i −0.0824855 0.656576i
\(907\) 737.550i 0.813175i 0.913612 + 0.406587i \(0.133281\pi\)
−0.913612 + 0.406587i \(0.866719\pi\)
\(908\) 264.369 + 1035.57i 0.291155 + 1.14049i
\(909\) −292.192 −0.321444
\(910\) 0 0
\(911\) 1529.04i 1.67842i 0.543807 + 0.839210i \(0.316982\pi\)
−0.543807 + 0.839210i \(0.683018\pi\)
\(912\) −176.727 + 96.5236i −0.193780 + 0.105837i
\(913\) −386.780 −0.423637
\(914\) 93.5947 + 745.005i 0.102401 + 0.815103i
\(915\) 793.618i 0.867342i
\(916\) −303.215 + 77.4073i −0.331021 + 0.0845058i
\(917\) 0 0
\(918\) 299.874 37.6731i 0.326660 0.0410382i
\(919\) 637.406i 0.693586i −0.937942 0.346793i \(-0.887271\pi\)
0.937942 0.346793i \(-0.112729\pi\)
\(920\) 776.646 305.641i 0.844180 0.332219i
\(921\) −495.231 −0.537710
\(922\) −88.1869 701.959i −0.0956474 0.761343i
\(923\) 297.736i 0.322574i
\(924\) 0 0
\(925\) 179.920 0.194509
\(926\) 1470.62 184.754i 1.58814 0.199518i
\(927\) 184.674i 0.199217i
\(928\) 160.984 + 223.188i 0.173475 + 0.240505i
\(929\) 39.1354 0.0421264 0.0210632 0.999778i \(-0.493295\pi\)
0.0210632 + 0.999778i \(0.493295\pi\)
\(930\) −29.7085 236.476i −0.0319446 0.254276i
\(931\) 0 0
\(932\) −39.1626 + 9.99777i −0.0420200 + 0.0107272i
\(933\) 118.705 0.127230
\(934\) −774.891 + 97.3493i −0.829648 + 0.104228i
\(935\) 1810.93i 1.93682i
\(936\) 49.4551 + 125.667i 0.0528367 + 0.134260i
\(937\) 1699.52 1.81378 0.906892 0.421363i \(-0.138448\pi\)
0.906892 + 0.421363i \(0.138448\pi\)
\(938\) 0 0
\(939\) 382.687i 0.407548i
\(940\) −204.619 801.521i −0.217680 0.852681i
\(941\) −647.545 −0.688145 −0.344073 0.938943i \(-0.611807\pi\)
−0.344073 + 0.938943i \(0.611807\pi\)
\(942\) −818.371 + 102.812i −0.868759 + 0.109142i
\(943\) 1246.05i 1.32137i
\(944\) 588.462 + 1077.43i 0.623371 + 1.14134i
\(945\) 0 0
\(946\) 265.826 + 2115.95i 0.281000 + 2.23673i
\(947\) 887.073i 0.936719i 0.883538 + 0.468360i \(0.155155\pi\)
−0.883538 + 0.468360i \(0.844845\pi\)
\(948\) 108.800 27.7755i 0.114768 0.0292990i
\(949\) 184.704 0.194631
\(950\) −115.485 + 14.5083i −0.121563 + 0.0152719i
\(951\) 363.495i 0.382224i
\(952\) 0 0
\(953\) 160.697 0.168622 0.0843109 0.996439i \(-0.473131\pi\)
0.0843109 + 0.996439i \(0.473131\pi\)
\(954\) 74.9355 + 596.479i 0.0785487 + 0.625240i
\(955\) 606.492i 0.635070i
\(956\) −104.402 408.955i −0.109207 0.427778i
\(957\) 225.013 0.235123
\(958\) 340.920 42.8297i 0.355867 0.0447074i
\(959\) 0 0
\(960\) −311.410 334.376i −0.324386 0.348309i
\(961\) 682.401 0.710095
\(962\) −31.5135 250.844i −0.0327583 0.260753i
\(963\) 201.784i 0.209537i
\(964\) −762.166 + 194.572i −0.790628 + 0.201838i
\(965\) −954.852 −0.989484
\(966\) 0 0
\(967\) 333.092i 0.344459i −0.985057 0.172230i \(-0.944903\pi\)
0.985057 0.172230i \(-0.0550971\pi\)
\(968\) −314.080 798.090i −0.324463 0.824473i
\(969\) 366.015 0.377724
\(970\) −55.6863 443.257i −0.0574085 0.456966i
\(971\) 487.020i 0.501566i −0.968043 0.250783i \(-0.919312\pi\)
0.968043 0.250783i \(-0.0806880\pi\)
\(972\) −15.4236 60.4162i −0.0158679 0.0621566i
\(973\) 0 0
\(974\) −207.008 + 26.0063i −0.212533 + 0.0267005i
\(975\) 78.0591i 0.0800606i
\(976\) −1560.90 + 852.520i −1.59928 + 0.873483i
\(977\) 1664.91 1.70410 0.852050 0.523460i \(-0.175359\pi\)
0.852050 + 0.523460i \(0.175359\pi\)
\(978\) 132.402 + 1053.91i 0.135380 + 1.07761i
\(979\) 1461.10i 1.49245i
\(980\) 0 0
\(981\) −512.282 −0.522204
\(982\) −282.911 + 35.5421i −0.288097 + 0.0361935i
\(983\) 1495.73i 1.52160i −0.648987 0.760800i \(-0.724807\pi\)
0.648987 0.760800i \(-0.275193\pi\)
\(984\) 634.784 249.813i 0.645106 0.253875i
\(985\) 1115.97 1.13297
\(986\) −62.3491 496.292i −0.0632344 0.503339i
\(987\) 0 0
\(988\) 40.4549 + 158.467i 0.0409463 + 0.160392i
\(989\) 1786.49 1.80636
\(990\) −370.702 + 46.5712i −0.374446 + 0.0470416i
\(991\) 1417.01i 1.42988i −0.699188 0.714938i \(-0.746455\pi\)
0.699188 0.714938i \(-0.253545\pi\)
\(992\) −433.191 + 312.458i −0.436685 + 0.314978i
\(993\) −65.3407 −0.0658013
\(994\) 0 0
\(995\) 1398.30i 1.40533i
\(996\) 171.874 43.8774i 0.172564 0.0440536i
\(997\) −1705.20 −1.71034 −0.855168 0.518351i \(-0.826546\pi\)
−0.855168 + 0.518351i \(0.826546\pi\)
\(998\) −1111.58 + 139.648i −1.11381 + 0.139928i
\(999\) 116.729i 0.116846i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.3.g.h.295.10 yes 24
4.3 odd 2 inner 588.3.g.h.295.11 yes 24
7.6 odd 2 inner 588.3.g.h.295.9 24
28.27 even 2 inner 588.3.g.h.295.12 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
588.3.g.h.295.9 24 7.6 odd 2 inner
588.3.g.h.295.10 yes 24 1.1 even 1 trivial
588.3.g.h.295.11 yes 24 4.3 odd 2 inner
588.3.g.h.295.12 yes 24 28.27 even 2 inner