L(s) = 1 | + (−0.249 − 1.98i)2-s − 1.73i·3-s + (−3.87 + 0.989i)4-s − 4.12·5-s + (−3.43 + 0.431i)6-s + (2.92 + 7.44i)8-s − 2.99·9-s + (1.02 + 8.17i)10-s + 15.1i·11-s + (1.71 + 6.71i)12-s + 5.62·13-s + 7.13i·15-s + (14.0 − 7.66i)16-s + 29.0·17-s + (0.747 + 5.95i)18-s − 7.26i·19-s + ⋯ |
L(s) = 1 | + (−0.124 − 0.992i)2-s − 0.577i·3-s + (−0.968 + 0.247i)4-s − 0.824·5-s + (−0.572 + 0.0719i)6-s + (0.366 + 0.930i)8-s − 0.333·9-s + (0.102 + 0.817i)10-s + 1.37i·11-s + (0.142 + 0.559i)12-s + 0.432·13-s + 0.475i·15-s + (0.877 − 0.479i)16-s + 1.71·17-s + (0.0415 + 0.330i)18-s − 0.382i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.247 + 0.968i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.247 + 0.968i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.218354890\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.218354890\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.249 + 1.98i)T \) |
| 3 | \( 1 + 1.73iT \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + 4.12T + 25T^{2} \) |
| 11 | \( 1 - 15.1iT - 121T^{2} \) |
| 13 | \( 1 - 5.62T + 169T^{2} \) |
| 17 | \( 1 - 29.0T + 289T^{2} \) |
| 19 | \( 1 + 7.26iT - 361T^{2} \) |
| 23 | \( 1 + 25.3iT - 529T^{2} \) |
| 29 | \( 1 + 8.59T + 841T^{2} \) |
| 31 | \( 1 - 16.6iT - 961T^{2} \) |
| 37 | \( 1 + 22.4T + 1.36e3T^{2} \) |
| 41 | \( 1 - 49.2T + 1.68e3T^{2} \) |
| 43 | \( 1 - 70.5iT - 1.84e3T^{2} \) |
| 47 | \( 1 + 50.1iT - 2.20e3T^{2} \) |
| 53 | \( 1 - 100.T + 2.80e3T^{2} \) |
| 59 | \( 1 + 76.7iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 111.T + 3.72e3T^{2} \) |
| 67 | \( 1 - 89.7iT - 4.48e3T^{2} \) |
| 71 | \( 1 + 52.9iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 32.8T + 5.32e3T^{2} \) |
| 79 | \( 1 - 16.2iT - 6.24e3T^{2} \) |
| 83 | \( 1 + 25.6iT - 6.88e3T^{2} \) |
| 89 | \( 1 - 96.7T + 7.92e3T^{2} \) |
| 97 | \( 1 + 54.1T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.34024575959447863394641942294, −9.623320265491963322605800541993, −8.503198285632464246496385645657, −7.80526110144031629521885070348, −6.98038745351483869923721500490, −5.48441038355121936193877752425, −4.39875646003661238822689785614, −3.42537399924405413807764758666, −2.17568004902516932937927334080, −0.840145579518705191095586421371,
0.76992053487380635539541989036, 3.47224546873493154432994801366, 3.94979957505780923745055290114, 5.48407313353043420087863306921, 5.84958523891232855347871247230, 7.31164123987412413542625996759, 8.006734466117354765508753768033, 8.717484742594249290142560668120, 9.640695286960387567965996712808, 10.52196896395272574832222826945