Properties

Label 588.3.g.d.295.10
Level $588$
Weight $3$
Character 588.295
Analytic conductor $16.022$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [588,3,Mod(295,588)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(588, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("588.295"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 588.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,2,0,2,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.0218395444\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.489494783471841.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3 x^{11} + 7 x^{10} - 11 x^{9} + 18 x^{8} - 22 x^{7} + 33 x^{6} - 44 x^{5} + 72 x^{4} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{18} \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 295.10
Root \(-1.15503 + 0.816025i\) of defining polynomial
Character \(\chi\) \(=\) 588.295
Dual form 588.3.g.d.295.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.42562 + 1.40272i) q^{2} -1.73205i q^{3} +(0.0647610 + 3.99948i) q^{4} -1.94731 q^{5} +(2.42958 - 2.46924i) q^{6} +(-5.51781 + 5.79256i) q^{8} -3.00000 q^{9} +(-2.77611 - 2.73152i) q^{10} -1.01531i q^{11} +(6.92730 - 0.112169i) q^{12} -3.44342 q^{13} +3.37283i q^{15} +(-15.9916 + 0.518020i) q^{16} -26.4211 q^{17} +(-4.27685 - 4.20816i) q^{18} +33.7546i q^{19} +(-0.126110 - 7.78820i) q^{20} +(1.42420 - 1.44744i) q^{22} +2.98330i q^{23} +(10.0330 + 9.55714i) q^{24} -21.2080 q^{25} +(-4.90899 - 4.83015i) q^{26} +5.19615i q^{27} +30.3904 q^{29} +(-4.73114 + 4.80836i) q^{30} +0.713577i q^{31} +(-23.5245 - 21.6932i) q^{32} -1.75857 q^{33} +(-37.6663 - 37.0613i) q^{34} +(-0.194283 - 11.9984i) q^{36} -60.0588 q^{37} +(-47.3482 + 48.1210i) q^{38} +5.96418i q^{39} +(10.7449 - 11.2799i) q^{40} -2.67381 q^{41} +6.69857i q^{43} +(4.06071 - 0.0657526i) q^{44} +5.84192 q^{45} +(-4.18473 + 4.25304i) q^{46} -24.3012i q^{47} +(0.897237 + 27.6983i) q^{48} +(-30.2345 - 29.7489i) q^{50} +45.7626i q^{51} +(-0.222999 - 13.7719i) q^{52} -65.8324 q^{53} +(-7.28874 + 7.40772i) q^{54} +1.97712i q^{55} +58.4646 q^{57} +(43.3250 + 42.6291i) q^{58} -33.7709i q^{59} +(-13.4896 + 0.218428i) q^{60} +81.7452 q^{61} +(-1.00095 + 1.01729i) q^{62} +(-3.10744 - 63.9245i) q^{64} +6.70539 q^{65} +(-2.50705 - 2.46678i) q^{66} +62.6486i q^{67} +(-1.71106 - 105.670i) q^{68} +5.16722 q^{69} +132.221i q^{71} +(16.5534 - 17.3777i) q^{72} -100.072 q^{73} +(-85.6207 - 84.2455i) q^{74} +36.7333i q^{75} +(-135.001 + 2.18598i) q^{76} +(-8.36606 + 8.50263i) q^{78} -97.5751i q^{79} +(31.1406 - 1.00874i) q^{80} +9.00000 q^{81} +(-3.81183 - 3.75061i) q^{82} +87.9287i q^{83} +51.4499 q^{85} +(-9.39621 + 9.54958i) q^{86} -52.6377i q^{87} +(5.88125 + 5.60230i) q^{88} +110.387 q^{89} +(8.32833 + 8.19457i) q^{90} +(-11.9316 + 0.193201i) q^{92} +1.23595 q^{93} +(34.0878 - 34.6442i) q^{94} -65.7305i q^{95} +(-37.5738 + 40.7457i) q^{96} -35.6839 q^{97} +3.04593i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{2} + 2 q^{4} - 8 q^{5} + 12 q^{6} - 10 q^{8} - 36 q^{9} - 28 q^{10} - 24 q^{12} + 24 q^{13} - 14 q^{16} + 40 q^{17} - 6 q^{18} + 20 q^{20} - 88 q^{22} + 36 q^{24} + 180 q^{25} - 100 q^{26} + 72 q^{29}+ \cdots + 264 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.42562 + 1.40272i 0.712808 + 0.701359i
\(3\) 1.73205i 0.577350i
\(4\) 0.0647610 + 3.99948i 0.0161903 + 0.999869i
\(5\) −1.94731 −0.389461 −0.194731 0.980857i \(-0.562383\pi\)
−0.194731 + 0.980857i \(0.562383\pi\)
\(6\) 2.42958 2.46924i 0.404930 0.411540i
\(7\) 0 0
\(8\) −5.51781 + 5.79256i −0.689727 + 0.724070i
\(9\) −3.00000 −0.333333
\(10\) −2.77611 2.73152i −0.277611 0.273152i
\(11\) 1.01531i 0.0923010i −0.998934 0.0461505i \(-0.985305\pi\)
0.998934 0.0461505i \(-0.0146954\pi\)
\(12\) 6.92730 0.112169i 0.577275 0.00934745i
\(13\) −3.44342 −0.264878 −0.132439 0.991191i \(-0.542281\pi\)
−0.132439 + 0.991191i \(0.542281\pi\)
\(14\) 0 0
\(15\) 3.37283i 0.224856i
\(16\) −15.9916 + 0.518020i −0.999476 + 0.0323763i
\(17\) −26.4211 −1.55418 −0.777090 0.629389i \(-0.783305\pi\)
−0.777090 + 0.629389i \(0.783305\pi\)
\(18\) −4.27685 4.20816i −0.237603 0.233786i
\(19\) 33.7546i 1.77656i 0.459306 + 0.888278i \(0.348098\pi\)
−0.459306 + 0.888278i \(0.651902\pi\)
\(20\) −0.126110 7.78820i −0.00630548 0.389410i
\(21\) 0 0
\(22\) 1.42420 1.44744i 0.0647362 0.0657929i
\(23\) 2.98330i 0.129709i 0.997895 + 0.0648543i \(0.0206583\pi\)
−0.997895 + 0.0648543i \(0.979342\pi\)
\(24\) 10.0330 + 9.55714i 0.418042 + 0.398214i
\(25\) −21.2080 −0.848320
\(26\) −4.90899 4.83015i −0.188807 0.185775i
\(27\) 5.19615i 0.192450i
\(28\) 0 0
\(29\) 30.3904 1.04794 0.523972 0.851736i \(-0.324450\pi\)
0.523972 + 0.851736i \(0.324450\pi\)
\(30\) −4.73114 + 4.80836i −0.157705 + 0.160279i
\(31\) 0.713577i 0.0230186i 0.999934 + 0.0115093i \(0.00366361\pi\)
−0.999934 + 0.0115093i \(0.996336\pi\)
\(32\) −23.5245 21.6932i −0.735142 0.677914i
\(33\) −1.75857 −0.0532900
\(34\) −37.6663 37.0613i −1.10783 1.09004i
\(35\) 0 0
\(36\) −0.194283 11.9984i −0.00539675 0.333290i
\(37\) −60.0588 −1.62321 −0.811605 0.584207i \(-0.801406\pi\)
−0.811605 + 0.584207i \(0.801406\pi\)
\(38\) −47.3482 + 48.1210i −1.24600 + 1.26634i
\(39\) 5.96418i 0.152928i
\(40\) 10.7449 11.2799i 0.268622 0.281997i
\(41\) −2.67381 −0.0652149 −0.0326075 0.999468i \(-0.510381\pi\)
−0.0326075 + 0.999468i \(0.510381\pi\)
\(42\) 0 0
\(43\) 6.69857i 0.155781i 0.996962 + 0.0778903i \(0.0248184\pi\)
−0.996962 + 0.0778903i \(0.975182\pi\)
\(44\) 4.06071 0.0657526i 0.0922889 0.00149438i
\(45\) 5.84192 0.129820
\(46\) −4.18473 + 4.25304i −0.0909723 + 0.0924573i
\(47\) 24.3012i 0.517048i −0.966005 0.258524i \(-0.916764\pi\)
0.966005 0.258524i \(-0.0832361\pi\)
\(48\) 0.897237 + 27.6983i 0.0186924 + 0.577048i
\(49\) 0 0
\(50\) −30.2345 29.7489i −0.604689 0.594977i
\(51\) 45.7626i 0.897307i
\(52\) −0.222999 13.7719i −0.00428845 0.264844i
\(53\) −65.8324 −1.24212 −0.621061 0.783763i \(-0.713298\pi\)
−0.621061 + 0.783763i \(0.713298\pi\)
\(54\) −7.28874 + 7.40772i −0.134977 + 0.137180i
\(55\) 1.97712i 0.0359477i
\(56\) 0 0
\(57\) 58.4646 1.02570
\(58\) 43.3250 + 42.6291i 0.746983 + 0.734985i
\(59\) 33.7709i 0.572388i −0.958172 0.286194i \(-0.907610\pi\)
0.958172 0.286194i \(-0.0923901\pi\)
\(60\) −13.4896 + 0.218428i −0.224826 + 0.00364047i
\(61\) 81.7452 1.34009 0.670043 0.742323i \(-0.266276\pi\)
0.670043 + 0.742323i \(0.266276\pi\)
\(62\) −1.00095 + 1.01729i −0.0161443 + 0.0164079i
\(63\) 0 0
\(64\) −3.10744 63.9245i −0.0485538 0.998821i
\(65\) 6.70539 0.103160
\(66\) −2.50705 2.46678i −0.0379855 0.0373754i
\(67\) 62.6486i 0.935054i 0.883979 + 0.467527i \(0.154855\pi\)
−0.883979 + 0.467527i \(0.845145\pi\)
\(68\) −1.71106 105.670i −0.0251626 1.55398i
\(69\) 5.16722 0.0748873
\(70\) 0 0
\(71\) 132.221i 1.86226i 0.364682 + 0.931132i \(0.381178\pi\)
−0.364682 + 0.931132i \(0.618822\pi\)
\(72\) 16.5534 17.3777i 0.229909 0.241357i
\(73\) −100.072 −1.37084 −0.685422 0.728146i \(-0.740382\pi\)
−0.685422 + 0.728146i \(0.740382\pi\)
\(74\) −85.6207 84.2455i −1.15704 1.13845i
\(75\) 36.7333i 0.489778i
\(76\) −135.001 + 2.18598i −1.77632 + 0.0287629i
\(77\) 0 0
\(78\) −8.36606 + 8.50263i −0.107257 + 0.109008i
\(79\) 97.5751i 1.23513i −0.786521 0.617564i \(-0.788120\pi\)
0.786521 0.617564i \(-0.211880\pi\)
\(80\) 31.1406 1.00874i 0.389257 0.0126093i
\(81\) 9.00000 0.111111
\(82\) −3.81183 3.75061i −0.0464857 0.0457391i
\(83\) 87.9287i 1.05938i 0.848191 + 0.529691i \(0.177692\pi\)
−0.848191 + 0.529691i \(0.822308\pi\)
\(84\) 0 0
\(85\) 51.4499 0.605293
\(86\) −9.39621 + 9.54958i −0.109258 + 0.111042i
\(87\) 52.6377i 0.605031i
\(88\) 5.88125 + 5.60230i 0.0668323 + 0.0636625i
\(89\) 110.387 1.24031 0.620154 0.784480i \(-0.287070\pi\)
0.620154 + 0.784480i \(0.287070\pi\)
\(90\) 8.32833 + 8.19457i 0.0925370 + 0.0910507i
\(91\) 0 0
\(92\) −11.9316 + 0.193201i −0.129692 + 0.00210002i
\(93\) 1.23595 0.0132898
\(94\) 34.0878 34.6442i 0.362636 0.368556i
\(95\) 65.7305i 0.691900i
\(96\) −37.5738 + 40.7457i −0.391394 + 0.424434i
\(97\) −35.6839 −0.367876 −0.183938 0.982938i \(-0.558884\pi\)
−0.183938 + 0.982938i \(0.558884\pi\)
\(98\) 0 0
\(99\) 3.04593i 0.0307670i
\(100\) −1.37345 84.8209i −0.0137345 0.848209i
\(101\) 56.6957 0.561344 0.280672 0.959804i \(-0.409443\pi\)
0.280672 + 0.959804i \(0.409443\pi\)
\(102\) −64.1921 + 65.2399i −0.629334 + 0.639607i
\(103\) 143.694i 1.39509i 0.716541 + 0.697545i \(0.245724\pi\)
−0.716541 + 0.697545i \(0.754276\pi\)
\(104\) 19.0001 19.9462i 0.182694 0.191790i
\(105\) 0 0
\(106\) −93.8518 92.3444i −0.885394 0.871173i
\(107\) 170.939i 1.59756i −0.601625 0.798779i \(-0.705480\pi\)
0.601625 0.798779i \(-0.294520\pi\)
\(108\) −20.7819 + 0.336508i −0.192425 + 0.00311582i
\(109\) 7.83710 0.0719000 0.0359500 0.999354i \(-0.488554\pi\)
0.0359500 + 0.999354i \(0.488554\pi\)
\(110\) −2.77334 + 2.81861i −0.0252122 + 0.0256238i
\(111\) 104.025i 0.937160i
\(112\) 0 0
\(113\) 179.807 1.59121 0.795607 0.605813i \(-0.207152\pi\)
0.795607 + 0.605813i \(0.207152\pi\)
\(114\) 83.3481 + 82.0094i 0.731124 + 0.719381i
\(115\) 5.80939i 0.0505165i
\(116\) 1.96811 + 121.546i 0.0169665 + 1.04781i
\(117\) 10.3303 0.0882928
\(118\) 47.3710 48.1443i 0.401449 0.408002i
\(119\) 0 0
\(120\) −19.5373 18.6107i −0.162811 0.155089i
\(121\) 119.969 0.991481
\(122\) 116.537 + 114.666i 0.955223 + 0.939881i
\(123\) 4.63118i 0.0376519i
\(124\) −2.85393 + 0.0462120i −0.0230156 + 0.000372677i
\(125\) 89.9811 0.719849
\(126\) 0 0
\(127\) 130.862i 1.03041i 0.857068 + 0.515204i \(0.172284\pi\)
−0.857068 + 0.515204i \(0.827716\pi\)
\(128\) 85.2381 95.4907i 0.665923 0.746021i
\(129\) 11.6023 0.0899400
\(130\) 9.55931 + 9.40578i 0.0735332 + 0.0723521i
\(131\) 190.151i 1.45154i −0.687939 0.725768i \(-0.741485\pi\)
0.687939 0.725768i \(-0.258515\pi\)
\(132\) −0.113887 7.03336i −0.000862779 0.0532830i
\(133\) 0 0
\(134\) −87.8784 + 89.3128i −0.655809 + 0.666514i
\(135\) 10.1185i 0.0749518i
\(136\) 145.787 153.046i 1.07196 1.12534i
\(137\) 248.425 1.81332 0.906662 0.421859i \(-0.138622\pi\)
0.906662 + 0.421859i \(0.138622\pi\)
\(138\) 7.36648 + 7.24816i 0.0533803 + 0.0525229i
\(139\) 88.3746i 0.635789i −0.948126 0.317894i \(-0.897024\pi\)
0.948126 0.317894i \(-0.102976\pi\)
\(140\) 0 0
\(141\) −42.0910 −0.298518
\(142\) −185.469 + 188.496i −1.30612 + 1.32744i
\(143\) 3.49614i 0.0244485i
\(144\) 47.9748 1.55406i 0.333159 0.0107921i
\(145\) −59.1794 −0.408133
\(146\) −142.664 140.372i −0.977148 0.961454i
\(147\) 0 0
\(148\) −3.88947 240.204i −0.0262802 1.62300i
\(149\) −89.3854 −0.599902 −0.299951 0.953955i \(-0.596970\pi\)
−0.299951 + 0.953955i \(0.596970\pi\)
\(150\) −51.5265 + 52.3676i −0.343510 + 0.349117i
\(151\) 197.560i 1.30834i 0.756346 + 0.654172i \(0.226983\pi\)
−0.756346 + 0.654172i \(0.773017\pi\)
\(152\) −195.525 186.251i −1.28635 1.22534i
\(153\) 79.2632 0.518060
\(154\) 0 0
\(155\) 1.38955i 0.00896486i
\(156\) −23.8536 + 0.386246i −0.152908 + 0.00247594i
\(157\) −195.026 −1.24220 −0.621101 0.783731i \(-0.713314\pi\)
−0.621101 + 0.783731i \(0.713314\pi\)
\(158\) 136.870 139.105i 0.866268 0.880409i
\(159\) 114.025i 0.717139i
\(160\) 45.8095 + 42.2434i 0.286309 + 0.264021i
\(161\) 0 0
\(162\) 12.8305 + 12.6245i 0.0792009 + 0.0779288i
\(163\) 119.613i 0.733823i 0.930256 + 0.366911i \(0.119585\pi\)
−0.930256 + 0.366911i \(0.880415\pi\)
\(164\) −0.173159 10.6938i −0.00105585 0.0652064i
\(165\) 3.42447 0.0207544
\(166\) −123.339 + 125.353i −0.743007 + 0.755136i
\(167\) 72.7649i 0.435718i −0.975980 0.217859i \(-0.930093\pi\)
0.975980 0.217859i \(-0.0699073\pi\)
\(168\) 0 0
\(169\) −157.143 −0.929839
\(170\) 73.3478 + 72.1697i 0.431458 + 0.424528i
\(171\) 101.264i 0.592185i
\(172\) −26.7908 + 0.433806i −0.155760 + 0.00252213i
\(173\) −9.89253 −0.0571822 −0.0285911 0.999591i \(-0.509102\pi\)
−0.0285911 + 0.999591i \(0.509102\pi\)
\(174\) 73.8358 75.0411i 0.424344 0.431271i
\(175\) 0 0
\(176\) 0.525952 + 16.2365i 0.00298836 + 0.0922526i
\(177\) −58.4929 −0.330468
\(178\) 157.370 + 154.842i 0.884101 + 0.869901i
\(179\) 251.994i 1.40779i −0.710305 0.703895i \(-0.751443\pi\)
0.710305 0.703895i \(-0.248557\pi\)
\(180\) 0.378329 + 23.3646i 0.00210183 + 0.129803i
\(181\) 299.047 1.65219 0.826097 0.563528i \(-0.190556\pi\)
0.826097 + 0.563528i \(0.190556\pi\)
\(182\) 0 0
\(183\) 141.587i 0.773699i
\(184\) −17.2809 16.4613i −0.0939181 0.0894635i
\(185\) 116.953 0.632177
\(186\) 1.76199 + 1.73369i 0.00947308 + 0.00932093i
\(187\) 26.8256i 0.143452i
\(188\) 97.1923 1.57377i 0.516980 0.00837114i
\(189\) 0 0
\(190\) 92.2014 93.7064i 0.485270 0.493192i
\(191\) 121.179i 0.634444i 0.948351 + 0.317222i \(0.102750\pi\)
−0.948351 + 0.317222i \(0.897250\pi\)
\(192\) −110.721 + 5.38225i −0.576669 + 0.0280325i
\(193\) 110.062 0.570270 0.285135 0.958487i \(-0.407962\pi\)
0.285135 + 0.958487i \(0.407962\pi\)
\(194\) −50.8716 50.0545i −0.262225 0.258013i
\(195\) 11.6141i 0.0595594i
\(196\) 0 0
\(197\) −78.6134 −0.399053 −0.199527 0.979892i \(-0.563940\pi\)
−0.199527 + 0.979892i \(0.563940\pi\)
\(198\) −4.27259 + 4.34233i −0.0215787 + 0.0219310i
\(199\) 89.9183i 0.451851i 0.974145 + 0.225925i \(0.0725405\pi\)
−0.974145 + 0.225925i \(0.927459\pi\)
\(200\) 117.022 122.849i 0.585109 0.614243i
\(201\) 108.511 0.539854
\(202\) 80.8263 + 79.5281i 0.400130 + 0.393704i
\(203\) 0 0
\(204\) −183.027 + 2.96363i −0.897189 + 0.0145276i
\(205\) 5.20673 0.0253987
\(206\) −201.563 + 204.853i −0.978460 + 0.994432i
\(207\) 8.94989i 0.0432362i
\(208\) 55.0658 1.78376i 0.264740 0.00857577i
\(209\) 34.2714 0.163978
\(210\) 0 0
\(211\) 146.363i 0.693663i 0.937927 + 0.346832i \(0.112742\pi\)
−0.937927 + 0.346832i \(0.887258\pi\)
\(212\) −4.26337 263.295i −0.0201103 1.24196i
\(213\) 229.013 1.07518
\(214\) 239.779 243.693i 1.12046 1.13875i
\(215\) 13.0442i 0.0606705i
\(216\) −30.0990 28.6714i −0.139347 0.132738i
\(217\) 0 0
\(218\) 11.1727 + 10.9932i 0.0512509 + 0.0504277i
\(219\) 173.329i 0.791457i
\(220\) −7.90745 + 0.128040i −0.0359429 + 0.000582002i
\(221\) 90.9788 0.411669
\(222\) −145.918 + 148.299i −0.657286 + 0.668015i
\(223\) 137.385i 0.616074i 0.951374 + 0.308037i \(0.0996721\pi\)
−0.951374 + 0.308037i \(0.900328\pi\)
\(224\) 0 0
\(225\) 63.6240 0.282773
\(226\) 256.336 + 252.219i 1.13423 + 1.11601i
\(227\) 61.6479i 0.271577i 0.990738 + 0.135788i \(0.0433567\pi\)
−0.990738 + 0.135788i \(0.956643\pi\)
\(228\) 3.78623 + 233.828i 0.0166063 + 1.02556i
\(229\) −313.417 −1.36863 −0.684316 0.729186i \(-0.739899\pi\)
−0.684316 + 0.729186i \(0.739899\pi\)
\(230\) 8.14894 8.28196i 0.0354302 0.0360085i
\(231\) 0 0
\(232\) −167.688 + 176.038i −0.722795 + 0.758784i
\(233\) −142.259 −0.610554 −0.305277 0.952264i \(-0.598749\pi\)
−0.305277 + 0.952264i \(0.598749\pi\)
\(234\) 14.7270 + 14.4904i 0.0629358 + 0.0619250i
\(235\) 47.3220i 0.201370i
\(236\) 135.066 2.18704i 0.572313 0.00926710i
\(237\) −169.005 −0.713101
\(238\) 0 0
\(239\) 164.416i 0.687933i 0.938982 + 0.343966i \(0.111771\pi\)
−0.938982 + 0.343966i \(0.888229\pi\)
\(240\) −1.74720 53.9370i −0.00727998 0.224738i
\(241\) −69.0501 −0.286515 −0.143257 0.989685i \(-0.545758\pi\)
−0.143257 + 0.989685i \(0.545758\pi\)
\(242\) 171.030 + 168.283i 0.706735 + 0.695384i
\(243\) 15.5885i 0.0641500i
\(244\) 5.29390 + 326.938i 0.0216963 + 1.33991i
\(245\) 0 0
\(246\) −6.49624 + 6.60228i −0.0264075 + 0.0268385i
\(247\) 116.231i 0.470571i
\(248\) −4.13344 3.93739i −0.0166671 0.0158766i
\(249\) 152.297 0.611634
\(250\) 128.278 + 126.218i 0.513114 + 0.504873i
\(251\) 41.8933i 0.166906i −0.996512 0.0834528i \(-0.973405\pi\)
0.996512 0.0834528i \(-0.0265948\pi\)
\(252\) 0 0
\(253\) 3.02897 0.0119722
\(254\) −183.562 + 186.559i −0.722686 + 0.734483i
\(255\) 89.1139i 0.349466i
\(256\) 255.463 16.5680i 0.997904 0.0647186i
\(257\) −215.796 −0.839671 −0.419836 0.907600i \(-0.637912\pi\)
−0.419836 + 0.907600i \(0.637912\pi\)
\(258\) 16.5404 + 16.2747i 0.0641099 + 0.0630803i
\(259\) 0 0
\(260\) 0.434248 + 26.8180i 0.00167018 + 0.103146i
\(261\) −91.1711 −0.349315
\(262\) 266.729 271.083i 1.01805 1.03467i
\(263\) 111.918i 0.425543i 0.977102 + 0.212772i \(0.0682490\pi\)
−0.977102 + 0.212772i \(0.931751\pi\)
\(264\) 9.70346 10.1866i 0.0367555 0.0385857i
\(265\) 128.196 0.483758
\(266\) 0 0
\(267\) 191.196i 0.716092i
\(268\) −250.562 + 4.05719i −0.934931 + 0.0151388i
\(269\) 131.483 0.488784 0.244392 0.969677i \(-0.421412\pi\)
0.244392 + 0.969677i \(0.421412\pi\)
\(270\) 14.1934 14.4251i 0.0525682 0.0534263i
\(271\) 143.088i 0.528000i 0.964523 + 0.264000i \(0.0850418\pi\)
−0.964523 + 0.264000i \(0.914958\pi\)
\(272\) 422.516 13.6866i 1.55337 0.0503186i
\(273\) 0 0
\(274\) 354.159 + 348.471i 1.29255 + 1.27179i
\(275\) 21.5327i 0.0783008i
\(276\) 0.334635 + 20.6662i 0.00121244 + 0.0748775i
\(277\) −282.748 −1.02075 −0.510375 0.859952i \(-0.670493\pi\)
−0.510375 + 0.859952i \(0.670493\pi\)
\(278\) 123.965 125.988i 0.445916 0.453195i
\(279\) 2.14073i 0.00767287i
\(280\) 0 0
\(281\) −258.526 −0.920021 −0.460010 0.887913i \(-0.652154\pi\)
−0.460010 + 0.887913i \(0.652154\pi\)
\(282\) −60.0056 59.0418i −0.212786 0.209368i
\(283\) 471.840i 1.66728i 0.552309 + 0.833640i \(0.313747\pi\)
−0.552309 + 0.833640i \(0.686253\pi\)
\(284\) −528.814 + 8.56275i −1.86202 + 0.0301505i
\(285\) −113.849 −0.399468
\(286\) −4.90410 + 4.98415i −0.0171472 + 0.0174271i
\(287\) 0 0
\(288\) 70.5736 + 65.0797i 0.245047 + 0.225971i
\(289\) 409.073 1.41548
\(290\) −84.3670 83.0120i −0.290921 0.286248i
\(291\) 61.8064i 0.212393i
\(292\) −6.48074 400.234i −0.0221943 1.37066i
\(293\) −348.535 −1.18954 −0.594770 0.803896i \(-0.702757\pi\)
−0.594770 + 0.803896i \(0.702757\pi\)
\(294\) 0 0
\(295\) 65.7622i 0.222923i
\(296\) 331.393 347.894i 1.11957 1.17532i
\(297\) 5.27571 0.0177633
\(298\) −127.429 125.383i −0.427615 0.420747i
\(299\) 10.2727i 0.0343570i
\(300\) −146.914 + 2.37889i −0.489714 + 0.00792963i
\(301\) 0 0
\(302\) −277.121 + 281.644i −0.917619 + 0.932598i
\(303\) 98.1999i 0.324092i
\(304\) −17.4855 539.790i −0.0575183 1.77562i
\(305\) −159.183 −0.521911
\(306\) 112.999 + 111.184i 0.369277 + 0.363346i
\(307\) 24.1654i 0.0787148i −0.999225 0.0393574i \(-0.987469\pi\)
0.999225 0.0393574i \(-0.0125311\pi\)
\(308\) 0 0
\(309\) 248.886 0.805456
\(310\) 1.94915 1.98097i 0.00628759 0.00639022i
\(311\) 351.843i 1.13133i −0.824635 0.565665i \(-0.808620\pi\)
0.824635 0.565665i \(-0.191380\pi\)
\(312\) −34.5478 32.9092i −0.110730 0.105478i
\(313\) 178.717 0.570982 0.285491 0.958381i \(-0.407843\pi\)
0.285491 + 0.958381i \(0.407843\pi\)
\(314\) −278.032 273.566i −0.885451 0.871229i
\(315\) 0 0
\(316\) 390.249 6.31906i 1.23497 0.0199970i
\(317\) 101.728 0.320910 0.160455 0.987043i \(-0.448704\pi\)
0.160455 + 0.987043i \(0.448704\pi\)
\(318\) −159.945 + 162.556i −0.502972 + 0.511182i
\(319\) 30.8557i 0.0967263i
\(320\) 6.05114 + 124.481i 0.0189098 + 0.389002i
\(321\) −296.074 −0.922350
\(322\) 0 0
\(323\) 891.832i 2.76109i
\(324\) 0.582849 + 35.9953i 0.00179892 + 0.111097i
\(325\) 73.0280 0.224702
\(326\) −167.784 + 170.522i −0.514674 + 0.523075i
\(327\) 13.5743i 0.0415115i
\(328\) 14.7536 15.4882i 0.0449805 0.0472201i
\(329\) 0 0
\(330\) 4.88198 + 4.80357i 0.0147939 + 0.0145563i
\(331\) 2.78294i 0.00840768i 0.999991 + 0.00420384i \(0.00133813\pi\)
−0.999991 + 0.00420384i \(0.998662\pi\)
\(332\) −351.669 + 5.69435i −1.05924 + 0.0171517i
\(333\) 180.176 0.541070
\(334\) 102.069 103.735i 0.305595 0.310583i
\(335\) 121.996i 0.364167i
\(336\) 0 0
\(337\) −303.217 −0.899755 −0.449877 0.893090i \(-0.648532\pi\)
−0.449877 + 0.893090i \(0.648532\pi\)
\(338\) −224.025 220.427i −0.662797 0.652152i
\(339\) 311.435i 0.918688i
\(340\) 3.33195 + 205.773i 0.00979985 + 0.605214i
\(341\) 0.724503 0.00212464
\(342\) 142.044 144.363i 0.415335 0.422114i
\(343\) 0 0
\(344\) −38.8018 36.9615i −0.112796 0.107446i
\(345\) −10.0622 −0.0291657
\(346\) −14.1029 13.8764i −0.0407600 0.0401053i
\(347\) 166.421i 0.479600i −0.970822 0.239800i \(-0.922918\pi\)
0.970822 0.239800i \(-0.0770819\pi\)
\(348\) 210.523 3.40887i 0.604951 0.00979560i
\(349\) −327.232 −0.937629 −0.468814 0.883297i \(-0.655319\pi\)
−0.468814 + 0.883297i \(0.655319\pi\)
\(350\) 0 0
\(351\) 17.8925i 0.0509759i
\(352\) −22.0254 + 23.8847i −0.0625721 + 0.0678543i
\(353\) −43.6810 −0.123742 −0.0618711 0.998084i \(-0.519707\pi\)
−0.0618711 + 0.998084i \(0.519707\pi\)
\(354\) −83.3883 82.0490i −0.235560 0.231777i
\(355\) 257.474i 0.725280i
\(356\) 7.14880 + 441.491i 0.0200809 + 1.24014i
\(357\) 0 0
\(358\) 353.477 359.247i 0.987366 1.00348i
\(359\) 72.4245i 0.201740i −0.994900 0.100870i \(-0.967837\pi\)
0.994900 0.100870i \(-0.0321625\pi\)
\(360\) −32.2346 + 33.8396i −0.0895406 + 0.0939990i
\(361\) −778.371 −2.15615
\(362\) 426.326 + 419.479i 1.17770 + 1.15878i
\(363\) 207.793i 0.572432i
\(364\) 0 0
\(365\) 194.870 0.533890
\(366\) 198.606 201.848i 0.542641 0.551498i
\(367\) 508.952i 1.38679i 0.720558 + 0.693395i \(0.243886\pi\)
−0.720558 + 0.693395i \(0.756114\pi\)
\(368\) −1.54541 47.7077i −0.00419948 0.129641i
\(369\) 8.02144 0.0217383
\(370\) 166.730 + 164.052i 0.450621 + 0.443383i
\(371\) 0 0
\(372\) 0.0800415 + 4.94316i 0.000215165 + 0.0132881i
\(373\) 124.672 0.334242 0.167121 0.985936i \(-0.446553\pi\)
0.167121 + 0.985936i \(0.446553\pi\)
\(374\) −37.6288 + 38.2430i −0.100612 + 0.102254i
\(375\) 155.852i 0.415605i
\(376\) 140.766 + 134.090i 0.374379 + 0.356622i
\(377\) −104.647 −0.277578
\(378\) 0 0
\(379\) 539.605i 1.42376i −0.702301 0.711880i \(-0.747844\pi\)
0.702301 0.711880i \(-0.252156\pi\)
\(380\) 262.887 4.25677i 0.691809 0.0112020i
\(381\) 226.659 0.594906
\(382\) −169.980 + 172.754i −0.444973 + 0.452237i
\(383\) 563.542i 1.47139i −0.677313 0.735695i \(-0.736856\pi\)
0.677313 0.735695i \(-0.263144\pi\)
\(384\) −165.395 147.637i −0.430715 0.384471i
\(385\) 0 0
\(386\) 156.906 + 154.386i 0.406493 + 0.399964i
\(387\) 20.0957i 0.0519269i
\(388\) −2.31093 142.717i −0.00595600 0.367827i
\(389\) −211.324 −0.543248 −0.271624 0.962403i \(-0.587561\pi\)
−0.271624 + 0.962403i \(0.587561\pi\)
\(390\) 16.2913 16.5572i 0.0417725 0.0424544i
\(391\) 78.8219i 0.201591i
\(392\) 0 0
\(393\) −329.352 −0.838045
\(394\) −112.073 110.273i −0.284448 0.279880i
\(395\) 190.009i 0.481034i
\(396\) −12.1821 + 0.197258i −0.0307630 + 0.000498125i
\(397\) −271.257 −0.683266 −0.341633 0.939833i \(-0.610980\pi\)
−0.341633 + 0.939833i \(0.610980\pi\)
\(398\) −126.130 + 128.189i −0.316910 + 0.322083i
\(399\) 0 0
\(400\) 339.150 10.9862i 0.847875 0.0274654i
\(401\) 143.015 0.356647 0.178323 0.983972i \(-0.442933\pi\)
0.178323 + 0.983972i \(0.442933\pi\)
\(402\) 154.694 + 152.210i 0.384812 + 0.378631i
\(403\) 2.45715i 0.00609714i
\(404\) 3.67167 + 226.753i 0.00908830 + 0.561270i
\(405\) −17.5258 −0.0432735
\(406\) 0 0
\(407\) 60.9783i 0.149824i
\(408\) −265.083 252.510i −0.649713 0.618896i
\(409\) −223.590 −0.546676 −0.273338 0.961918i \(-0.588128\pi\)
−0.273338 + 0.961918i \(0.588128\pi\)
\(410\) 7.42280 + 7.30358i 0.0181044 + 0.0178136i
\(411\) 430.285i 1.04692i
\(412\) −574.702 + 9.30579i −1.39491 + 0.0225869i
\(413\) 0 0
\(414\) 12.5542 12.7591i 0.0303241 0.0308191i
\(415\) 171.224i 0.412588i
\(416\) 81.0048 + 74.6989i 0.194723 + 0.179565i
\(417\) −153.069 −0.367073
\(418\) 48.8578 + 48.0731i 0.116885 + 0.115007i
\(419\) 293.605i 0.700729i −0.936614 0.350364i \(-0.886058\pi\)
0.936614 0.350364i \(-0.113942\pi\)
\(420\) 0 0
\(421\) −603.329 −1.43309 −0.716543 0.697543i \(-0.754277\pi\)
−0.716543 + 0.697543i \(0.754277\pi\)
\(422\) −205.306 + 208.657i −0.486507 + 0.494449i
\(423\) 72.9037i 0.172349i
\(424\) 363.251 381.338i 0.856724 0.899382i
\(425\) 560.338 1.31844
\(426\) 326.485 + 321.241i 0.766396 + 0.754087i
\(427\) 0 0
\(428\) 683.665 11.0702i 1.59735 0.0258649i
\(429\) 6.05549 0.0141154
\(430\) 18.2973 18.5960i 0.0425518 0.0432464i
\(431\) 285.866i 0.663262i 0.943409 + 0.331631i \(0.107599\pi\)
−0.943409 + 0.331631i \(0.892401\pi\)
\(432\) −2.69171 83.0949i −0.00623081 0.192349i
\(433\) 232.262 0.536403 0.268201 0.963363i \(-0.413571\pi\)
0.268201 + 0.963363i \(0.413571\pi\)
\(434\) 0 0
\(435\) 102.502i 0.235636i
\(436\) 0.507539 + 31.3443i 0.00116408 + 0.0718906i
\(437\) −100.700 −0.230435
\(438\) −243.132 + 247.101i −0.555096 + 0.564157i
\(439\) 30.1779i 0.0687423i −0.999409 0.0343711i \(-0.989057\pi\)
0.999409 0.0343711i \(-0.0109428\pi\)
\(440\) −11.4526 10.9094i −0.0260286 0.0247941i
\(441\) 0 0
\(442\) 129.701 + 127.618i 0.293441 + 0.288728i
\(443\) 708.628i 1.59961i 0.600258 + 0.799806i \(0.295064\pi\)
−0.600258 + 0.799806i \(0.704936\pi\)
\(444\) −416.045 + 6.73675i −0.937038 + 0.0151729i
\(445\) −214.958 −0.483051
\(446\) −192.712 + 195.858i −0.432090 + 0.439143i
\(447\) 154.820i 0.346354i
\(448\) 0 0
\(449\) −69.7117 −0.155260 −0.0776299 0.996982i \(-0.524735\pi\)
−0.0776299 + 0.996982i \(0.524735\pi\)
\(450\) 90.7034 + 89.2466i 0.201563 + 0.198326i
\(451\) 2.71475i 0.00601940i
\(452\) 11.6445 + 719.135i 0.0257622 + 1.59101i
\(453\) 342.184 0.755372
\(454\) −86.4747 + 87.8863i −0.190473 + 0.193582i
\(455\) 0 0
\(456\) −322.597 + 338.660i −0.707450 + 0.742675i
\(457\) −356.679 −0.780480 −0.390240 0.920713i \(-0.627608\pi\)
−0.390240 + 0.920713i \(0.627608\pi\)
\(458\) −446.812 439.636i −0.975572 0.959903i
\(459\) 137.288i 0.299102i
\(460\) 23.2345 0.376222i 0.0505098 0.000817874i
\(461\) −597.234 −1.29552 −0.647759 0.761845i \(-0.724294\pi\)
−0.647759 + 0.761845i \(0.724294\pi\)
\(462\) 0 0
\(463\) 518.054i 1.11891i 0.828862 + 0.559453i \(0.188989\pi\)
−0.828862 + 0.559453i \(0.811011\pi\)
\(464\) −485.991 + 15.7428i −1.04739 + 0.0339285i
\(465\) −2.40678 −0.00517586
\(466\) −202.807 199.549i −0.435208 0.428218i
\(467\) 546.318i 1.16985i 0.811089 + 0.584923i \(0.198875\pi\)
−0.811089 + 0.584923i \(0.801125\pi\)
\(468\) 0.668998 + 41.3156i 0.00142948 + 0.0882812i
\(469\) 0 0
\(470\) −66.3794 + 67.4629i −0.141233 + 0.143538i
\(471\) 337.794i 0.717185i
\(472\) 195.620 + 186.341i 0.414448 + 0.394791i
\(473\) 6.80113 0.0143787
\(474\) −240.936 237.067i −0.508304 0.500140i
\(475\) 715.867i 1.50709i
\(476\) 0 0
\(477\) 197.497 0.414040
\(478\) −230.629 + 234.394i −0.482488 + 0.490364i
\(479\) 674.246i 1.40761i −0.710392 0.703806i \(-0.751483\pi\)
0.710392 0.703806i \(-0.248517\pi\)
\(480\) 73.1676 79.3443i 0.152433 0.165301i
\(481\) 206.807 0.429953
\(482\) −98.4389 96.8579i −0.204230 0.200950i
\(483\) 0 0
\(484\) 7.76932 + 479.814i 0.0160523 + 0.991351i
\(485\) 69.4875 0.143273
\(486\) 21.8662 22.2232i 0.0449922 0.0457266i
\(487\) 251.723i 0.516886i −0.966027 0.258443i \(-0.916791\pi\)
0.966027 0.258443i \(-0.0832094\pi\)
\(488\) −451.055 + 473.514i −0.924293 + 0.970315i
\(489\) 207.176 0.423673
\(490\) 0 0
\(491\) 181.391i 0.369433i −0.982792 0.184716i \(-0.940863\pi\)
0.982792 0.184716i \(-0.0591366\pi\)
\(492\) −18.5223 + 0.299920i −0.0376469 + 0.000609593i
\(493\) −802.946 −1.62869
\(494\) 163.040 165.701i 0.330040 0.335427i
\(495\) 5.93136i 0.0119826i
\(496\) −0.369647 11.4113i −0.000745257 0.0230066i
\(497\) 0 0
\(498\) 217.117 + 213.630i 0.435978 + 0.428975i
\(499\) 230.573i 0.462069i −0.972946 0.231035i \(-0.925789\pi\)
0.972946 0.231035i \(-0.0742111\pi\)
\(500\) 5.82727 + 359.877i 0.0116545 + 0.719755i
\(501\) −126.033 −0.251562
\(502\) 58.7645 59.7237i 0.117061 0.118972i
\(503\) 761.117i 1.51316i 0.653903 + 0.756578i \(0.273130\pi\)
−0.653903 + 0.756578i \(0.726870\pi\)
\(504\) 0 0
\(505\) −110.404 −0.218622
\(506\) 4.31815 + 4.24880i 0.00853390 + 0.00839684i
\(507\) 272.179i 0.536843i
\(508\) −523.379 + 8.47475i −1.03027 + 0.0166826i
\(509\) −685.349 −1.34646 −0.673231 0.739432i \(-0.735094\pi\)
−0.673231 + 0.739432i \(0.735094\pi\)
\(510\) 125.002 127.042i 0.245101 0.249102i
\(511\) 0 0
\(512\) 387.433 + 334.724i 0.756705 + 0.653757i
\(513\) −175.394 −0.341898
\(514\) −307.642 302.700i −0.598524 0.588911i
\(515\) 279.817i 0.543334i
\(516\) 0.751374 + 46.4030i 0.00145615 + 0.0899282i
\(517\) −24.6733 −0.0477240
\(518\) 0 0
\(519\) 17.1344i 0.0330142i
\(520\) −36.9991 + 38.8414i −0.0711521 + 0.0746949i
\(521\) 1027.31 1.97181 0.985906 0.167298i \(-0.0535043\pi\)
0.985906 + 0.167298i \(0.0535043\pi\)
\(522\) −129.975 127.887i −0.248994 0.244995i
\(523\) 874.410i 1.67191i −0.548797 0.835956i \(-0.684914\pi\)
0.548797 0.835956i \(-0.315086\pi\)
\(524\) 760.505 12.3144i 1.45135 0.0235007i
\(525\) 0 0
\(526\) −156.989 + 159.552i −0.298459 + 0.303331i
\(527\) 18.8535i 0.0357751i
\(528\) 28.1224 0.910975i 0.0532621 0.00172533i
\(529\) 520.100 0.983176
\(530\) 182.758 + 179.823i 0.344827 + 0.339288i
\(531\) 101.313i 0.190796i
\(532\) 0 0
\(533\) 9.20705 0.0172740
\(534\) 268.195 272.573i 0.502238 0.510436i
\(535\) 332.870i 0.622186i
\(536\) −362.896 345.683i −0.677044 0.644932i
\(537\) −436.467 −0.812787
\(538\) 187.444 + 184.433i 0.348409 + 0.342813i
\(539\) 0 0
\(540\) 40.4687 0.655284i 0.0749420 0.00121349i
\(541\) 182.995 0.338253 0.169127 0.985594i \(-0.445905\pi\)
0.169127 + 0.985594i \(0.445905\pi\)
\(542\) −200.712 + 203.988i −0.370317 + 0.376362i
\(543\) 517.965i 0.953895i
\(544\) 621.543 + 573.158i 1.14254 + 1.05360i
\(545\) −15.2612 −0.0280023
\(546\) 0 0
\(547\) 91.9279i 0.168058i 0.996463 + 0.0840291i \(0.0267789\pi\)
−0.996463 + 0.0840291i \(0.973221\pi\)
\(548\) 16.0883 + 993.571i 0.0293582 + 1.81309i
\(549\) −245.236 −0.446695
\(550\) −30.2043 + 30.6974i −0.0549170 + 0.0558134i
\(551\) 1025.81i 1.86173i
\(552\) −28.5118 + 29.9314i −0.0516518 + 0.0542236i
\(553\) 0 0
\(554\) −403.090 396.615i −0.727598 0.715912i
\(555\) 202.568i 0.364988i
\(556\) 353.452 5.72323i 0.635705 0.0102936i
\(557\) 204.578 0.367285 0.183643 0.982993i \(-0.441211\pi\)
0.183643 + 0.982993i \(0.441211\pi\)
\(558\) 3.00284 3.05186i 0.00538144 0.00546929i
\(559\) 23.0660i 0.0412629i
\(560\) 0 0
\(561\) 46.4633 0.0828223
\(562\) −368.559 362.639i −0.655798 0.645265i
\(563\) 681.311i 1.21014i 0.796171 + 0.605072i \(0.206856\pi\)
−0.796171 + 0.605072i \(0.793144\pi\)
\(564\) −2.72586 168.342i −0.00483308 0.298479i
\(565\) −350.140 −0.619716
\(566\) −661.859 + 672.663i −1.16936 + 1.18845i
\(567\) 0 0
\(568\) −765.896 729.570i −1.34841 1.28445i
\(569\) −436.176 −0.766566 −0.383283 0.923631i \(-0.625207\pi\)
−0.383283 + 0.923631i \(0.625207\pi\)
\(570\) −162.304 159.697i −0.284744 0.280171i
\(571\) 235.145i 0.411813i 0.978572 + 0.205906i \(0.0660143\pi\)
−0.978572 + 0.205906i \(0.933986\pi\)
\(572\) −13.9827 + 0.226414i −0.0244453 + 0.000395828i
\(573\) 209.888 0.366296
\(574\) 0 0
\(575\) 63.2698i 0.110034i
\(576\) 9.32233 + 191.774i 0.0161846 + 0.332940i
\(577\) −380.151 −0.658840 −0.329420 0.944183i \(-0.606853\pi\)
−0.329420 + 0.944183i \(0.606853\pi\)
\(578\) 583.181 + 573.814i 1.00896 + 0.992758i
\(579\) 190.633i 0.329246i
\(580\) −3.83251 236.686i −0.00660778 0.408080i
\(581\) 0 0
\(582\) −86.6970 + 88.1122i −0.148964 + 0.151395i
\(583\) 66.8404i 0.114649i
\(584\) 552.176 579.670i 0.945507 0.992586i
\(585\) −20.1162 −0.0343866
\(586\) −496.877 488.897i −0.847913 0.834295i
\(587\) 364.304i 0.620620i 0.950635 + 0.310310i \(0.100433\pi\)
−0.950635 + 0.310310i \(0.899567\pi\)
\(588\) 0 0
\(589\) −24.0865 −0.0408939
\(590\) −92.2459 + 93.7516i −0.156349 + 0.158901i
\(591\) 136.162i 0.230393i
\(592\) 960.436 31.1116i 1.62236 0.0525535i
\(593\) 57.6374 0.0971963 0.0485982 0.998818i \(-0.484525\pi\)
0.0485982 + 0.998818i \(0.484525\pi\)
\(594\) 7.52114 + 7.40034i 0.0126618 + 0.0124585i
\(595\) 0 0
\(596\) −5.78869 357.495i −0.00971257 0.599824i
\(597\) 155.743 0.260876
\(598\) 14.4098 14.6450i 0.0240966 0.0244899i
\(599\) 496.778i 0.829346i 0.909970 + 0.414673i \(0.136104\pi\)
−0.909970 + 0.414673i \(0.863896\pi\)
\(600\) −212.780 202.688i −0.354633 0.337813i
\(601\) −467.713 −0.778224 −0.389112 0.921190i \(-0.627218\pi\)
−0.389112 + 0.921190i \(0.627218\pi\)
\(602\) 0 0
\(603\) 187.946i 0.311685i
\(604\) −790.136 + 12.7942i −1.30817 + 0.0211824i
\(605\) −233.617 −0.386143
\(606\) 137.747 139.995i 0.227305 0.231015i
\(607\) 750.168i 1.23586i 0.786233 + 0.617930i \(0.212029\pi\)
−0.786233 + 0.617930i \(0.787971\pi\)
\(608\) 732.246 794.060i 1.20435 1.30602i
\(609\) 0 0
\(610\) −226.934 223.289i −0.372022 0.366047i
\(611\) 83.6794i 0.136955i
\(612\) 5.13317 + 317.011i 0.00838753 + 0.517992i
\(613\) 854.291 1.39362 0.696811 0.717255i \(-0.254602\pi\)
0.696811 + 0.717255i \(0.254602\pi\)
\(614\) 33.8973 34.4506i 0.0552073 0.0561085i
\(615\) 9.01832i 0.0146639i
\(616\) 0 0
\(617\) 272.107 0.441015 0.220508 0.975385i \(-0.429229\pi\)
0.220508 + 0.975385i \(0.429229\pi\)
\(618\) 354.816 + 349.117i 0.574135 + 0.564914i
\(619\) 414.506i 0.669639i 0.942282 + 0.334819i \(0.108675\pi\)
−0.942282 + 0.334819i \(0.891325\pi\)
\(620\) 5.55748 0.0899889i 0.00896368 0.000145143i
\(621\) −15.5017 −0.0249624
\(622\) 493.537 501.594i 0.793469 0.806421i
\(623\) 0 0
\(624\) −3.08956 95.3768i −0.00495122 0.152847i
\(625\) 354.979 0.567967
\(626\) 254.782 + 250.690i 0.407000 + 0.400463i
\(627\) 59.3598i 0.0946727i
\(628\) −12.6301 780.000i −0.0201116 1.24204i
\(629\) 1586.82 2.52276
\(630\) 0 0
\(631\) 303.910i 0.481632i 0.970571 + 0.240816i \(0.0774150\pi\)
−0.970571 + 0.240816i \(0.922585\pi\)
\(632\) 565.209 + 538.401i 0.894319 + 0.851901i
\(633\) 253.508 0.400487
\(634\) 145.026 + 142.696i 0.228747 + 0.225073i
\(635\) 254.828i 0.401304i
\(636\) −456.041 + 7.38438i −0.717045 + 0.0116107i
\(637\) 0 0
\(638\) 43.2818 43.9883i 0.0678399 0.0689472i
\(639\) 396.662i 0.620755i
\(640\) −165.985 + 185.950i −0.259351 + 0.290546i
\(641\) 532.633 0.830941 0.415471 0.909607i \(-0.363617\pi\)
0.415471 + 0.909607i \(0.363617\pi\)
\(642\) −422.088 415.309i −0.657458 0.646899i
\(643\) 844.547i 1.31345i −0.754131 0.656724i \(-0.771942\pi\)
0.754131 0.656724i \(-0.228058\pi\)
\(644\) 0 0
\(645\) −22.5931 −0.0350281
\(646\) 1250.99 1271.41i 1.93652 1.96813i
\(647\) 606.314i 0.937116i −0.883433 0.468558i \(-0.844774\pi\)
0.883433 0.468558i \(-0.155226\pi\)
\(648\) −49.6603 + 52.1330i −0.0766363 + 0.0804522i
\(649\) −34.2879 −0.0528319
\(650\) 104.110 + 102.438i 0.160169 + 0.157597i
\(651\) 0 0
\(652\) −478.390 + 7.74627i −0.733727 + 0.0118808i
\(653\) −16.8535 −0.0258094 −0.0129047 0.999917i \(-0.504108\pi\)
−0.0129047 + 0.999917i \(0.504108\pi\)
\(654\) 19.0409 19.3517i 0.0291145 0.0295897i
\(655\) 370.283i 0.565317i
\(656\) 42.7586 1.38509i 0.0651807 0.00211142i
\(657\) 300.215 0.456948
\(658\) 0 0
\(659\) 761.139i 1.15499i −0.816394 0.577495i \(-0.804030\pi\)
0.816394 0.577495i \(-0.195970\pi\)
\(660\) 0.221772 + 13.6961i 0.000336019 + 0.0207517i
\(661\) 982.016 1.48565 0.742826 0.669485i \(-0.233485\pi\)
0.742826 + 0.669485i \(0.233485\pi\)
\(662\) −3.90369 + 3.96741i −0.00589681 + 0.00599306i
\(663\) 157.580i 0.237677i
\(664\) −509.332 485.174i −0.767066 0.730684i
\(665\) 0 0
\(666\) 256.862 + 252.737i 0.385679 + 0.379484i
\(667\) 90.6635i 0.135927i
\(668\) 291.022 4.71233i 0.435661 0.00705439i
\(669\) 237.957 0.355691
\(670\) 171.126 173.919i 0.255412 0.259581i
\(671\) 82.9968i 0.123691i
\(672\) 0 0
\(673\) 700.065 1.04022 0.520108 0.854101i \(-0.325892\pi\)
0.520108 + 0.854101i \(0.325892\pi\)
\(674\) −432.272 425.329i −0.641352 0.631052i
\(675\) 110.200i 0.163259i
\(676\) −10.1767 628.489i −0.0150543 0.929718i
\(677\) 712.131 1.05189 0.525946 0.850518i \(-0.323711\pi\)
0.525946 + 0.850518i \(0.323711\pi\)
\(678\) 436.856 443.987i 0.644331 0.654848i
\(679\) 0 0
\(680\) −283.891 + 298.027i −0.417487 + 0.438274i
\(681\) 106.777 0.156795
\(682\) 1.03286 + 1.01627i 0.00151446 + 0.00149014i
\(683\) 480.992i 0.704235i 0.935956 + 0.352117i \(0.114538\pi\)
−0.935956 + 0.352117i \(0.885462\pi\)
\(684\) 405.002 6.55794i 0.592108 0.00958763i
\(685\) −483.760 −0.706219
\(686\) 0 0
\(687\) 542.854i 0.790180i
\(688\) −3.46999 107.121i −0.00504360 0.155699i
\(689\) 226.689 0.329011
\(690\) −14.3448 14.1144i −0.0207895 0.0204556i
\(691\) 47.0484i 0.0680874i 0.999420 + 0.0340437i \(0.0108385\pi\)
−0.999420 + 0.0340437i \(0.989161\pi\)
\(692\) −0.640650 39.5649i −0.000925795 0.0571747i
\(693\) 0 0
\(694\) 233.442 237.253i 0.336372 0.341863i
\(695\) 172.092i 0.247615i
\(696\) 304.907 + 290.445i 0.438084 + 0.417306i
\(697\) 70.6450 0.101356
\(698\) −466.508 459.015i −0.668349 0.657615i
\(699\) 246.400i 0.352503i
\(700\) 0 0
\(701\) −95.2081 −0.135818 −0.0679088 0.997692i \(-0.521633\pi\)
−0.0679088 + 0.997692i \(0.521633\pi\)
\(702\) 25.0982 25.5079i 0.0357524 0.0363360i
\(703\) 2027.26i 2.88372i
\(704\) −64.9033 + 3.15502i −0.0921921 + 0.00448156i
\(705\) 81.9640 0.116261
\(706\) −62.2723 61.2721i −0.0882044 0.0867877i
\(707\) 0 0
\(708\) −3.78806 233.941i −0.00535036 0.330425i
\(709\) −408.681 −0.576419 −0.288210 0.957567i \(-0.593060\pi\)
−0.288210 + 0.957567i \(0.593060\pi\)
\(710\) 361.164 367.059i 0.508682 0.516985i
\(711\) 292.725i 0.411709i
\(712\) −609.097 + 639.425i −0.855473 + 0.898069i
\(713\) −2.12881 −0.00298571
\(714\) 0 0
\(715\) 6.80806i 0.00952176i
\(716\) 1007.84 16.3194i 1.40760 0.0227925i
\(717\) 284.777 0.397178
\(718\) 101.591 103.250i 0.141492 0.143802i
\(719\) 800.605i 1.11350i 0.830681 + 0.556749i \(0.187952\pi\)
−0.830681 + 0.556749i \(0.812048\pi\)
\(720\) −93.4217 + 3.02623i −0.129752 + 0.00420310i
\(721\) 0 0
\(722\) −1109.66 1091.84i −1.53692 1.51224i
\(723\) 119.598i 0.165419i
\(724\) 19.3666 + 1196.03i 0.0267494 + 1.65198i
\(725\) −644.519 −0.888992
\(726\) 291.475 296.232i 0.401480 0.408034i
\(727\) 751.732i 1.03402i 0.855980 + 0.517009i \(0.172955\pi\)
−0.855980 + 0.517009i \(0.827045\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) 277.810 + 273.348i 0.380561 + 0.374449i
\(731\) 176.983i 0.242111i
\(732\) 566.273 9.16931i 0.773597 0.0125264i
\(733\) 389.015 0.530716 0.265358 0.964150i \(-0.414510\pi\)
0.265358 + 0.964150i \(0.414510\pi\)
\(734\) −713.916 + 725.570i −0.972638 + 0.988515i
\(735\) 0 0
\(736\) 64.7174 70.1807i 0.0879312 0.0953542i
\(737\) 63.6078 0.0863064
\(738\) 11.4355 + 11.2518i 0.0154952 + 0.0152464i
\(739\) 95.5532i 0.129301i −0.997908 0.0646503i \(-0.979407\pi\)
0.997908 0.0646503i \(-0.0205932\pi\)
\(740\) 7.57398 + 467.750i 0.0102351 + 0.632094i
\(741\) −201.318 −0.271685
\(742\) 0 0
\(743\) 1204.73i 1.62144i 0.585433 + 0.810721i \(0.300925\pi\)
−0.585433 + 0.810721i \(0.699075\pi\)
\(744\) −6.81975 + 7.15932i −0.00916634 + 0.00962275i
\(745\) 174.061 0.233639
\(746\) 177.735 + 174.880i 0.238251 + 0.234424i
\(747\) 263.786i 0.353127i
\(748\) −107.288 + 1.73725i −0.143434 + 0.00232253i
\(749\) 0 0
\(750\) 218.616 222.185i 0.291488 0.296246i
\(751\) 1162.57i 1.54804i −0.633164 0.774018i \(-0.718244\pi\)
0.633164 0.774018i \(-0.281756\pi\)
\(752\) 12.5885 + 388.616i 0.0167401 + 0.516777i
\(753\) −72.5613 −0.0963630
\(754\) −149.186 146.790i −0.197860 0.194682i
\(755\) 384.709i 0.509549i
\(756\) 0 0
\(757\) 379.147 0.500855 0.250428 0.968135i \(-0.419429\pi\)
0.250428 + 0.968135i \(0.419429\pi\)
\(758\) 756.914 769.270i 0.998568 1.01487i
\(759\) 5.24634i 0.00691217i
\(760\) 380.748 + 362.689i 0.500984 + 0.477222i
\(761\) −814.146 −1.06984 −0.534918 0.844904i \(-0.679658\pi\)
−0.534918 + 0.844904i \(0.679658\pi\)
\(762\) 323.129 + 317.939i 0.424054 + 0.417243i
\(763\) 0 0
\(764\) −484.652 + 7.84766i −0.634361 + 0.0102718i
\(765\) −154.350 −0.201764
\(766\) 790.491 803.394i 1.03197 1.04882i
\(767\) 116.287i 0.151613i
\(768\) −28.6965 442.475i −0.0373653 0.576140i
\(769\) 973.923 1.26648 0.633240 0.773956i \(-0.281725\pi\)
0.633240 + 0.773956i \(0.281725\pi\)
\(770\) 0 0
\(771\) 373.769i 0.484785i
\(772\) 7.12774 + 440.191i 0.00923282 + 0.570196i
\(773\) −757.451 −0.979885 −0.489943 0.871755i \(-0.662982\pi\)
−0.489943 + 0.871755i \(0.662982\pi\)
\(774\) 28.1886 28.6488i 0.0364194 0.0370139i
\(775\) 15.1335i 0.0195272i
\(776\) 196.897 206.701i 0.253734 0.266368i
\(777\) 0 0
\(778\) −301.266 296.428i −0.387232 0.381012i
\(779\) 90.2534i 0.115858i
\(780\) 46.4502 0.752139i 0.0595516 0.000964281i
\(781\) 134.245 0.171889
\(782\) 110.565 112.370i 0.141387 0.143695i
\(783\) 157.913i 0.201677i
\(784\) 0 0
\(785\) 379.774 0.483789
\(786\) −469.529 461.988i −0.597365 0.587771i
\(787\) 113.131i 0.143750i 0.997414 + 0.0718749i \(0.0228982\pi\)
−0.997414 + 0.0718749i \(0.977102\pi\)
\(788\) −5.09109 314.413i −0.00646077 0.399001i
\(789\) 193.847 0.245688
\(790\) −266.529 + 270.879i −0.337378 + 0.342885i
\(791\) 0 0
\(792\) −17.6437 16.8069i −0.0222774 0.0212208i
\(793\) −281.483 −0.354960
\(794\) −386.708 380.497i −0.487038 0.479215i
\(795\) 222.042i 0.279298i
\(796\) −359.626 + 5.82320i −0.451791 + 0.00731558i
\(797\) 421.650 0.529047 0.264523 0.964379i \(-0.414785\pi\)
0.264523 + 0.964379i \(0.414785\pi\)
\(798\) 0 0
\(799\) 642.065i 0.803586i
\(800\) 498.908 + 460.070i 0.623635 + 0.575088i
\(801\) −331.162 −0.413436
\(802\) 203.885 + 200.610i 0.254221 + 0.250138i
\(803\) 101.604i 0.126530i
\(804\) 7.02725 + 433.985i 0.00874037 + 0.539783i
\(805\) 0 0
\(806\) 3.44668 3.50295i 0.00427628 0.00434609i
\(807\) 227.735i 0.282199i
\(808\) −312.837 + 328.413i −0.387174 + 0.406452i
\(809\) 241.212 0.298161 0.149081 0.988825i \(-0.452369\pi\)
0.149081 + 0.988825i \(0.452369\pi\)
\(810\) −24.9850 24.5837i −0.0308457 0.0303502i
\(811\) 1343.28i 1.65632i 0.560491 + 0.828160i \(0.310612\pi\)
−0.560491 + 0.828160i \(0.689388\pi\)
\(812\) 0 0
\(813\) 247.836 0.304841
\(814\) −85.5354 + 86.9316i −0.105080 + 0.106796i
\(815\) 232.923i 0.285796i
\(816\) −23.7060 731.818i −0.0290514 0.896836i
\(817\) −226.107 −0.276753
\(818\) −318.754 313.634i −0.389675 0.383416i
\(819\) 0 0
\(820\) 0.337193 + 20.8242i 0.000411211 + 0.0253953i
\(821\) 1046.03 1.27409 0.637047 0.770825i \(-0.280156\pi\)
0.637047 + 0.770825i \(0.280156\pi\)
\(822\) 603.569 613.421i 0.734269 0.746255i
\(823\) 410.187i 0.498404i 0.968452 + 0.249202i \(0.0801683\pi\)
−0.968452 + 0.249202i \(0.919832\pi\)
\(824\) −832.358 792.879i −1.01014 0.962231i
\(825\) 37.2958 0.0452070
\(826\) 0 0
\(827\) 438.443i 0.530161i 0.964226 + 0.265080i \(0.0853985\pi\)
−0.964226 + 0.265080i \(0.914601\pi\)
\(828\) 35.7949 0.579604i 0.0432305 0.000700005i
\(829\) 830.325 1.00160 0.500799 0.865563i \(-0.333039\pi\)
0.500799 + 0.865563i \(0.333039\pi\)
\(830\) 240.179 244.100i 0.289372 0.294096i
\(831\) 489.733i 0.589330i
\(832\) 10.7002 + 220.119i 0.0128608 + 0.264566i
\(833\) 0 0
\(834\) −218.218 214.713i −0.261652 0.257450i
\(835\) 141.696i 0.169695i
\(836\) 2.21945 + 137.068i 0.00265484 + 0.163956i
\(837\) −3.70786 −0.00442994
\(838\) 411.846 418.568i 0.491462 0.499485i
\(839\) 1492.60i 1.77903i 0.456910 + 0.889513i \(0.348956\pi\)
−0.456910 + 0.889513i \(0.651044\pi\)
\(840\) 0 0
\(841\) 82.5748 0.0981864
\(842\) −860.116 846.301i −1.02152 1.00511i
\(843\) 447.780i 0.531174i
\(844\) −585.375 + 9.47861i −0.693572 + 0.0112306i
\(845\) 306.005 0.362136
\(846\) −102.263 + 103.933i −0.120879 + 0.122852i
\(847\) 0 0
\(848\) 1052.77 34.1025i 1.24147 0.0402152i
\(849\) 817.251 0.962604
\(850\) 798.827 + 785.997i 0.939796 + 0.924702i
\(851\) 179.173i 0.210544i
\(852\) 14.8311 + 915.932i 0.0174074 + 1.07504i
\(853\) 861.696 1.01020 0.505098 0.863062i \(-0.331457\pi\)
0.505098 + 0.863062i \(0.331457\pi\)
\(854\) 0 0
\(855\) 197.191i 0.230633i
\(856\) 990.172 + 943.208i 1.15674 + 1.10188i
\(857\) −1354.69 −1.58074 −0.790369 0.612630i \(-0.790111\pi\)
−0.790369 + 0.612630i \(0.790111\pi\)
\(858\) 8.63281 + 8.49415i 0.0100615 + 0.00989995i
\(859\) 35.9658i 0.0418694i 0.999781 + 0.0209347i \(0.00666421\pi\)
−0.999781 + 0.0209347i \(0.993336\pi\)
\(860\) 52.1698 0.844753i 0.0606626 0.000982271i
\(861\) 0 0
\(862\) −400.990 + 407.535i −0.465185 + 0.472779i
\(863\) 160.407i 0.185871i −0.995672 0.0929355i \(-0.970375\pi\)
0.995672 0.0929355i \(-0.0296250\pi\)
\(864\) 112.721 122.237i 0.130465 0.141478i
\(865\) 19.2638 0.0222703
\(866\) 331.117 + 325.799i 0.382352 + 0.376211i
\(867\) 708.535i 0.817226i
\(868\) 0 0
\(869\) −99.0691 −0.114004
\(870\) −143.781 + 146.128i −0.165265 + 0.167963i
\(871\) 215.725i 0.247676i
\(872\) −43.2437 + 45.3969i −0.0495914 + 0.0520606i
\(873\) 107.052 0.122625
\(874\) −143.559 141.254i −0.164256 0.161617i
\(875\) 0 0
\(876\) −693.225 + 11.2250i −0.791353 + 0.0128139i
\(877\) −1496.48 −1.70636 −0.853182 0.521613i \(-0.825330\pi\)
−0.853182 + 0.521613i \(0.825330\pi\)
\(878\) 42.3310 43.0220i 0.0482130 0.0490000i
\(879\) 603.681i 0.686781i
\(880\) −1.02419 31.6173i −0.00116385 0.0359288i
\(881\) −627.408 −0.712154 −0.356077 0.934457i \(-0.615886\pi\)
−0.356077 + 0.934457i \(0.615886\pi\)
\(882\) 0 0
\(883\) 1501.32i 1.70025i −0.526579 0.850126i \(-0.676526\pi\)
0.526579 0.850126i \(-0.323474\pi\)
\(884\) 5.89188 + 363.868i 0.00666502 + 0.411615i
\(885\) 113.903 0.128704
\(886\) −994.006 + 1010.23i −1.12190 + 1.14022i
\(887\) 655.427i 0.738925i 0.929246 + 0.369463i \(0.120458\pi\)
−0.929246 + 0.369463i \(0.879542\pi\)
\(888\) −602.570 573.990i −0.678569 0.646385i
\(889\) 0 0
\(890\) −306.447 301.525i −0.344323 0.338793i
\(891\) 9.13780i 0.0102557i
\(892\) −549.466 + 8.89717i −0.615994 + 0.00997440i
\(893\) 820.278 0.918565
\(894\) −217.169 + 220.714i −0.242918 + 0.246884i
\(895\) 490.710i 0.548279i
\(896\) 0 0
\(897\) −17.7929 −0.0198360
\(898\) −99.3821 97.7858i −0.110670 0.108893i
\(899\) 21.6859i 0.0241222i
\(900\) 4.12035 + 254.463i 0.00457817 + 0.282736i
\(901\) 1739.36 1.93048
\(902\) −3.80803 + 3.87019i −0.00422176 + 0.00429068i
\(903\) 0 0
\(904\) −992.143 + 1041.54i −1.09750 + 1.15215i
\(905\) −582.336 −0.643465
\(906\) 487.822 + 479.987i 0.538435 + 0.529787i
\(907\) 1187.82i 1.30962i −0.755794 0.654809i \(-0.772749\pi\)
0.755794 0.654809i \(-0.227251\pi\)
\(908\) −246.559 + 3.99238i −0.271541 + 0.00439690i
\(909\) −170.087 −0.187115
\(910\) 0 0
\(911\) 1557.23i 1.70937i 0.519150 + 0.854683i \(0.326248\pi\)
−0.519150 + 0.854683i \(0.673752\pi\)
\(912\) −934.944 + 30.2859i −1.02516 + 0.0332082i
\(913\) 89.2749 0.0977820
\(914\) −508.488 500.321i −0.556332 0.547397i
\(915\) 275.713i 0.301326i
\(916\) −20.2972 1253.50i −0.0221585 1.36845i
\(917\) 0 0
\(918\) 192.576 195.720i 0.209778 0.213202i
\(919\) 813.603i 0.885313i 0.896691 + 0.442657i \(0.145964\pi\)
−0.896691 + 0.442657i \(0.854036\pi\)
\(920\) 33.6512 + 32.0552i 0.0365774 + 0.0348426i
\(921\) −41.8558 −0.0454460
\(922\) −851.426 837.751i −0.923456 0.908624i
\(923\) 455.292i 0.493274i
\(924\) 0 0
\(925\) 1273.73 1.37700
\(926\) −726.684 + 738.546i −0.784756 + 0.797566i
\(927\) 431.083i 0.465030i
\(928\) −714.919 659.265i −0.770387 0.710415i
\(929\) −231.239 −0.248911 −0.124456 0.992225i \(-0.539718\pi\)
−0.124456 + 0.992225i \(0.539718\pi\)
\(930\) −3.43114 3.37603i −0.00368940 0.00363014i
\(931\) 0 0
\(932\) −9.21284 568.962i −0.00988502 0.610474i
\(933\) −609.411 −0.653173
\(934\) −766.330 + 778.839i −0.820482 + 0.833875i
\(935\) 52.2377i 0.0558691i
\(936\) −57.0004 + 59.8386i −0.0608979 + 0.0639301i
\(937\) −595.601 −0.635647 −0.317823 0.948150i \(-0.602952\pi\)
−0.317823 + 0.948150i \(0.602952\pi\)
\(938\) 0 0
\(939\) 309.548i 0.329657i
\(940\) −189.263 + 3.06462i −0.201344 + 0.00326023i
\(941\) −847.831 −0.900990 −0.450495 0.892779i \(-0.648752\pi\)
−0.450495 + 0.892779i \(0.648752\pi\)
\(942\) −473.830 + 481.565i −0.503005 + 0.511215i
\(943\) 7.97678i 0.00845894i
\(944\) 17.4940 + 540.051i 0.0185318 + 0.572087i
\(945\) 0 0
\(946\) 9.69580 + 9.54007i 0.0102493 + 0.0100846i
\(947\) 193.623i 0.204459i −0.994761 0.102230i \(-0.967402\pi\)
0.994761 0.102230i \(-0.0325976\pi\)
\(948\) −10.9449 675.932i −0.0115453 0.713008i
\(949\) 344.588 0.363107
\(950\) 1004.16 1020.55i 1.05701 1.07426i
\(951\) 176.199i 0.185277i
\(952\) 0 0
\(953\) 1097.59 1.15172 0.575858 0.817550i \(-0.304668\pi\)
0.575858 + 0.817550i \(0.304668\pi\)
\(954\) 281.555 + 277.033i 0.295131 + 0.290391i
\(955\) 235.972i 0.247091i
\(956\) −657.577 + 10.6477i −0.687842 + 0.0111378i
\(957\) −53.4436 −0.0558449
\(958\) 945.777 961.216i 0.987241 1.00336i
\(959\) 0 0
\(960\) 215.607 10.4809i 0.224590 0.0109176i
\(961\) 960.491 0.999470
\(962\) 294.828 + 290.093i 0.306474 + 0.301552i
\(963\) 512.816i 0.532519i
\(964\) −4.47175 276.164i −0.00463875 0.286477i
\(965\) −214.325 −0.222098
\(966\) 0 0
\(967\) 1111.07i 1.14899i 0.818507 + 0.574496i \(0.194802\pi\)
−0.818507 + 0.574496i \(0.805198\pi\)
\(968\) −661.968 + 694.928i −0.683851 + 0.717901i
\(969\) −1544.70 −1.59412
\(970\) 99.0625 + 97.4714i 0.102126 + 0.100486i
\(971\) 1113.58i 1.14683i −0.819263 0.573417i \(-0.805617\pi\)
0.819263 0.573417i \(-0.194383\pi\)
\(972\) 62.3457 1.00952i 0.0641416 0.00103861i
\(973\) 0 0
\(974\) 353.097 358.861i 0.362523 0.368440i
\(975\) 126.488i 0.129732i
\(976\) −1307.24 + 42.3457i −1.33938 + 0.0433869i
\(977\) −630.333 −0.645172 −0.322586 0.946540i \(-0.604552\pi\)
−0.322586 + 0.946540i \(0.604552\pi\)
\(978\) 295.353 + 290.610i 0.301997 + 0.297147i
\(979\) 112.077i 0.114482i
\(980\) 0 0
\(981\) −23.5113 −0.0239667
\(982\) 254.441 258.594i 0.259105 0.263334i
\(983\) 1659.64i 1.68834i 0.536078 + 0.844168i \(0.319905\pi\)
−0.536078 + 0.844168i \(0.680095\pi\)
\(984\) −26.8264 25.5540i −0.0272626 0.0259695i
\(985\) 153.084 0.155416
\(986\) −1144.69 1126.31i −1.16095 1.14230i
\(987\) 0 0
\(988\) 464.864 7.52725i 0.470510 0.00761867i
\(989\) −19.9838 −0.0202061
\(990\) 8.32003 8.45584i 0.00840407 0.00854126i
\(991\) 1945.49i 1.96316i −0.191053 0.981580i \(-0.561190\pi\)
0.191053 0.981580i \(-0.438810\pi\)
\(992\) 15.4798 16.7866i 0.0156046 0.0169219i
\(993\) 4.82020 0.00485418
\(994\) 0 0
\(995\) 175.098i 0.175978i
\(996\) 9.86290 + 609.108i 0.00990251 + 0.611554i
\(997\) 142.870 0.143300 0.0716499 0.997430i \(-0.477174\pi\)
0.0716499 + 0.997430i \(0.477174\pi\)
\(998\) 323.428 328.708i 0.324077 0.329367i
\(999\) 312.074i 0.312387i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.3.g.d.295.10 12
4.3 odd 2 inner 588.3.g.d.295.9 12
7.6 odd 2 84.3.g.a.43.10 yes 12
21.20 even 2 252.3.g.b.127.3 12
28.27 even 2 84.3.g.a.43.9 12
56.13 odd 2 1344.3.m.e.127.3 12
56.27 even 2 1344.3.m.e.127.9 12
84.83 odd 2 252.3.g.b.127.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.3.g.a.43.9 12 28.27 even 2
84.3.g.a.43.10 yes 12 7.6 odd 2
252.3.g.b.127.3 12 21.20 even 2
252.3.g.b.127.4 12 84.83 odd 2
588.3.g.d.295.9 12 4.3 odd 2 inner
588.3.g.d.295.10 12 1.1 even 1 trivial
1344.3.m.e.127.3 12 56.13 odd 2
1344.3.m.e.127.9 12 56.27 even 2