L(s) = 1 | + (1.42 + 1.40i)2-s − 1.73i·3-s + (0.0647 + 3.99i)4-s − 1.94·5-s + (2.42 − 2.46i)6-s + (−5.51 + 5.79i)8-s − 2.99·9-s + (−2.77 − 2.73i)10-s − 1.01i·11-s + (6.92 − 0.112i)12-s − 3.44·13-s + 3.37i·15-s + (−15.9 + 0.518i)16-s − 26.4·17-s + (−4.27 − 4.20i)18-s + 33.7i·19-s + ⋯ |
L(s) = 1 | + (0.712 + 0.701i)2-s − 0.577i·3-s + (0.0161 + 0.999i)4-s − 0.389·5-s + (0.404 − 0.411i)6-s + (−0.689 + 0.724i)8-s − 0.333·9-s + (−0.277 − 0.273i)10-s − 0.0923i·11-s + (0.577 − 0.00934i)12-s − 0.264·13-s + 0.224i·15-s + (−0.999 + 0.0323i)16-s − 1.55·17-s + (−0.237 − 0.233i)18-s + 1.77i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.0161i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.999 + 0.0161i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.8605300150\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8605300150\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.42 - 1.40i)T \) |
| 3 | \( 1 + 1.73iT \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + 1.94T + 25T^{2} \) |
| 11 | \( 1 + 1.01iT - 121T^{2} \) |
| 13 | \( 1 + 3.44T + 169T^{2} \) |
| 17 | \( 1 + 26.4T + 289T^{2} \) |
| 19 | \( 1 - 33.7iT - 361T^{2} \) |
| 23 | \( 1 - 2.98iT - 529T^{2} \) |
| 29 | \( 1 - 30.3T + 841T^{2} \) |
| 31 | \( 1 - 0.713iT - 961T^{2} \) |
| 37 | \( 1 + 60.0T + 1.36e3T^{2} \) |
| 41 | \( 1 + 2.67T + 1.68e3T^{2} \) |
| 43 | \( 1 - 6.69iT - 1.84e3T^{2} \) |
| 47 | \( 1 + 24.3iT - 2.20e3T^{2} \) |
| 53 | \( 1 + 65.8T + 2.80e3T^{2} \) |
| 59 | \( 1 + 33.7iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 81.7T + 3.72e3T^{2} \) |
| 67 | \( 1 - 62.6iT - 4.48e3T^{2} \) |
| 71 | \( 1 - 132. iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 100.T + 5.32e3T^{2} \) |
| 79 | \( 1 + 97.5iT - 6.24e3T^{2} \) |
| 83 | \( 1 - 87.9iT - 6.88e3T^{2} \) |
| 89 | \( 1 - 110.T + 7.92e3T^{2} \) |
| 97 | \( 1 + 35.6T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.27196034158300379566028607521, −10.06400545391604153463805517718, −8.714238643213089516342697798354, −8.149278010725226898242148350785, −7.21969628025680431878412408844, −6.46149766395645430561980236929, −5.55525355515797707524716167826, −4.41776262681442795172735949160, −3.43401436669275876273563992254, −2.05578523744090128327793376590,
0.23532129899127006152684518778, 2.18909240291951516179442889313, 3.26896146099687636378339636414, 4.45100179348061967404830700532, 4.92576830325833043390801182582, 6.25815335649635985518945036622, 7.12426634725354967174410990116, 8.635456328082358669548650271334, 9.306001744614207406770781131869, 10.28400325750271003351225162197