Properties

Label 588.3.g.d
Level $588$
Weight $3$
Character orbit 588.g
Analytic conductor $16.022$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [588,3,Mod(295,588)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(588, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("588.295"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 588.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,2,0,2,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.0218395444\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.489494783471841.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3 x^{11} + 7 x^{10} - 11 x^{9} + 18 x^{8} - 22 x^{7} + 33 x^{6} - 44 x^{5} + 72 x^{4} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{18} \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{4} q^{2} + \beta_{6} q^{3} + (\beta_{6} + \beta_{2}) q^{4} + (\beta_{9} - \beta_{6} - \beta_{4} + \cdots - 1) q^{5} + (\beta_{9} + 1) q^{6} + ( - \beta_{11} + 2 \beta_{9} + \cdots - 1) q^{8}+ \cdots + ( - 3 \beta_{11} - 3 \beta_{10} + \cdots + 3 \beta_{3}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{2} + 2 q^{4} - 8 q^{5} + 12 q^{6} - 10 q^{8} - 36 q^{9} - 28 q^{10} - 24 q^{12} + 24 q^{13} - 14 q^{16} + 40 q^{17} - 6 q^{18} + 20 q^{20} - 88 q^{22} + 36 q^{24} + 180 q^{25} - 100 q^{26} + 72 q^{29}+ \cdots + 264 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} - 3 x^{11} + 7 x^{10} - 11 x^{9} + 18 x^{8} - 22 x^{7} + 33 x^{6} - 44 x^{5} + 72 x^{4} + \cdots + 64 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( - \nu^{11} + 12 \nu^{10} - 36 \nu^{9} - 60 \nu^{8} - 31 \nu^{7} - 94 \nu^{6} - 135 \nu^{5} + \cdots - 1236 ) / 316 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 41 \nu^{11} - 887 \nu^{10} + 607 \nu^{9} - 2675 \nu^{8} + 1666 \nu^{7} - 5626 \nu^{6} + 2849 \nu^{5} + \cdots - 26112 ) / 2528 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 73 \nu^{11} + 955 \nu^{10} - 179 \nu^{9} + 2967 \nu^{8} - 1078 \nu^{7} + 6410 \nu^{6} + \cdots + 29536 ) / 2528 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 265 \nu^{11} + 731 \nu^{10} - 1403 \nu^{9} + 2191 \nu^{8} - 2606 \nu^{7} + 4162 \nu^{6} + \cdots + 14688 ) / 2528 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{11} - 2 \nu^{10} + 4 \nu^{9} - 4 \nu^{8} + 7 \nu^{7} - 4 \nu^{6} + 11 \nu^{5} - 11 \nu^{4} + \cdots - 8 ) / 8 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 191 \nu^{11} - 317 \nu^{10} + 793 \nu^{9} - 1101 \nu^{8} + 1734 \nu^{7} - 1954 \nu^{6} + 3191 \nu^{5} + \cdots - 6928 ) / 1264 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 409 \nu^{11} - 247 \nu^{10} + 1215 \nu^{9} - 819 \nu^{8} + 2962 \nu^{7} - 1370 \nu^{6} + 4497 \nu^{5} + \cdots - 6080 ) / 2528 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 443 \nu^{11} - 135 \nu^{10} - 1017 \nu^{9} - 747 \nu^{8} - 1330 \nu^{7} - 2458 \nu^{6} + \cdots - 13824 ) / 2528 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 507 \nu^{11} + 1581 \nu^{10} - 3005 \nu^{9} + 5209 \nu^{8} - 6790 \nu^{7} + 9222 \nu^{6} + \cdots + 38528 ) / 2528 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 355 \nu^{11} - 705 \nu^{10} + 1641 \nu^{9} - 2005 \nu^{8} + 3658 \nu^{7} - 3918 \nu^{6} + \cdots - 14048 ) / 1264 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 917 \nu^{11} + 1445 \nu^{10} - 3545 \nu^{9} + 4309 \nu^{8} - 7808 \nu^{7} + 7022 \nu^{6} + \cdots + 21568 ) / 1264 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{9} + \beta_{8} + \beta_{7} + \beta_{5} - \beta_{4} + \beta_{3} + \beta_{2} + \beta _1 + 2 ) / 8 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{11} + \beta_{9} + 2\beta_{8} - 3\beta_{6} - 3\beta_{4} - 2\beta_{2} + \beta _1 - 3 ) / 8 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -\beta_{11} - 2\beta_{10} - \beta_{9} + 2\beta_{7} - 5\beta_{6} - 2\beta_{5} - 3\beta_{4} - \beta _1 - 1 ) / 8 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( \beta_{11} - 2\beta_{10} + \beta_{9} + 2\beta_{8} + 2\beta_{7} + 9\beta_{6} + 2\beta_{5} + \beta_{4} - 3\beta _1 - 5 ) / 8 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( - \beta_{11} - \beta_{10} + \beta_{9} - \beta_{8} - 3 \beta_{7} + 4 \beta_{6} - 2 \beta_{5} + 3 \beta_{4} + \cdots - 8 ) / 4 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( - 3 \beta_{11} - 4 \beta_{10} - 10 \beta_{9} - 5 \beta_{8} - 9 \beta_{7} - 9 \beta_{6} + 3 \beta_{5} + \cdots - 29 ) / 8 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 2 \beta_{11} + 6 \beta_{10} - 4 \beta_{9} + 3 \beta_{8} + \beta_{7} + 4 \beta_{6} + 4 \beta_{5} + \cdots + 10 ) / 4 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( 8 \beta_{11} + 26 \beta_{10} + 15 \beta_{9} - 7 \beta_{8} + 11 \beta_{7} - 10 \beta_{6} - \beta_{5} + \cdots + 10 ) / 8 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( 5 \beta_{11} + 4 \beta_{10} - 5 \beta_{9} - 7 \beta_{8} - 5 \beta_{7} - 9 \beta_{6} - 2 \beta_{5} + \cdots - 7 ) / 4 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( 7 \beta_{11} - 20 \beta_{10} - 28 \beta_{9} - 19 \beta_{8} + 7 \beta_{7} + 29 \beta_{6} - 45 \beta_{5} + \cdots + 71 ) / 8 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( - 5 \beta_{11} - 12 \beta_{10} + 69 \beta_{9} - 4 \beta_{8} + 40 \beta_{7} + 53 \beta_{6} + 24 \beta_{5} + \cdots + 19 ) / 8 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
295.1
1.19375 0.758257i
1.19375 + 0.758257i
0.0311486 + 1.41387i
0.0311486 1.41387i
1.10978 + 0.876576i
1.10978 0.876576i
−0.434363 1.34586i
−0.434363 + 1.34586i
−1.15503 0.816025i
−1.15503 + 0.816025i
0.754714 + 1.19600i
0.754714 1.19600i
−1.83926 0.785573i 1.73205i 2.76575 + 2.88975i 8.17539 1.36065 3.18569i 0 −2.81683 7.48769i −3.00000 −15.0367 6.42236i
295.2 −1.83926 + 0.785573i 1.73205i 2.76575 2.88975i 8.17539 1.36065 + 3.18569i 0 −2.81683 + 7.48769i −3.00000 −15.0367 + 6.42236i
295.3 −1.51951 1.30042i 1.73205i 0.617841 + 3.95200i −7.86764 2.25238 2.63187i 0 4.20042 6.80856i −3.00000 11.9550 + 10.2312i
295.4 −1.51951 + 1.30042i 1.73205i 0.617841 3.95200i −7.86764 2.25238 + 2.63187i 0 4.20042 + 6.80856i −3.00000 11.9550 10.2312i
295.5 0.0345996 1.99970i 1.73205i −3.99761 0.138378i 6.29204 3.46358 + 0.0599283i 0 −0.415030 + 7.98923i −3.00000 0.217702 12.5822i
295.6 0.0345996 + 1.99970i 1.73205i −3.99761 + 0.138378i 6.29204 3.46358 0.0599283i 0 −0.415030 7.98923i −3.00000 0.217702 + 12.5822i
295.7 0.913644 1.77912i 1.73205i −2.33051 3.25096i −8.22808 −3.08152 1.58248i 0 −7.91309 + 1.17604i −3.00000 −7.51753 + 14.6387i
295.8 0.913644 + 1.77912i 1.73205i −2.33051 + 3.25096i −8.22808 −3.08152 + 1.58248i 0 −7.91309 1.17604i −3.00000 −7.51753 14.6387i
295.9 1.42562 1.40272i 1.73205i 0.0647610 3.99948i −1.94731 2.42958 + 2.46924i 0 −5.51781 5.79256i −3.00000 −2.77611 + 2.73152i
295.10 1.42562 + 1.40272i 1.73205i 0.0647610 + 3.99948i −1.94731 2.42958 2.46924i 0 −5.51781 + 5.79256i −3.00000 −2.77611 2.73152i
295.11 1.98491 0.245189i 1.73205i 3.87976 0.973359i −0.424396 −0.424680 3.43797i 0 7.46234 2.88331i −3.00000 −0.842389 + 0.104057i
295.12 1.98491 + 0.245189i 1.73205i 3.87976 + 0.973359i −0.424396 −0.424680 + 3.43797i 0 7.46234 + 2.88331i −3.00000 −0.842389 0.104057i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 295.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 588.3.g.d 12
4.b odd 2 1 inner 588.3.g.d 12
7.b odd 2 1 84.3.g.a 12
21.c even 2 1 252.3.g.b 12
28.d even 2 1 84.3.g.a 12
56.e even 2 1 1344.3.m.e 12
56.h odd 2 1 1344.3.m.e 12
84.h odd 2 1 252.3.g.b 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
84.3.g.a 12 7.b odd 2 1
84.3.g.a 12 28.d even 2 1
252.3.g.b 12 21.c even 2 1
252.3.g.b 12 84.h odd 2 1
588.3.g.d 12 1.a even 1 1 trivial
588.3.g.d 12 4.b odd 2 1 inner
1344.3.m.e 12 56.e even 2 1
1344.3.m.e 12 56.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{6} + 4T_{5}^{5} - 112T_{5}^{4} - 384T_{5}^{3} + 2976T_{5}^{2} + 7808T_{5} + 2752 \) acting on \(S_{3}^{\mathrm{new}}(588, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{12} - 2 T^{11} + \cdots + 4096 \) Copy content Toggle raw display
$3$ \( (T^{2} + 3)^{6} \) Copy content Toggle raw display
$5$ \( (T^{6} + 4 T^{5} + \cdots + 2752)^{2} \) Copy content Toggle raw display
$7$ \( T^{12} \) Copy content Toggle raw display
$11$ \( T^{12} + \cdots + 8305770496 \) Copy content Toggle raw display
$13$ \( (T^{6} - 12 T^{5} + \cdots - 1102016)^{2} \) Copy content Toggle raw display
$17$ \( (T^{6} - 20 T^{5} + \cdots + 39448000)^{2} \) Copy content Toggle raw display
$19$ \( T^{12} + \cdots + 4294967296 \) Copy content Toggle raw display
$23$ \( T^{12} + \cdots + 12\!\cdots\!24 \) Copy content Toggle raw display
$29$ \( (T^{6} - 36 T^{5} + \cdots - 12566720)^{2} \) Copy content Toggle raw display
$31$ \( T^{12} + \cdots + 128544076201984 \) Copy content Toggle raw display
$37$ \( (T^{6} + 44 T^{5} + \cdots - 155225024)^{2} \) Copy content Toggle raw display
$41$ \( (T^{6} - 100 T^{5} + \cdots + 8374720)^{2} \) Copy content Toggle raw display
$43$ \( T^{12} + \cdots + 49\!\cdots\!64 \) Copy content Toggle raw display
$47$ \( T^{12} + \cdots + 47\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( (T^{6} - 52 T^{5} + \cdots - 11239563200)^{2} \) Copy content Toggle raw display
$59$ \( T^{12} + \cdots + 90\!\cdots\!56 \) Copy content Toggle raw display
$61$ \( (T^{6} + 52 T^{5} + \cdots + 44445760)^{2} \) Copy content Toggle raw display
$67$ \( T^{12} + \cdots + 13\!\cdots\!24 \) Copy content Toggle raw display
$71$ \( T^{12} + \cdots + 19\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( (T^{6} + 156 T^{5} + \cdots + 11256899392)^{2} \) Copy content Toggle raw display
$79$ \( T^{12} + \cdots + 84\!\cdots\!44 \) Copy content Toggle raw display
$83$ \( T^{12} + \cdots + 25\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( (T^{6} - 276 T^{5} + \cdots + 733352728000)^{2} \) Copy content Toggle raw display
$97$ \( (T^{6} - 132 T^{5} + \cdots - 290193606848)^{2} \) Copy content Toggle raw display
show more
show less