Properties

Label 5819.2.a.u.1.16
Level $5819$
Weight $2$
Character 5819.1
Self dual yes
Analytic conductor $46.465$
Analytic rank $0$
Dimension $60$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5819,2,Mod(1,5819)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5819, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5819.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5819 = 11 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5819.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [60,5,9,73,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.4649489362\)
Analytic rank: \(0\)
Dimension: \(60\)
Twist minimal: no (minimal twist has level 253)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.16
Character \(\chi\) \(=\) 5819.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41986 q^{2} -1.33152 q^{3} +0.0159886 q^{4} -3.46743 q^{5} +1.89056 q^{6} -4.25485 q^{7} +2.81701 q^{8} -1.22706 q^{9} +4.92324 q^{10} +1.00000 q^{11} -0.0212892 q^{12} +4.11273 q^{13} +6.04128 q^{14} +4.61694 q^{15} -4.03172 q^{16} +4.97059 q^{17} +1.74224 q^{18} -4.15019 q^{19} -0.0554394 q^{20} +5.66542 q^{21} -1.41986 q^{22} -3.75090 q^{24} +7.02304 q^{25} -5.83949 q^{26} +5.62841 q^{27} -0.0680293 q^{28} -4.41798 q^{29} -6.55539 q^{30} -5.73794 q^{31} +0.0904432 q^{32} -1.33152 q^{33} -7.05752 q^{34} +14.7534 q^{35} -0.0196190 q^{36} +8.00763 q^{37} +5.89267 q^{38} -5.47619 q^{39} -9.76777 q^{40} -8.40892 q^{41} -8.04408 q^{42} -2.20336 q^{43} +0.0159886 q^{44} +4.25472 q^{45} +5.39036 q^{47} +5.36832 q^{48} +11.1038 q^{49} -9.97170 q^{50} -6.61844 q^{51} +0.0657570 q^{52} +1.58092 q^{53} -7.99152 q^{54} -3.46743 q^{55} -11.9860 q^{56} +5.52606 q^{57} +6.27290 q^{58} +2.29767 q^{59} +0.0738187 q^{60} -11.8411 q^{61} +8.14704 q^{62} +5.22094 q^{63} +7.93503 q^{64} -14.2606 q^{65} +1.89056 q^{66} -11.8408 q^{67} +0.0794730 q^{68} -20.9477 q^{70} -2.81554 q^{71} -3.45663 q^{72} +8.31668 q^{73} -11.3697 q^{74} -9.35131 q^{75} -0.0663559 q^{76} -4.25485 q^{77} +7.77539 q^{78} -7.13322 q^{79} +13.9797 q^{80} -3.81317 q^{81} +11.9394 q^{82} +1.35058 q^{83} +0.0905824 q^{84} -17.2352 q^{85} +3.12846 q^{86} +5.88263 q^{87} +2.81701 q^{88} -2.64145 q^{89} -6.04109 q^{90} -17.4991 q^{91} +7.64017 q^{93} -7.65353 q^{94} +14.3905 q^{95} -0.120427 q^{96} -10.2232 q^{97} -15.7658 q^{98} -1.22706 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q + 5 q^{2} + 9 q^{3} + 73 q^{4} + 8 q^{5} + 26 q^{6} + 30 q^{8} + 75 q^{9} - 7 q^{10} + 60 q^{11} + 41 q^{12} + 46 q^{13} + 16 q^{14} + 4 q^{15} + 99 q^{16} - 5 q^{17} + 36 q^{18} - 8 q^{19} + 82 q^{20}+ \cdots + 75 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.41986 −1.00399 −0.501995 0.864871i \(-0.667400\pi\)
−0.501995 + 0.864871i \(0.667400\pi\)
\(3\) −1.33152 −0.768753 −0.384377 0.923176i \(-0.625584\pi\)
−0.384377 + 0.923176i \(0.625584\pi\)
\(4\) 0.0159886 0.00799432
\(5\) −3.46743 −1.55068 −0.775340 0.631544i \(-0.782421\pi\)
−0.775340 + 0.631544i \(0.782421\pi\)
\(6\) 1.89056 0.771820
\(7\) −4.25485 −1.60818 −0.804092 0.594505i \(-0.797348\pi\)
−0.804092 + 0.594505i \(0.797348\pi\)
\(8\) 2.81701 0.995963
\(9\) −1.22706 −0.409019
\(10\) 4.92324 1.55687
\(11\) 1.00000 0.301511
\(12\) −0.0212892 −0.00614566
\(13\) 4.11273 1.14067 0.570334 0.821413i \(-0.306814\pi\)
0.570334 + 0.821413i \(0.306814\pi\)
\(14\) 6.04128 1.61460
\(15\) 4.61694 1.19209
\(16\) −4.03172 −1.00793
\(17\) 4.97059 1.20555 0.602773 0.797913i \(-0.294063\pi\)
0.602773 + 0.797913i \(0.294063\pi\)
\(18\) 1.74224 0.410650
\(19\) −4.15019 −0.952119 −0.476060 0.879413i \(-0.657935\pi\)
−0.476060 + 0.879413i \(0.657935\pi\)
\(20\) −0.0554394 −0.0123966
\(21\) 5.66542 1.23630
\(22\) −1.41986 −0.302714
\(23\) 0 0
\(24\) −3.75090 −0.765650
\(25\) 7.02304 1.40461
\(26\) −5.83949 −1.14522
\(27\) 5.62841 1.08319
\(28\) −0.0680293 −0.0128563
\(29\) −4.41798 −0.820399 −0.410199 0.911996i \(-0.634541\pi\)
−0.410199 + 0.911996i \(0.634541\pi\)
\(30\) −6.55539 −1.19685
\(31\) −5.73794 −1.03056 −0.515282 0.857021i \(-0.672313\pi\)
−0.515282 + 0.857021i \(0.672313\pi\)
\(32\) 0.0904432 0.0159883
\(33\) −1.33152 −0.231788
\(34\) −7.05752 −1.21035
\(35\) 14.7534 2.49378
\(36\) −0.0196190 −0.00326983
\(37\) 8.00763 1.31645 0.658223 0.752823i \(-0.271308\pi\)
0.658223 + 0.752823i \(0.271308\pi\)
\(38\) 5.89267 0.955917
\(39\) −5.47619 −0.876892
\(40\) −9.76777 −1.54442
\(41\) −8.40892 −1.31325 −0.656626 0.754216i \(-0.728017\pi\)
−0.656626 + 0.754216i \(0.728017\pi\)
\(42\) −8.04408 −1.24123
\(43\) −2.20336 −0.336010 −0.168005 0.985786i \(-0.553732\pi\)
−0.168005 + 0.985786i \(0.553732\pi\)
\(44\) 0.0159886 0.00241038
\(45\) 4.25472 0.634257
\(46\) 0 0
\(47\) 5.39036 0.786265 0.393133 0.919482i \(-0.371391\pi\)
0.393133 + 0.919482i \(0.371391\pi\)
\(48\) 5.36832 0.774850
\(49\) 11.1038 1.58625
\(50\) −9.97170 −1.41021
\(51\) −6.61844 −0.926767
\(52\) 0.0657570 0.00911886
\(53\) 1.58092 0.217156 0.108578 0.994088i \(-0.465370\pi\)
0.108578 + 0.994088i \(0.465370\pi\)
\(54\) −7.99152 −1.08751
\(55\) −3.46743 −0.467548
\(56\) −11.9860 −1.60169
\(57\) 5.52606 0.731945
\(58\) 6.27290 0.823672
\(59\) 2.29767 0.299131 0.149565 0.988752i \(-0.452213\pi\)
0.149565 + 0.988752i \(0.452213\pi\)
\(60\) 0.0738187 0.00952995
\(61\) −11.8411 −1.51610 −0.758051 0.652195i \(-0.773848\pi\)
−0.758051 + 0.652195i \(0.773848\pi\)
\(62\) 8.14704 1.03467
\(63\) 5.22094 0.657777
\(64\) 7.93503 0.991878
\(65\) −14.2606 −1.76881
\(66\) 1.89056 0.232712
\(67\) −11.8408 −1.44658 −0.723289 0.690545i \(-0.757371\pi\)
−0.723289 + 0.690545i \(0.757371\pi\)
\(68\) 0.0794730 0.00963752
\(69\) 0 0
\(70\) −20.9477 −2.50373
\(71\) −2.81554 −0.334143 −0.167072 0.985945i \(-0.553431\pi\)
−0.167072 + 0.985945i \(0.553431\pi\)
\(72\) −3.45663 −0.407367
\(73\) 8.31668 0.973393 0.486697 0.873571i \(-0.338202\pi\)
0.486697 + 0.873571i \(0.338202\pi\)
\(74\) −11.3697 −1.32170
\(75\) −9.35131 −1.07980
\(76\) −0.0663559 −0.00761155
\(77\) −4.25485 −0.484886
\(78\) 7.77539 0.880390
\(79\) −7.13322 −0.802550 −0.401275 0.915958i \(-0.631433\pi\)
−0.401275 + 0.915958i \(0.631433\pi\)
\(80\) 13.9797 1.56298
\(81\) −3.81317 −0.423685
\(82\) 11.9394 1.31849
\(83\) 1.35058 0.148245 0.0741225 0.997249i \(-0.476384\pi\)
0.0741225 + 0.997249i \(0.476384\pi\)
\(84\) 0.0905824 0.00988335
\(85\) −17.2352 −1.86942
\(86\) 3.12846 0.337350
\(87\) 5.88263 0.630684
\(88\) 2.81701 0.300294
\(89\) −2.64145 −0.279993 −0.139997 0.990152i \(-0.544709\pi\)
−0.139997 + 0.990152i \(0.544709\pi\)
\(90\) −6.04109 −0.636787
\(91\) −17.4991 −1.83440
\(92\) 0 0
\(93\) 7.64017 0.792249
\(94\) −7.65353 −0.789402
\(95\) 14.3905 1.47643
\(96\) −0.120427 −0.0122910
\(97\) −10.2232 −1.03801 −0.519006 0.854771i \(-0.673698\pi\)
−0.519006 + 0.854771i \(0.673698\pi\)
\(98\) −15.7658 −1.59258
\(99\) −1.22706 −0.123324
\(100\) 0.112289 0.0112289
\(101\) −8.37347 −0.833191 −0.416596 0.909092i \(-0.636777\pi\)
−0.416596 + 0.909092i \(0.636777\pi\)
\(102\) 9.39723 0.930464
\(103\) −15.8814 −1.56484 −0.782422 0.622749i \(-0.786016\pi\)
−0.782422 + 0.622749i \(0.786016\pi\)
\(104\) 11.5856 1.13606
\(105\) −19.6444 −1.91710
\(106\) −2.24468 −0.218023
\(107\) −10.8092 −1.04497 −0.522484 0.852649i \(-0.674994\pi\)
−0.522484 + 0.852649i \(0.674994\pi\)
\(108\) 0.0899906 0.00865935
\(109\) 2.15190 0.206115 0.103057 0.994675i \(-0.467137\pi\)
0.103057 + 0.994675i \(0.467137\pi\)
\(110\) 4.92324 0.469413
\(111\) −10.6623 −1.01202
\(112\) 17.1544 1.62094
\(113\) −13.8690 −1.30468 −0.652342 0.757925i \(-0.726213\pi\)
−0.652342 + 0.757925i \(0.726213\pi\)
\(114\) −7.84621 −0.734865
\(115\) 0 0
\(116\) −0.0706375 −0.00655853
\(117\) −5.04656 −0.466554
\(118\) −3.26236 −0.300324
\(119\) −21.1491 −1.93874
\(120\) 13.0060 1.18728
\(121\) 1.00000 0.0909091
\(122\) 16.8127 1.52215
\(123\) 11.1966 1.00957
\(124\) −0.0917418 −0.00823866
\(125\) −7.01473 −0.627417
\(126\) −7.41298 −0.660401
\(127\) 8.98982 0.797718 0.398859 0.917012i \(-0.369406\pi\)
0.398859 + 0.917012i \(0.369406\pi\)
\(128\) −11.4475 −1.01182
\(129\) 2.93382 0.258309
\(130\) 20.2480 1.77587
\(131\) 3.56452 0.311434 0.155717 0.987802i \(-0.450231\pi\)
0.155717 + 0.987802i \(0.450231\pi\)
\(132\) −0.0212892 −0.00185299
\(133\) 17.6585 1.53118
\(134\) 16.8122 1.45235
\(135\) −19.5161 −1.67968
\(136\) 14.0022 1.20068
\(137\) −5.76972 −0.492940 −0.246470 0.969150i \(-0.579271\pi\)
−0.246470 + 0.969150i \(0.579271\pi\)
\(138\) 0 0
\(139\) −10.0047 −0.848589 −0.424294 0.905524i \(-0.639478\pi\)
−0.424294 + 0.905524i \(0.639478\pi\)
\(140\) 0.235887 0.0199361
\(141\) −7.17737 −0.604444
\(142\) 3.99766 0.335476
\(143\) 4.11273 0.343924
\(144\) 4.94715 0.412262
\(145\) 15.3190 1.27218
\(146\) −11.8085 −0.977276
\(147\) −14.7849 −1.21944
\(148\) 0.128031 0.0105241
\(149\) 11.4806 0.940525 0.470263 0.882526i \(-0.344159\pi\)
0.470263 + 0.882526i \(0.344159\pi\)
\(150\) 13.2775 1.08410
\(151\) −15.2754 −1.24309 −0.621547 0.783377i \(-0.713495\pi\)
−0.621547 + 0.783377i \(0.713495\pi\)
\(152\) −11.6911 −0.948276
\(153\) −6.09920 −0.493091
\(154\) 6.04128 0.486820
\(155\) 19.8959 1.59807
\(156\) −0.0875568 −0.00701015
\(157\) −12.3833 −0.988291 −0.494146 0.869379i \(-0.664519\pi\)
−0.494146 + 0.869379i \(0.664519\pi\)
\(158\) 10.1281 0.805751
\(159\) −2.10503 −0.166940
\(160\) −0.313605 −0.0247927
\(161\) 0 0
\(162\) 5.41414 0.425375
\(163\) −5.80185 −0.454436 −0.227218 0.973844i \(-0.572963\pi\)
−0.227218 + 0.973844i \(0.572963\pi\)
\(164\) −0.134447 −0.0104986
\(165\) 4.61694 0.359429
\(166\) −1.91762 −0.148836
\(167\) −7.39060 −0.571902 −0.285951 0.958244i \(-0.592309\pi\)
−0.285951 + 0.958244i \(0.592309\pi\)
\(168\) 15.9595 1.23131
\(169\) 3.91459 0.301122
\(170\) 24.4714 1.87687
\(171\) 5.09252 0.389435
\(172\) −0.0352288 −0.00268617
\(173\) 18.2061 1.38418 0.692092 0.721809i \(-0.256689\pi\)
0.692092 + 0.721809i \(0.256689\pi\)
\(174\) −8.35248 −0.633200
\(175\) −29.8820 −2.25887
\(176\) −4.03172 −0.303902
\(177\) −3.05939 −0.229958
\(178\) 3.75048 0.281110
\(179\) −15.8020 −1.18110 −0.590550 0.807001i \(-0.701089\pi\)
−0.590550 + 0.807001i \(0.701089\pi\)
\(180\) 0.0680273 0.00507045
\(181\) −6.12247 −0.455079 −0.227540 0.973769i \(-0.573068\pi\)
−0.227540 + 0.973769i \(0.573068\pi\)
\(182\) 24.8462 1.84172
\(183\) 15.7667 1.16551
\(184\) 0 0
\(185\) −27.7659 −2.04139
\(186\) −10.8479 −0.795410
\(187\) 4.97059 0.363486
\(188\) 0.0861846 0.00628566
\(189\) −23.9480 −1.74196
\(190\) −20.4324 −1.48232
\(191\) −6.73135 −0.487063 −0.243532 0.969893i \(-0.578306\pi\)
−0.243532 + 0.969893i \(0.578306\pi\)
\(192\) −10.5656 −0.762510
\(193\) 24.4458 1.75965 0.879825 0.475298i \(-0.157660\pi\)
0.879825 + 0.475298i \(0.157660\pi\)
\(194\) 14.5155 1.04215
\(195\) 18.9883 1.35978
\(196\) 0.177534 0.0126810
\(197\) 5.51418 0.392869 0.196434 0.980517i \(-0.437064\pi\)
0.196434 + 0.980517i \(0.437064\pi\)
\(198\) 1.74224 0.123816
\(199\) 26.7245 1.89445 0.947224 0.320573i \(-0.103875\pi\)
0.947224 + 0.320573i \(0.103875\pi\)
\(200\) 19.7840 1.39894
\(201\) 15.7662 1.11206
\(202\) 11.8891 0.836515
\(203\) 18.7979 1.31935
\(204\) −0.105820 −0.00740887
\(205\) 29.1573 2.03643
\(206\) 22.5493 1.57109
\(207\) 0 0
\(208\) −16.5814 −1.14971
\(209\) −4.15019 −0.287075
\(210\) 27.8922 1.92475
\(211\) −3.52799 −0.242877 −0.121438 0.992599i \(-0.538751\pi\)
−0.121438 + 0.992599i \(0.538751\pi\)
\(212\) 0.0252768 0.00173602
\(213\) 3.74895 0.256874
\(214\) 15.3475 1.04914
\(215\) 7.64000 0.521043
\(216\) 15.8553 1.07881
\(217\) 24.4141 1.65734
\(218\) −3.05539 −0.206937
\(219\) −11.0738 −0.748299
\(220\) −0.0554394 −0.00373772
\(221\) 20.4427 1.37513
\(222\) 15.1389 1.01606
\(223\) 4.70392 0.314998 0.157499 0.987519i \(-0.449657\pi\)
0.157499 + 0.987519i \(0.449657\pi\)
\(224\) −0.384823 −0.0257121
\(225\) −8.61766 −0.574511
\(226\) 19.6919 1.30989
\(227\) −2.79246 −0.185342 −0.0926710 0.995697i \(-0.529540\pi\)
−0.0926710 + 0.995697i \(0.529540\pi\)
\(228\) 0.0883542 0.00585140
\(229\) −16.4011 −1.08382 −0.541908 0.840438i \(-0.682298\pi\)
−0.541908 + 0.840438i \(0.682298\pi\)
\(230\) 0 0
\(231\) 5.66542 0.372757
\(232\) −12.4455 −0.817087
\(233\) −25.5279 −1.67239 −0.836195 0.548432i \(-0.815225\pi\)
−0.836195 + 0.548432i \(0.815225\pi\)
\(234\) 7.16538 0.468415
\(235\) −18.6907 −1.21925
\(236\) 0.0367366 0.00239135
\(237\) 9.49802 0.616963
\(238\) 30.0287 1.94647
\(239\) 10.2850 0.665282 0.332641 0.943053i \(-0.392060\pi\)
0.332641 + 0.943053i \(0.392060\pi\)
\(240\) −18.6142 −1.20154
\(241\) 28.1266 1.81179 0.905895 0.423502i \(-0.139199\pi\)
0.905895 + 0.423502i \(0.139199\pi\)
\(242\) −1.41986 −0.0912717
\(243\) −11.8079 −0.757478
\(244\) −0.189324 −0.0121202
\(245\) −38.5015 −2.45977
\(246\) −15.8976 −1.01359
\(247\) −17.0686 −1.08605
\(248\) −16.1638 −1.02640
\(249\) −1.79832 −0.113964
\(250\) 9.95990 0.629920
\(251\) −17.5538 −1.10799 −0.553993 0.832521i \(-0.686897\pi\)
−0.553993 + 0.832521i \(0.686897\pi\)
\(252\) 0.0834758 0.00525848
\(253\) 0 0
\(254\) −12.7642 −0.800900
\(255\) 22.9489 1.43712
\(256\) 0.383703 0.0239814
\(257\) 22.4943 1.40316 0.701579 0.712591i \(-0.252479\pi\)
0.701579 + 0.712591i \(0.252479\pi\)
\(258\) −4.16560 −0.259339
\(259\) −34.0713 −2.11709
\(260\) −0.228008 −0.0141404
\(261\) 5.42111 0.335558
\(262\) −5.06111 −0.312676
\(263\) −7.92185 −0.488482 −0.244241 0.969715i \(-0.578539\pi\)
−0.244241 + 0.969715i \(0.578539\pi\)
\(264\) −3.75090 −0.230852
\(265\) −5.48173 −0.336740
\(266\) −25.0725 −1.53729
\(267\) 3.51714 0.215246
\(268\) −0.189317 −0.0115644
\(269\) 27.0233 1.64764 0.823819 0.566853i \(-0.191839\pi\)
0.823819 + 0.566853i \(0.191839\pi\)
\(270\) 27.7100 1.68638
\(271\) 15.1859 0.922476 0.461238 0.887276i \(-0.347405\pi\)
0.461238 + 0.887276i \(0.347405\pi\)
\(272\) −20.0400 −1.21511
\(273\) 23.3004 1.41020
\(274\) 8.19216 0.494907
\(275\) 7.02304 0.423505
\(276\) 0 0
\(277\) 13.5783 0.815844 0.407922 0.913017i \(-0.366254\pi\)
0.407922 + 0.913017i \(0.366254\pi\)
\(278\) 14.2052 0.851974
\(279\) 7.04077 0.421520
\(280\) 41.5604 2.48371
\(281\) −1.23677 −0.0737795 −0.0368898 0.999319i \(-0.511745\pi\)
−0.0368898 + 0.999319i \(0.511745\pi\)
\(282\) 10.1908 0.606855
\(283\) −7.34610 −0.436680 −0.218340 0.975873i \(-0.570064\pi\)
−0.218340 + 0.975873i \(0.570064\pi\)
\(284\) −0.0450166 −0.00267125
\(285\) −19.1612 −1.13501
\(286\) −5.83949 −0.345296
\(287\) 35.7787 2.11195
\(288\) −0.110979 −0.00653950
\(289\) 7.70679 0.453340
\(290\) −21.7508 −1.27725
\(291\) 13.6124 0.797975
\(292\) 0.132972 0.00778162
\(293\) −28.7651 −1.68047 −0.840236 0.542220i \(-0.817584\pi\)
−0.840236 + 0.542220i \(0.817584\pi\)
\(294\) 20.9924 1.22430
\(295\) −7.96699 −0.463856
\(296\) 22.5576 1.31113
\(297\) 5.62841 0.326593
\(298\) −16.3008 −0.944277
\(299\) 0 0
\(300\) −0.149515 −0.00863224
\(301\) 9.37499 0.540365
\(302\) 21.6888 1.24805
\(303\) 11.1494 0.640518
\(304\) 16.7324 0.959670
\(305\) 41.0583 2.35099
\(306\) 8.65997 0.495058
\(307\) −29.3547 −1.67536 −0.837681 0.546160i \(-0.816089\pi\)
−0.837681 + 0.546160i \(0.816089\pi\)
\(308\) −0.0680293 −0.00387633
\(309\) 21.1464 1.20298
\(310\) −28.2492 −1.60445
\(311\) −12.4466 −0.705781 −0.352891 0.935665i \(-0.614801\pi\)
−0.352891 + 0.935665i \(0.614801\pi\)
\(312\) −15.4265 −0.873352
\(313\) −12.7455 −0.720417 −0.360208 0.932872i \(-0.617294\pi\)
−0.360208 + 0.932872i \(0.617294\pi\)
\(314\) 17.5824 0.992234
\(315\) −18.1032 −1.02000
\(316\) −0.114050 −0.00641584
\(317\) −13.1679 −0.739584 −0.369792 0.929115i \(-0.620571\pi\)
−0.369792 + 0.929115i \(0.620571\pi\)
\(318\) 2.98884 0.167606
\(319\) −4.41798 −0.247360
\(320\) −27.5141 −1.53809
\(321\) 14.3927 0.803322
\(322\) 0 0
\(323\) −20.6289 −1.14782
\(324\) −0.0609673 −0.00338707
\(325\) 28.8839 1.60219
\(326\) 8.23779 0.456249
\(327\) −2.86530 −0.158451
\(328\) −23.6880 −1.30795
\(329\) −22.9352 −1.26446
\(330\) −6.55539 −0.360862
\(331\) 11.3673 0.624801 0.312401 0.949950i \(-0.398867\pi\)
0.312401 + 0.949950i \(0.398867\pi\)
\(332\) 0.0215939 0.00118512
\(333\) −9.82581 −0.538451
\(334\) 10.4936 0.574183
\(335\) 41.0569 2.24318
\(336\) −22.8414 −1.24610
\(337\) 1.94561 0.105984 0.0529921 0.998595i \(-0.483124\pi\)
0.0529921 + 0.998595i \(0.483124\pi\)
\(338\) −5.55815 −0.302323
\(339\) 18.4668 1.00298
\(340\) −0.275567 −0.0149447
\(341\) −5.73794 −0.310727
\(342\) −7.23064 −0.390988
\(343\) −17.4610 −0.942804
\(344\) −6.20689 −0.334653
\(345\) 0 0
\(346\) −25.8500 −1.38971
\(347\) 14.5545 0.781326 0.390663 0.920534i \(-0.372246\pi\)
0.390663 + 0.920534i \(0.372246\pi\)
\(348\) 0.0940552 0.00504189
\(349\) −2.44728 −0.131000 −0.0655000 0.997853i \(-0.520864\pi\)
−0.0655000 + 0.997853i \(0.520864\pi\)
\(350\) 42.4281 2.26788
\(351\) 23.1481 1.23556
\(352\) 0.0904432 0.00482064
\(353\) 2.74658 0.146185 0.0730927 0.997325i \(-0.476713\pi\)
0.0730927 + 0.997325i \(0.476713\pi\)
\(354\) 4.34389 0.230875
\(355\) 9.76267 0.518149
\(356\) −0.0422332 −0.00223836
\(357\) 28.1605 1.49041
\(358\) 22.4366 1.18581
\(359\) −20.0584 −1.05864 −0.529322 0.848421i \(-0.677553\pi\)
−0.529322 + 0.848421i \(0.677553\pi\)
\(360\) 11.9856 0.631696
\(361\) −1.77591 −0.0934689
\(362\) 8.69301 0.456895
\(363\) −1.33152 −0.0698866
\(364\) −0.279787 −0.0146648
\(365\) −28.8375 −1.50942
\(366\) −22.3864 −1.17016
\(367\) 20.1214 1.05033 0.525164 0.851001i \(-0.324004\pi\)
0.525164 + 0.851001i \(0.324004\pi\)
\(368\) 0 0
\(369\) 10.3182 0.537145
\(370\) 39.4235 2.04953
\(371\) −6.72659 −0.349227
\(372\) 0.122156 0.00633349
\(373\) 11.1779 0.578772 0.289386 0.957212i \(-0.406549\pi\)
0.289386 + 0.957212i \(0.406549\pi\)
\(374\) −7.05752 −0.364936
\(375\) 9.34025 0.482328
\(376\) 15.1847 0.783091
\(377\) −18.1700 −0.935802
\(378\) 34.0028 1.74891
\(379\) 9.06120 0.465443 0.232721 0.972543i \(-0.425237\pi\)
0.232721 + 0.972543i \(0.425237\pi\)
\(380\) 0.230084 0.0118031
\(381\) −11.9701 −0.613248
\(382\) 9.55754 0.489006
\(383\) −24.2624 −1.23975 −0.619876 0.784700i \(-0.712817\pi\)
−0.619876 + 0.784700i \(0.712817\pi\)
\(384\) 15.2425 0.777842
\(385\) 14.7534 0.751902
\(386\) −34.7095 −1.76667
\(387\) 2.70365 0.137434
\(388\) −0.163455 −0.00829820
\(389\) 11.6427 0.590309 0.295155 0.955450i \(-0.404629\pi\)
0.295155 + 0.955450i \(0.404629\pi\)
\(390\) −26.9606 −1.36520
\(391\) 0 0
\(392\) 31.2794 1.57985
\(393\) −4.74623 −0.239416
\(394\) −7.82933 −0.394436
\(395\) 24.7339 1.24450
\(396\) −0.0196190 −0.000985890 0
\(397\) 13.1831 0.661643 0.330822 0.943693i \(-0.392674\pi\)
0.330822 + 0.943693i \(0.392674\pi\)
\(398\) −37.9449 −1.90200
\(399\) −23.5126 −1.17710
\(400\) −28.3149 −1.41575
\(401\) −19.0198 −0.949801 −0.474901 0.880039i \(-0.657516\pi\)
−0.474901 + 0.880039i \(0.657516\pi\)
\(402\) −22.3857 −1.11650
\(403\) −23.5986 −1.17553
\(404\) −0.133880 −0.00666080
\(405\) 13.2219 0.657000
\(406\) −26.6903 −1.32462
\(407\) 8.00763 0.396924
\(408\) −18.6442 −0.923026
\(409\) 3.24464 0.160437 0.0802185 0.996777i \(-0.474438\pi\)
0.0802185 + 0.996777i \(0.474438\pi\)
\(410\) −41.3991 −2.04456
\(411\) 7.68249 0.378949
\(412\) −0.253922 −0.0125099
\(413\) −9.77624 −0.481057
\(414\) 0 0
\(415\) −4.68302 −0.229880
\(416\) 0.371969 0.0182373
\(417\) 13.3215 0.652355
\(418\) 5.89267 0.288220
\(419\) 23.0669 1.12689 0.563447 0.826153i \(-0.309475\pi\)
0.563447 + 0.826153i \(0.309475\pi\)
\(420\) −0.314088 −0.0153259
\(421\) −6.57652 −0.320520 −0.160260 0.987075i \(-0.551233\pi\)
−0.160260 + 0.987075i \(0.551233\pi\)
\(422\) 5.00923 0.243846
\(423\) −6.61428 −0.321597
\(424\) 4.45347 0.216280
\(425\) 34.9087 1.69332
\(426\) −5.32296 −0.257898
\(427\) 50.3823 2.43817
\(428\) −0.172825 −0.00835380
\(429\) −5.47619 −0.264393
\(430\) −10.8477 −0.523122
\(431\) 17.4665 0.841331 0.420665 0.907216i \(-0.361797\pi\)
0.420665 + 0.907216i \(0.361797\pi\)
\(432\) −22.6922 −1.09178
\(433\) −30.8815 −1.48407 −0.742036 0.670360i \(-0.766140\pi\)
−0.742036 + 0.670360i \(0.766140\pi\)
\(434\) −34.6645 −1.66395
\(435\) −20.3976 −0.977989
\(436\) 0.0344060 0.00164775
\(437\) 0 0
\(438\) 15.7232 0.751284
\(439\) −22.6301 −1.08007 −0.540037 0.841641i \(-0.681590\pi\)
−0.540037 + 0.841641i \(0.681590\pi\)
\(440\) −9.76777 −0.465660
\(441\) −13.6250 −0.648808
\(442\) −29.0257 −1.38061
\(443\) −10.9018 −0.517959 −0.258980 0.965883i \(-0.583386\pi\)
−0.258980 + 0.965883i \(0.583386\pi\)
\(444\) −0.170476 −0.00809043
\(445\) 9.15903 0.434180
\(446\) −6.67889 −0.316254
\(447\) −15.2866 −0.723032
\(448\) −33.7624 −1.59512
\(449\) 14.0363 0.662414 0.331207 0.943558i \(-0.392544\pi\)
0.331207 + 0.943558i \(0.392544\pi\)
\(450\) 12.2358 0.576803
\(451\) −8.40892 −0.395960
\(452\) −0.221746 −0.0104301
\(453\) 20.3395 0.955632
\(454\) 3.96489 0.186081
\(455\) 60.6768 2.84457
\(456\) 15.5670 0.728990
\(457\) −16.1729 −0.756537 −0.378268 0.925696i \(-0.623480\pi\)
−0.378268 + 0.925696i \(0.623480\pi\)
\(458\) 23.2872 1.08814
\(459\) 27.9765 1.30583
\(460\) 0 0
\(461\) −7.55235 −0.351748 −0.175874 0.984413i \(-0.556275\pi\)
−0.175874 + 0.984413i \(0.556275\pi\)
\(462\) −8.04408 −0.374244
\(463\) −0.844737 −0.0392583 −0.0196291 0.999807i \(-0.506249\pi\)
−0.0196291 + 0.999807i \(0.506249\pi\)
\(464\) 17.8121 0.826905
\(465\) −26.4917 −1.22852
\(466\) 36.2460 1.67906
\(467\) −13.9752 −0.646693 −0.323347 0.946281i \(-0.604808\pi\)
−0.323347 + 0.946281i \(0.604808\pi\)
\(468\) −0.0806876 −0.00372978
\(469\) 50.3807 2.32636
\(470\) 26.5381 1.22411
\(471\) 16.4885 0.759752
\(472\) 6.47255 0.297923
\(473\) −2.20336 −0.101311
\(474\) −13.4858 −0.619424
\(475\) −29.1470 −1.33735
\(476\) −0.338146 −0.0154989
\(477\) −1.93988 −0.0888210
\(478\) −14.6032 −0.667936
\(479\) −35.2408 −1.61019 −0.805096 0.593144i \(-0.797886\pi\)
−0.805096 + 0.593144i \(0.797886\pi\)
\(480\) 0.417571 0.0190594
\(481\) 32.9333 1.50163
\(482\) −39.9356 −1.81902
\(483\) 0 0
\(484\) 0.0159886 0.000726756 0
\(485\) 35.4483 1.60962
\(486\) 16.7655 0.760500
\(487\) 20.8769 0.946022 0.473011 0.881056i \(-0.343167\pi\)
0.473011 + 0.881056i \(0.343167\pi\)
\(488\) −33.3566 −1.50998
\(489\) 7.72528 0.349349
\(490\) 54.6666 2.46958
\(491\) −40.9526 −1.84817 −0.924083 0.382193i \(-0.875169\pi\)
−0.924083 + 0.382193i \(0.875169\pi\)
\(492\) 0.179019 0.00807080
\(493\) −21.9600 −0.989028
\(494\) 24.2350 1.09038
\(495\) 4.25472 0.191236
\(496\) 23.1338 1.03874
\(497\) 11.9797 0.537363
\(498\) 2.55335 0.114418
\(499\) 13.8839 0.621528 0.310764 0.950487i \(-0.399415\pi\)
0.310764 + 0.950487i \(0.399415\pi\)
\(500\) −0.112156 −0.00501577
\(501\) 9.84073 0.439651
\(502\) 24.9239 1.11241
\(503\) 18.9508 0.844974 0.422487 0.906369i \(-0.361157\pi\)
0.422487 + 0.906369i \(0.361157\pi\)
\(504\) 14.7074 0.655122
\(505\) 29.0344 1.29201
\(506\) 0 0
\(507\) −5.21235 −0.231489
\(508\) 0.143735 0.00637721
\(509\) −39.6112 −1.75574 −0.877868 0.478903i \(-0.841034\pi\)
−0.877868 + 0.478903i \(0.841034\pi\)
\(510\) −32.5842 −1.44285
\(511\) −35.3862 −1.56540
\(512\) 22.3501 0.987746
\(513\) −23.3590 −1.03132
\(514\) −31.9387 −1.40876
\(515\) 55.0677 2.42657
\(516\) 0.0469078 0.00206500
\(517\) 5.39036 0.237068
\(518\) 48.3763 2.12553
\(519\) −24.2418 −1.06410
\(520\) −40.1722 −1.76167
\(521\) −1.80696 −0.0791644 −0.0395822 0.999216i \(-0.512603\pi\)
−0.0395822 + 0.999216i \(0.512603\pi\)
\(522\) −7.69719 −0.336897
\(523\) 27.5551 1.20490 0.602450 0.798157i \(-0.294191\pi\)
0.602450 + 0.798157i \(0.294191\pi\)
\(524\) 0.0569919 0.00248970
\(525\) 39.7885 1.73651
\(526\) 11.2479 0.490431
\(527\) −28.5209 −1.24239
\(528\) 5.36832 0.233626
\(529\) 0 0
\(530\) 7.78326 0.338083
\(531\) −2.81937 −0.122350
\(532\) 0.282335 0.0122408
\(533\) −34.5837 −1.49798
\(534\) −4.99383 −0.216104
\(535\) 37.4802 1.62041
\(536\) −33.3555 −1.44074
\(537\) 21.0407 0.907974
\(538\) −38.3691 −1.65421
\(539\) 11.1038 0.478274
\(540\) −0.312036 −0.0134279
\(541\) 15.6261 0.671819 0.335910 0.941894i \(-0.390956\pi\)
0.335910 + 0.941894i \(0.390956\pi\)
\(542\) −21.5617 −0.926156
\(543\) 8.15218 0.349844
\(544\) 0.449556 0.0192746
\(545\) −7.46156 −0.319618
\(546\) −33.0832 −1.41583
\(547\) −2.25864 −0.0965723 −0.0482862 0.998834i \(-0.515376\pi\)
−0.0482862 + 0.998834i \(0.515376\pi\)
\(548\) −0.0922499 −0.00394072
\(549\) 14.5297 0.620114
\(550\) −9.97170 −0.425195
\(551\) 18.3355 0.781118
\(552\) 0 0
\(553\) 30.3508 1.29065
\(554\) −19.2793 −0.819098
\(555\) 36.9708 1.56932
\(556\) −0.159962 −0.00678389
\(557\) −29.4630 −1.24839 −0.624193 0.781270i \(-0.714572\pi\)
−0.624193 + 0.781270i \(0.714572\pi\)
\(558\) −9.99687 −0.423201
\(559\) −9.06185 −0.383275
\(560\) −59.4815 −2.51355
\(561\) −6.61844 −0.279431
\(562\) 1.75603 0.0740739
\(563\) −33.7612 −1.42287 −0.711433 0.702754i \(-0.751954\pi\)
−0.711433 + 0.702754i \(0.751954\pi\)
\(564\) −0.114756 −0.00483212
\(565\) 48.0896 2.02315
\(566\) 10.4304 0.438422
\(567\) 16.2245 0.681363
\(568\) −7.93140 −0.332794
\(569\) −11.2979 −0.473631 −0.236816 0.971555i \(-0.576104\pi\)
−0.236816 + 0.971555i \(0.576104\pi\)
\(570\) 27.2061 1.13954
\(571\) −15.6585 −0.655286 −0.327643 0.944802i \(-0.606254\pi\)
−0.327643 + 0.944802i \(0.606254\pi\)
\(572\) 0.0657570 0.00274944
\(573\) 8.96292 0.374431
\(574\) −50.8006 −2.12038
\(575\) 0 0
\(576\) −9.73672 −0.405697
\(577\) 12.1962 0.507734 0.253867 0.967239i \(-0.418297\pi\)
0.253867 + 0.967239i \(0.418297\pi\)
\(578\) −10.9425 −0.455149
\(579\) −32.5501 −1.35274
\(580\) 0.244930 0.0101702
\(581\) −5.74650 −0.238405
\(582\) −19.3277 −0.801158
\(583\) 1.58092 0.0654751
\(584\) 23.4281 0.969464
\(585\) 17.4986 0.723476
\(586\) 40.8422 1.68718
\(587\) −27.1900 −1.12225 −0.561125 0.827731i \(-0.689631\pi\)
−0.561125 + 0.827731i \(0.689631\pi\)
\(588\) −0.236390 −0.00974858
\(589\) 23.8135 0.981220
\(590\) 11.3120 0.465707
\(591\) −7.34223 −0.302019
\(592\) −32.2845 −1.32689
\(593\) −22.9836 −0.943824 −0.471912 0.881646i \(-0.656436\pi\)
−0.471912 + 0.881646i \(0.656436\pi\)
\(594\) −7.99152 −0.327896
\(595\) 73.3331 3.00636
\(596\) 0.183559 0.00751886
\(597\) −35.5842 −1.45636
\(598\) 0 0
\(599\) 27.7948 1.13566 0.567832 0.823144i \(-0.307782\pi\)
0.567832 + 0.823144i \(0.307782\pi\)
\(600\) −26.3427 −1.07544
\(601\) −3.73280 −0.152264 −0.0761320 0.997098i \(-0.524257\pi\)
−0.0761320 + 0.997098i \(0.524257\pi\)
\(602\) −13.3111 −0.542521
\(603\) 14.5293 0.591677
\(604\) −0.244233 −0.00993768
\(605\) −3.46743 −0.140971
\(606\) −15.8306 −0.643073
\(607\) 19.9846 0.811152 0.405576 0.914061i \(-0.367071\pi\)
0.405576 + 0.914061i \(0.367071\pi\)
\(608\) −0.375357 −0.0152227
\(609\) −25.0297 −1.01426
\(610\) −58.2968 −2.36037
\(611\) 22.1691 0.896867
\(612\) −0.0975178 −0.00394192
\(613\) 24.0550 0.971572 0.485786 0.874078i \(-0.338533\pi\)
0.485786 + 0.874078i \(0.338533\pi\)
\(614\) 41.6794 1.68204
\(615\) −38.8235 −1.56551
\(616\) −11.9860 −0.482928
\(617\) 2.45556 0.0988570 0.0494285 0.998778i \(-0.484260\pi\)
0.0494285 + 0.998778i \(0.484260\pi\)
\(618\) −30.0249 −1.20778
\(619\) 35.5760 1.42992 0.714959 0.699166i \(-0.246445\pi\)
0.714959 + 0.699166i \(0.246445\pi\)
\(620\) 0.318108 0.0127755
\(621\) 0 0
\(622\) 17.6723 0.708597
\(623\) 11.2390 0.450281
\(624\) 22.0785 0.883846
\(625\) −10.7921 −0.431685
\(626\) 18.0967 0.723291
\(627\) 5.52606 0.220690
\(628\) −0.197991 −0.00790072
\(629\) 39.8027 1.58704
\(630\) 25.7040 1.02407
\(631\) 16.9418 0.674443 0.337221 0.941425i \(-0.390513\pi\)
0.337221 + 0.941425i \(0.390513\pi\)
\(632\) −20.0943 −0.799310
\(633\) 4.69758 0.186712
\(634\) 18.6965 0.742534
\(635\) −31.1715 −1.23700
\(636\) −0.0336565 −0.00133457
\(637\) 45.6669 1.80939
\(638\) 6.27290 0.248346
\(639\) 3.45482 0.136671
\(640\) 39.6933 1.56901
\(641\) −6.63528 −0.262078 −0.131039 0.991377i \(-0.541831\pi\)
−0.131039 + 0.991377i \(0.541831\pi\)
\(642\) −20.4355 −0.806527
\(643\) 23.8403 0.940169 0.470084 0.882621i \(-0.344223\pi\)
0.470084 + 0.882621i \(0.344223\pi\)
\(644\) 0 0
\(645\) −10.1728 −0.400554
\(646\) 29.2901 1.15240
\(647\) −5.87955 −0.231149 −0.115574 0.993299i \(-0.536871\pi\)
−0.115574 + 0.993299i \(0.536871\pi\)
\(648\) −10.7417 −0.421975
\(649\) 2.29767 0.0901913
\(650\) −41.0109 −1.60858
\(651\) −32.5078 −1.27408
\(652\) −0.0927637 −0.00363291
\(653\) −22.6519 −0.886438 −0.443219 0.896413i \(-0.646164\pi\)
−0.443219 + 0.896413i \(0.646164\pi\)
\(654\) 4.06831 0.159084
\(655\) −12.3597 −0.482934
\(656\) 33.9024 1.32367
\(657\) −10.2050 −0.398136
\(658\) 32.5647 1.26950
\(659\) 4.12553 0.160708 0.0803540 0.996766i \(-0.474395\pi\)
0.0803540 + 0.996766i \(0.474395\pi\)
\(660\) 0.0738187 0.00287339
\(661\) 0.776084 0.0301862 0.0150931 0.999886i \(-0.495196\pi\)
0.0150931 + 0.999886i \(0.495196\pi\)
\(662\) −16.1399 −0.627294
\(663\) −27.2199 −1.05713
\(664\) 3.80458 0.147647
\(665\) −61.2294 −2.37437
\(666\) 13.9512 0.540599
\(667\) 0 0
\(668\) −0.118166 −0.00457197
\(669\) −6.26336 −0.242156
\(670\) −58.2949 −2.25213
\(671\) −11.8411 −0.457122
\(672\) 0.512399 0.0197662
\(673\) 32.0088 1.23385 0.616923 0.787023i \(-0.288379\pi\)
0.616923 + 0.787023i \(0.288379\pi\)
\(674\) −2.76249 −0.106407
\(675\) 39.5285 1.52145
\(676\) 0.0625890 0.00240727
\(677\) 1.56026 0.0599658 0.0299829 0.999550i \(-0.490455\pi\)
0.0299829 + 0.999550i \(0.490455\pi\)
\(678\) −26.2202 −1.00698
\(679\) 43.4983 1.66931
\(680\) −48.5516 −1.86187
\(681\) 3.71821 0.142482
\(682\) 8.14704 0.311966
\(683\) −24.1143 −0.922710 −0.461355 0.887216i \(-0.652636\pi\)
−0.461355 + 0.887216i \(0.652636\pi\)
\(684\) 0.0814224 0.00311326
\(685\) 20.0061 0.764392
\(686\) 24.7921 0.946565
\(687\) 21.8384 0.833188
\(688\) 8.88335 0.338674
\(689\) 6.50191 0.247703
\(690\) 0 0
\(691\) −0.591070 −0.0224854 −0.0112427 0.999937i \(-0.503579\pi\)
−0.0112427 + 0.999937i \(0.503579\pi\)
\(692\) 0.291091 0.0110656
\(693\) 5.22094 0.198327
\(694\) −20.6653 −0.784443
\(695\) 34.6906 1.31589
\(696\) 16.5714 0.628138
\(697\) −41.7973 −1.58319
\(698\) 3.47478 0.131523
\(699\) 33.9909 1.28566
\(700\) −0.477772 −0.0180581
\(701\) −10.6367 −0.401741 −0.200871 0.979618i \(-0.564377\pi\)
−0.200871 + 0.979618i \(0.564377\pi\)
\(702\) −32.8670 −1.24049
\(703\) −33.2332 −1.25341
\(704\) 7.93503 0.299063
\(705\) 24.8870 0.937299
\(706\) −3.89974 −0.146769
\(707\) 35.6279 1.33992
\(708\) −0.0489155 −0.00183836
\(709\) 31.2629 1.17410 0.587052 0.809549i \(-0.300288\pi\)
0.587052 + 0.809549i \(0.300288\pi\)
\(710\) −13.8616 −0.520216
\(711\) 8.75286 0.328258
\(712\) −7.44099 −0.278863
\(713\) 0 0
\(714\) −39.9838 −1.49636
\(715\) −14.2606 −0.533316
\(716\) −0.252653 −0.00944209
\(717\) −13.6947 −0.511438
\(718\) 28.4801 1.06287
\(719\) −28.2585 −1.05386 −0.526932 0.849908i \(-0.676658\pi\)
−0.526932 + 0.849908i \(0.676658\pi\)
\(720\) −17.1539 −0.639287
\(721\) 67.5732 2.51656
\(722\) 2.52153 0.0938418
\(723\) −37.4511 −1.39282
\(724\) −0.0978899 −0.00363805
\(725\) −31.0277 −1.15234
\(726\) 1.89056 0.0701654
\(727\) −2.96743 −0.110056 −0.0550279 0.998485i \(-0.517525\pi\)
−0.0550279 + 0.998485i \(0.517525\pi\)
\(728\) −49.2951 −1.82700
\(729\) 27.1620 1.00600
\(730\) 40.9450 1.51544
\(731\) −10.9520 −0.405075
\(732\) 0.252088 0.00931744
\(733\) 17.5760 0.649184 0.324592 0.945854i \(-0.394773\pi\)
0.324592 + 0.945854i \(0.394773\pi\)
\(734\) −28.5695 −1.05452
\(735\) 51.2655 1.89096
\(736\) 0 0
\(737\) −11.8408 −0.436160
\(738\) −14.6504 −0.539288
\(739\) 7.67789 0.282436 0.141218 0.989979i \(-0.454898\pi\)
0.141218 + 0.989979i \(0.454898\pi\)
\(740\) −0.443938 −0.0163195
\(741\) 22.7272 0.834905
\(742\) 9.55079 0.350620
\(743\) −8.77222 −0.321822 −0.160911 0.986969i \(-0.551443\pi\)
−0.160911 + 0.986969i \(0.551443\pi\)
\(744\) 21.5224 0.789051
\(745\) −39.8080 −1.45845
\(746\) −15.8711 −0.581081
\(747\) −1.65723 −0.0606350
\(748\) 0.0794730 0.00290582
\(749\) 45.9917 1.68050
\(750\) −13.2618 −0.484253
\(751\) 32.8460 1.19857 0.599284 0.800537i \(-0.295452\pi\)
0.599284 + 0.800537i \(0.295452\pi\)
\(752\) −21.7324 −0.792501
\(753\) 23.3732 0.851768
\(754\) 25.7988 0.939535
\(755\) 52.9663 1.92764
\(756\) −0.382897 −0.0139258
\(757\) −19.3913 −0.704789 −0.352395 0.935851i \(-0.614633\pi\)
−0.352395 + 0.935851i \(0.614633\pi\)
\(758\) −12.8656 −0.467299
\(759\) 0 0
\(760\) 40.5381 1.47047
\(761\) −14.3064 −0.518608 −0.259304 0.965796i \(-0.583493\pi\)
−0.259304 + 0.965796i \(0.583493\pi\)
\(762\) 16.9958 0.615694
\(763\) −9.15603 −0.331471
\(764\) −0.107625 −0.00389374
\(765\) 21.1485 0.764626
\(766\) 34.4491 1.24470
\(767\) 9.44970 0.341209
\(768\) −0.510908 −0.0184358
\(769\) −39.8563 −1.43725 −0.718627 0.695395i \(-0.755229\pi\)
−0.718627 + 0.695395i \(0.755229\pi\)
\(770\) −20.9477 −0.754902
\(771\) −29.9517 −1.07868
\(772\) 0.390856 0.0140672
\(773\) 46.4739 1.67155 0.835776 0.549071i \(-0.185018\pi\)
0.835776 + 0.549071i \(0.185018\pi\)
\(774\) −3.83879 −0.137982
\(775\) −40.2977 −1.44754
\(776\) −28.7989 −1.03382
\(777\) 45.3666 1.62752
\(778\) −16.5310 −0.592664
\(779\) 34.8986 1.25037
\(780\) 0.303597 0.0108705
\(781\) −2.81554 −0.100748
\(782\) 0 0
\(783\) −24.8662 −0.888646
\(784\) −44.7673 −1.59883
\(785\) 42.9380 1.53252
\(786\) 6.73896 0.240371
\(787\) 9.44081 0.336529 0.168264 0.985742i \(-0.446184\pi\)
0.168264 + 0.985742i \(0.446184\pi\)
\(788\) 0.0881642 0.00314072
\(789\) 10.5481 0.375522
\(790\) −35.1185 −1.24946
\(791\) 59.0105 2.09817
\(792\) −3.45663 −0.122826
\(793\) −48.6995 −1.72937
\(794\) −18.7182 −0.664282
\(795\) 7.29903 0.258870
\(796\) 0.427288 0.0151448
\(797\) 16.7897 0.594721 0.297360 0.954765i \(-0.403894\pi\)
0.297360 + 0.954765i \(0.403894\pi\)
\(798\) 33.3845 1.18180
\(799\) 26.7933 0.947879
\(800\) 0.635186 0.0224572
\(801\) 3.24121 0.114522
\(802\) 27.0053 0.953590
\(803\) 8.31668 0.293489
\(804\) 0.252080 0.00889017
\(805\) 0 0
\(806\) 33.5066 1.18022
\(807\) −35.9820 −1.26663
\(808\) −23.5881 −0.829828
\(809\) −14.6664 −0.515645 −0.257822 0.966192i \(-0.583005\pi\)
−0.257822 + 0.966192i \(0.583005\pi\)
\(810\) −18.7731 −0.659621
\(811\) 6.55103 0.230038 0.115019 0.993363i \(-0.463307\pi\)
0.115019 + 0.993363i \(0.463307\pi\)
\(812\) 0.300552 0.0105473
\(813\) −20.2203 −0.709156
\(814\) −11.3697 −0.398507
\(815\) 20.1175 0.704685
\(816\) 26.6837 0.934117
\(817\) 9.14438 0.319921
\(818\) −4.60691 −0.161077
\(819\) 21.4724 0.750305
\(820\) 0.466185 0.0162799
\(821\) −27.7284 −0.967727 −0.483864 0.875143i \(-0.660767\pi\)
−0.483864 + 0.875143i \(0.660767\pi\)
\(822\) −10.9080 −0.380461
\(823\) −4.52589 −0.157763 −0.0788813 0.996884i \(-0.525135\pi\)
−0.0788813 + 0.996884i \(0.525135\pi\)
\(824\) −44.7381 −1.55853
\(825\) −9.35131 −0.325571
\(826\) 13.8808 0.482976
\(827\) 25.7608 0.895789 0.447895 0.894086i \(-0.352174\pi\)
0.447895 + 0.894086i \(0.352174\pi\)
\(828\) 0 0
\(829\) 48.0559 1.66905 0.834525 0.550971i \(-0.185742\pi\)
0.834525 + 0.550971i \(0.185742\pi\)
\(830\) 6.64921 0.230798
\(831\) −18.0798 −0.627183
\(832\) 32.6347 1.13140
\(833\) 55.1924 1.91230
\(834\) −18.9146 −0.654957
\(835\) 25.6264 0.886837
\(836\) −0.0663559 −0.00229497
\(837\) −32.2954 −1.11629
\(838\) −32.7517 −1.13139
\(839\) 52.4223 1.80982 0.904909 0.425605i \(-0.139939\pi\)
0.904909 + 0.425605i \(0.139939\pi\)
\(840\) −55.3385 −1.90936
\(841\) −9.48143 −0.326946
\(842\) 9.33771 0.321799
\(843\) 1.64678 0.0567182
\(844\) −0.0564077 −0.00194163
\(845\) −13.5735 −0.466944
\(846\) 9.39132 0.322880
\(847\) −4.25485 −0.146199
\(848\) −6.37384 −0.218878
\(849\) 9.78148 0.335699
\(850\) −49.5652 −1.70007
\(851\) 0 0
\(852\) 0.0599405 0.00205353
\(853\) 9.62649 0.329605 0.164802 0.986327i \(-0.447301\pi\)
0.164802 + 0.986327i \(0.447301\pi\)
\(854\) −71.5356 −2.44790
\(855\) −17.6579 −0.603888
\(856\) −30.4497 −1.04075
\(857\) −39.4771 −1.34851 −0.674257 0.738497i \(-0.735536\pi\)
−0.674257 + 0.738497i \(0.735536\pi\)
\(858\) 7.77539 0.265447
\(859\) −13.2627 −0.452516 −0.226258 0.974067i \(-0.572649\pi\)
−0.226258 + 0.974067i \(0.572649\pi\)
\(860\) 0.122153 0.00416539
\(861\) −47.6401 −1.62357
\(862\) −24.7999 −0.844687
\(863\) −51.7611 −1.76197 −0.880983 0.473147i \(-0.843118\pi\)
−0.880983 + 0.473147i \(0.843118\pi\)
\(864\) 0.509051 0.0173183
\(865\) −63.1283 −2.14643
\(866\) 43.8473 1.48999
\(867\) −10.2617 −0.348507
\(868\) 0.390348 0.0132493
\(869\) −7.13322 −0.241978
\(870\) 28.9616 0.981890
\(871\) −48.6979 −1.65006
\(872\) 6.06193 0.205283
\(873\) 12.5445 0.424566
\(874\) 0 0
\(875\) 29.8467 1.00900
\(876\) −0.177055 −0.00598214
\(877\) 14.9319 0.504214 0.252107 0.967699i \(-0.418876\pi\)
0.252107 + 0.967699i \(0.418876\pi\)
\(878\) 32.1314 1.08438
\(879\) 38.3012 1.29187
\(880\) 13.9797 0.471255
\(881\) 38.7572 1.30576 0.652882 0.757460i \(-0.273560\pi\)
0.652882 + 0.757460i \(0.273560\pi\)
\(882\) 19.3455 0.651396
\(883\) −58.1505 −1.95692 −0.978461 0.206433i \(-0.933814\pi\)
−0.978461 + 0.206433i \(0.933814\pi\)
\(884\) 0.326851 0.0109932
\(885\) 10.6082 0.356591
\(886\) 15.4790 0.520026
\(887\) 18.4519 0.619554 0.309777 0.950809i \(-0.399746\pi\)
0.309777 + 0.950809i \(0.399746\pi\)
\(888\) −30.0358 −1.00794
\(889\) −38.2504 −1.28288
\(890\) −13.0045 −0.435912
\(891\) −3.81317 −0.127746
\(892\) 0.0752093 0.00251819
\(893\) −22.3710 −0.748618
\(894\) 21.7048 0.725916
\(895\) 54.7924 1.83151
\(896\) 48.7073 1.62720
\(897\) 0 0
\(898\) −19.9295 −0.665056
\(899\) 25.3501 0.845473
\(900\) −0.137785 −0.00459282
\(901\) 7.85812 0.261792
\(902\) 11.9394 0.397540
\(903\) −12.4830 −0.415407
\(904\) −39.0690 −1.29942
\(905\) 21.2292 0.705682
\(906\) −28.8791 −0.959444
\(907\) −39.6171 −1.31547 −0.657733 0.753251i \(-0.728484\pi\)
−0.657733 + 0.753251i \(0.728484\pi\)
\(908\) −0.0446476 −0.00148168
\(909\) 10.2747 0.340791
\(910\) −86.1522 −2.85592
\(911\) −47.2068 −1.56403 −0.782015 0.623260i \(-0.785808\pi\)
−0.782015 + 0.623260i \(0.785808\pi\)
\(912\) −22.2795 −0.737749
\(913\) 1.35058 0.0446975
\(914\) 22.9632 0.759555
\(915\) −54.6699 −1.80733
\(916\) −0.262232 −0.00866438
\(917\) −15.1665 −0.500843
\(918\) −39.7226 −1.31104
\(919\) −24.0575 −0.793585 −0.396792 0.917908i \(-0.629877\pi\)
−0.396792 + 0.917908i \(0.629877\pi\)
\(920\) 0 0
\(921\) 39.0864 1.28794
\(922\) 10.7232 0.353151
\(923\) −11.5796 −0.381146
\(924\) 0.0905824 0.00297994
\(925\) 56.2379 1.84909
\(926\) 1.19940 0.0394149
\(927\) 19.4874 0.640050
\(928\) −0.399577 −0.0131167
\(929\) 43.4438 1.42535 0.712673 0.701497i \(-0.247485\pi\)
0.712673 + 0.701497i \(0.247485\pi\)
\(930\) 37.6144 1.23343
\(931\) −46.0828 −1.51030
\(932\) −0.408157 −0.0133696
\(933\) 16.5729 0.542571
\(934\) 19.8427 0.649273
\(935\) −17.2352 −0.563650
\(936\) −14.2162 −0.464671
\(937\) 3.90690 0.127633 0.0638165 0.997962i \(-0.479673\pi\)
0.0638165 + 0.997962i \(0.479673\pi\)
\(938\) −71.5332 −2.33564
\(939\) 16.9708 0.553823
\(940\) −0.298839 −0.00974704
\(941\) 16.7034 0.544515 0.272258 0.962224i \(-0.412230\pi\)
0.272258 + 0.962224i \(0.412230\pi\)
\(942\) −23.4113 −0.762783
\(943\) 0 0
\(944\) −9.26356 −0.301503
\(945\) 83.0381 2.70123
\(946\) 3.12846 0.101715
\(947\) 52.4203 1.70343 0.851715 0.524005i \(-0.175563\pi\)
0.851715 + 0.524005i \(0.175563\pi\)
\(948\) 0.151860 0.00493220
\(949\) 34.2043 1.11032
\(950\) 41.3844 1.34269
\(951\) 17.5333 0.568558
\(952\) −59.5773 −1.93091
\(953\) −18.5139 −0.599723 −0.299861 0.953983i \(-0.596940\pi\)
−0.299861 + 0.953983i \(0.596940\pi\)
\(954\) 2.75435 0.0891753
\(955\) 23.3404 0.755279
\(956\) 0.164443 0.00531848
\(957\) 5.88263 0.190158
\(958\) 50.0368 1.61662
\(959\) 24.5493 0.792738
\(960\) 36.6356 1.18241
\(961\) 1.92392 0.0620618
\(962\) −46.7605 −1.50762
\(963\) 13.2635 0.427411
\(964\) 0.449705 0.0144840
\(965\) −84.7641 −2.72865
\(966\) 0 0
\(967\) 10.1487 0.326359 0.163180 0.986596i \(-0.447825\pi\)
0.163180 + 0.986596i \(0.447825\pi\)
\(968\) 2.81701 0.0905421
\(969\) 27.4678 0.882393
\(970\) −50.3314 −1.61604
\(971\) −26.4379 −0.848433 −0.424216 0.905561i \(-0.639450\pi\)
−0.424216 + 0.905561i \(0.639450\pi\)
\(972\) −0.188793 −0.00605552
\(973\) 42.5686 1.36469
\(974\) −29.6422 −0.949796
\(975\) −38.4595 −1.23169
\(976\) 47.7402 1.52813
\(977\) 31.3077 1.00162 0.500810 0.865557i \(-0.333035\pi\)
0.500810 + 0.865557i \(0.333035\pi\)
\(978\) −10.9688 −0.350743
\(979\) −2.64145 −0.0844211
\(980\) −0.615587 −0.0196642
\(981\) −2.64051 −0.0843048
\(982\) 58.1468 1.85554
\(983\) −32.8529 −1.04785 −0.523923 0.851766i \(-0.675532\pi\)
−0.523923 + 0.851766i \(0.675532\pi\)
\(984\) 31.5410 1.00549
\(985\) −19.1200 −0.609214
\(986\) 31.1800 0.992974
\(987\) 30.5387 0.972057
\(988\) −0.272904 −0.00868224
\(989\) 0 0
\(990\) −6.04109 −0.191999
\(991\) −16.7864 −0.533236 −0.266618 0.963802i \(-0.585906\pi\)
−0.266618 + 0.963802i \(0.585906\pi\)
\(992\) −0.518958 −0.0164769
\(993\) −15.1357 −0.480318
\(994\) −17.0095 −0.539507
\(995\) −92.6651 −2.93768
\(996\) −0.0287527 −0.000911063 0
\(997\) 58.5350 1.85382 0.926911 0.375281i \(-0.122454\pi\)
0.926911 + 0.375281i \(0.122454\pi\)
\(998\) −19.7131 −0.624007
\(999\) 45.0702 1.42596
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5819.2.a.u.1.16 60
23.13 even 11 253.2.i.b.100.9 120
23.16 even 11 253.2.i.b.210.9 yes 120
23.22 odd 2 5819.2.a.t.1.16 60
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
253.2.i.b.100.9 120 23.13 even 11
253.2.i.b.210.9 yes 120 23.16 even 11
5819.2.a.t.1.16 60 23.22 odd 2
5819.2.a.u.1.16 60 1.1 even 1 trivial