Properties

Label 2-5819-1.1-c1-0-17
Degree $2$
Conductor $5819$
Sign $1$
Analytic cond. $46.4649$
Root an. cond. $6.81652$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.41·2-s − 1.33·3-s + 0.0159·4-s − 3.46·5-s + 1.89·6-s − 4.25·7-s + 2.81·8-s − 1.22·9-s + 4.92·10-s + 11-s − 0.0212·12-s + 4.11·13-s + 6.04·14-s + 4.61·15-s − 4.03·16-s + 4.97·17-s + 1.74·18-s − 4.15·19-s − 0.0554·20-s + 5.66·21-s − 1.41·22-s − 3.75·24-s + 7.02·25-s − 5.83·26-s + 5.62·27-s − 0.0680·28-s − 4.41·29-s + ⋯
L(s)  = 1  − 1.00·2-s − 0.768·3-s + 0.00799·4-s − 1.55·5-s + 0.771·6-s − 1.60·7-s + 0.995·8-s − 0.409·9-s + 1.55·10-s + 0.301·11-s − 0.00614·12-s + 1.14·13-s + 1.61·14-s + 1.19·15-s − 1.00·16-s + 1.20·17-s + 0.410·18-s − 0.952·19-s − 0.0123·20-s + 1.23·21-s − 0.302·22-s − 0.765·24-s + 1.40·25-s − 1.14·26-s + 1.08·27-s − 0.0128·28-s − 0.820·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5819 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5819 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5819\)    =    \(11 \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(46.4649\)
Root analytic conductor: \(6.81652\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5819,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.09646954077\)
\(L(\frac12)\) \(\approx\) \(0.09646954077\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 - T \)
23 \( 1 \)
good2 \( 1 + 1.41T + 2T^{2} \)
3 \( 1 + 1.33T + 3T^{2} \)
5 \( 1 + 3.46T + 5T^{2} \)
7 \( 1 + 4.25T + 7T^{2} \)
13 \( 1 - 4.11T + 13T^{2} \)
17 \( 1 - 4.97T + 17T^{2} \)
19 \( 1 + 4.15T + 19T^{2} \)
29 \( 1 + 4.41T + 29T^{2} \)
31 \( 1 + 5.73T + 31T^{2} \)
37 \( 1 - 8.00T + 37T^{2} \)
41 \( 1 + 8.40T + 41T^{2} \)
43 \( 1 + 2.20T + 43T^{2} \)
47 \( 1 - 5.39T + 47T^{2} \)
53 \( 1 - 1.58T + 53T^{2} \)
59 \( 1 - 2.29T + 59T^{2} \)
61 \( 1 + 11.8T + 61T^{2} \)
67 \( 1 + 11.8T + 67T^{2} \)
71 \( 1 + 2.81T + 71T^{2} \)
73 \( 1 - 8.31T + 73T^{2} \)
79 \( 1 + 7.13T + 79T^{2} \)
83 \( 1 - 1.35T + 83T^{2} \)
89 \( 1 + 2.64T + 89T^{2} \)
97 \( 1 + 10.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.181477056348562241670725300953, −7.51303354798690996172114692758, −6.80497888655191139400808649544, −6.13496385882756895699875159766, −5.39263512572136925626279341175, −4.21106455604718232997067417149, −3.73814424915109676119966523073, −2.98190444167717407720456336671, −1.25071486308553461942407333690, −0.22675069195514629928140932080, 0.22675069195514629928140932080, 1.25071486308553461942407333690, 2.98190444167717407720456336671, 3.73814424915109676119966523073, 4.21106455604718232997067417149, 5.39263512572136925626279341175, 6.13496385882756895699875159766, 6.80497888655191139400808649544, 7.51303354798690996172114692758, 8.181477056348562241670725300953

Graph of the $Z$-function along the critical line