Properties

Label 5819.2.a.t.1.20
Level $5819$
Weight $2$
Character 5819.1
Self dual yes
Analytic conductor $46.465$
Analytic rank $0$
Dimension $60$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5819,2,Mod(1,5819)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5819, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5819.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5819 = 11 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5819.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [60,5,9,73,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.4649489362\)
Analytic rank: \(0\)
Dimension: \(60\)
Twist minimal: no (minimal twist has level 253)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.20
Character \(\chi\) \(=\) 5819.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.12774 q^{2} +2.11139 q^{3} -0.728194 q^{4} -0.943998 q^{5} -2.38110 q^{6} -1.55399 q^{7} +3.07670 q^{8} +1.45795 q^{9} +1.06459 q^{10} -1.00000 q^{11} -1.53750 q^{12} -4.10851 q^{13} +1.75250 q^{14} -1.99315 q^{15} -2.01334 q^{16} -7.48754 q^{17} -1.64420 q^{18} -5.65746 q^{19} +0.687414 q^{20} -3.28107 q^{21} +1.12774 q^{22} +6.49611 q^{24} -4.10887 q^{25} +4.63335 q^{26} -3.25586 q^{27} +1.13161 q^{28} +5.46487 q^{29} +2.24776 q^{30} +0.647562 q^{31} -3.88287 q^{32} -2.11139 q^{33} +8.44402 q^{34} +1.46696 q^{35} -1.06167 q^{36} -7.47778 q^{37} +6.38017 q^{38} -8.67466 q^{39} -2.90440 q^{40} +8.11294 q^{41} +3.70021 q^{42} +10.1683 q^{43} +0.728194 q^{44} -1.37630 q^{45} +2.48881 q^{47} -4.25095 q^{48} -4.58512 q^{49} +4.63375 q^{50} -15.8091 q^{51} +2.99180 q^{52} -0.738321 q^{53} +3.67177 q^{54} +0.943998 q^{55} -4.78116 q^{56} -11.9451 q^{57} -6.16297 q^{58} +11.7423 q^{59} +1.45140 q^{60} -2.61676 q^{61} -0.730284 q^{62} -2.26564 q^{63} +8.40557 q^{64} +3.87843 q^{65} +2.38110 q^{66} +9.92380 q^{67} +5.45238 q^{68} -1.65436 q^{70} +1.04399 q^{71} +4.48569 q^{72} +2.25470 q^{73} +8.43302 q^{74} -8.67541 q^{75} +4.11973 q^{76} +1.55399 q^{77} +9.78279 q^{78} +11.5540 q^{79} +1.90059 q^{80} -11.2482 q^{81} -9.14932 q^{82} +11.4873 q^{83} +2.38926 q^{84} +7.06822 q^{85} -11.4672 q^{86} +11.5385 q^{87} -3.07670 q^{88} -1.78171 q^{89} +1.55212 q^{90} +6.38459 q^{91} +1.36725 q^{93} -2.80674 q^{94} +5.34064 q^{95} -8.19824 q^{96} -15.3288 q^{97} +5.17084 q^{98} -1.45795 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q + 5 q^{2} + 9 q^{3} + 73 q^{4} - 8 q^{5} + 26 q^{6} + 30 q^{8} + 75 q^{9} + 7 q^{10} - 60 q^{11} + 41 q^{12} + 46 q^{13} - 16 q^{14} - 4 q^{15} + 99 q^{16} + 5 q^{17} + 36 q^{18} + 8 q^{19} - 82 q^{20}+ \cdots - 75 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.12774 −0.797435 −0.398718 0.917074i \(-0.630545\pi\)
−0.398718 + 0.917074i \(0.630545\pi\)
\(3\) 2.11139 1.21901 0.609505 0.792782i \(-0.291368\pi\)
0.609505 + 0.792782i \(0.291368\pi\)
\(4\) −0.728194 −0.364097
\(5\) −0.943998 −0.422169 −0.211084 0.977468i \(-0.567700\pi\)
−0.211084 + 0.977468i \(0.567700\pi\)
\(6\) −2.38110 −0.972081
\(7\) −1.55399 −0.587353 −0.293676 0.955905i \(-0.594879\pi\)
−0.293676 + 0.955905i \(0.594879\pi\)
\(8\) 3.07670 1.08778
\(9\) 1.45795 0.485984
\(10\) 1.06459 0.336652
\(11\) −1.00000 −0.301511
\(12\) −1.53750 −0.443838
\(13\) −4.10851 −1.13950 −0.569748 0.821819i \(-0.692959\pi\)
−0.569748 + 0.821819i \(0.692959\pi\)
\(14\) 1.75250 0.468376
\(15\) −1.99315 −0.514628
\(16\) −2.01334 −0.503336
\(17\) −7.48754 −1.81599 −0.907997 0.418976i \(-0.862389\pi\)
−0.907997 + 0.418976i \(0.862389\pi\)
\(18\) −1.64420 −0.387541
\(19\) −5.65746 −1.29791 −0.648956 0.760826i \(-0.724794\pi\)
−0.648956 + 0.760826i \(0.724794\pi\)
\(20\) 0.687414 0.153711
\(21\) −3.28107 −0.715988
\(22\) 1.12774 0.240436
\(23\) 0 0
\(24\) 6.49611 1.32601
\(25\) −4.10887 −0.821773
\(26\) 4.63335 0.908675
\(27\) −3.25586 −0.626590
\(28\) 1.13161 0.213853
\(29\) 5.46487 1.01480 0.507401 0.861710i \(-0.330606\pi\)
0.507401 + 0.861710i \(0.330606\pi\)
\(30\) 2.24776 0.410382
\(31\) 0.647562 0.116306 0.0581528 0.998308i \(-0.481479\pi\)
0.0581528 + 0.998308i \(0.481479\pi\)
\(32\) −3.88287 −0.686401
\(33\) −2.11139 −0.367545
\(34\) 8.44402 1.44814
\(35\) 1.46696 0.247962
\(36\) −1.06167 −0.176946
\(37\) −7.47778 −1.22934 −0.614670 0.788785i \(-0.710711\pi\)
−0.614670 + 0.788785i \(0.710711\pi\)
\(38\) 6.38017 1.03500
\(39\) −8.67466 −1.38906
\(40\) −2.90440 −0.459226
\(41\) 8.11294 1.26703 0.633514 0.773731i \(-0.281612\pi\)
0.633514 + 0.773731i \(0.281612\pi\)
\(42\) 3.70021 0.570954
\(43\) 10.1683 1.55065 0.775323 0.631564i \(-0.217587\pi\)
0.775323 + 0.631564i \(0.217587\pi\)
\(44\) 0.728194 0.109779
\(45\) −1.37630 −0.205167
\(46\) 0 0
\(47\) 2.48881 0.363030 0.181515 0.983388i \(-0.441900\pi\)
0.181515 + 0.983388i \(0.441900\pi\)
\(48\) −4.25095 −0.613571
\(49\) −4.58512 −0.655017
\(50\) 4.63375 0.655311
\(51\) −15.8091 −2.21371
\(52\) 2.99180 0.414888
\(53\) −0.738321 −0.101416 −0.0507081 0.998714i \(-0.516148\pi\)
−0.0507081 + 0.998714i \(0.516148\pi\)
\(54\) 3.67177 0.499665
\(55\) 0.943998 0.127289
\(56\) −4.78116 −0.638910
\(57\) −11.9451 −1.58217
\(58\) −6.16297 −0.809238
\(59\) 11.7423 1.52871 0.764357 0.644794i \(-0.223057\pi\)
0.764357 + 0.644794i \(0.223057\pi\)
\(60\) 1.45140 0.187375
\(61\) −2.61676 −0.335041 −0.167521 0.985869i \(-0.553576\pi\)
−0.167521 + 0.985869i \(0.553576\pi\)
\(62\) −0.730284 −0.0927461
\(63\) −2.26564 −0.285444
\(64\) 8.40557 1.05070
\(65\) 3.87843 0.481060
\(66\) 2.38110 0.293093
\(67\) 9.92380 1.21238 0.606192 0.795318i \(-0.292696\pi\)
0.606192 + 0.795318i \(0.292696\pi\)
\(68\) 5.45238 0.661199
\(69\) 0 0
\(70\) −1.65436 −0.197734
\(71\) 1.04399 0.123899 0.0619497 0.998079i \(-0.480268\pi\)
0.0619497 + 0.998079i \(0.480268\pi\)
\(72\) 4.48569 0.528643
\(73\) 2.25470 0.263893 0.131947 0.991257i \(-0.457877\pi\)
0.131947 + 0.991257i \(0.457877\pi\)
\(74\) 8.43302 0.980318
\(75\) −8.67541 −1.00175
\(76\) 4.11973 0.472566
\(77\) 1.55399 0.177093
\(78\) 9.78279 1.10768
\(79\) 11.5540 1.29993 0.649965 0.759964i \(-0.274784\pi\)
0.649965 + 0.759964i \(0.274784\pi\)
\(80\) 1.90059 0.212493
\(81\) −11.2482 −1.24980
\(82\) −9.14932 −1.01037
\(83\) 11.4873 1.26089 0.630447 0.776232i \(-0.282871\pi\)
0.630447 + 0.776232i \(0.282871\pi\)
\(84\) 2.38926 0.260689
\(85\) 7.06822 0.766656
\(86\) −11.4672 −1.23654
\(87\) 11.5385 1.23705
\(88\) −3.07670 −0.327978
\(89\) −1.78171 −0.188861 −0.0944303 0.995531i \(-0.530103\pi\)
−0.0944303 + 0.995531i \(0.530103\pi\)
\(90\) 1.55212 0.163608
\(91\) 6.38459 0.669286
\(92\) 0 0
\(93\) 1.36725 0.141778
\(94\) −2.80674 −0.289493
\(95\) 5.34064 0.547938
\(96\) −8.19824 −0.836730
\(97\) −15.3288 −1.55641 −0.778204 0.628012i \(-0.783869\pi\)
−0.778204 + 0.628012i \(0.783869\pi\)
\(98\) 5.17084 0.522334
\(99\) −1.45795 −0.146530
\(100\) 2.99205 0.299205
\(101\) 17.3241 1.72381 0.861906 0.507068i \(-0.169271\pi\)
0.861906 + 0.507068i \(0.169271\pi\)
\(102\) 17.8286 1.76529
\(103\) 7.31971 0.721233 0.360616 0.932714i \(-0.382566\pi\)
0.360616 + 0.932714i \(0.382566\pi\)
\(104\) −12.6407 −1.23952
\(105\) 3.09733 0.302268
\(106\) 0.832637 0.0808728
\(107\) −1.64268 −0.158804 −0.0794022 0.996843i \(-0.525301\pi\)
−0.0794022 + 0.996843i \(0.525301\pi\)
\(108\) 2.37090 0.228140
\(109\) 0.759916 0.0727868 0.0363934 0.999338i \(-0.488413\pi\)
0.0363934 + 0.999338i \(0.488413\pi\)
\(110\) −1.06459 −0.101504
\(111\) −15.7885 −1.49858
\(112\) 3.12871 0.295636
\(113\) −7.83050 −0.736631 −0.368316 0.929701i \(-0.620065\pi\)
−0.368316 + 0.929701i \(0.620065\pi\)
\(114\) 13.4710 1.26168
\(115\) 0 0
\(116\) −3.97949 −0.369486
\(117\) −5.99002 −0.553778
\(118\) −13.2423 −1.21905
\(119\) 11.6355 1.06663
\(120\) −6.13232 −0.559801
\(121\) 1.00000 0.0909091
\(122\) 2.95103 0.267174
\(123\) 17.1296 1.54452
\(124\) −0.471551 −0.0423465
\(125\) 8.59875 0.769096
\(126\) 2.55506 0.227623
\(127\) −2.61296 −0.231863 −0.115931 0.993257i \(-0.536985\pi\)
−0.115931 + 0.993257i \(0.536985\pi\)
\(128\) −1.71359 −0.151461
\(129\) 21.4691 1.89025
\(130\) −4.37388 −0.383614
\(131\) 14.8098 1.29394 0.646970 0.762516i \(-0.276036\pi\)
0.646970 + 0.762516i \(0.276036\pi\)
\(132\) 1.53750 0.133822
\(133\) 8.79164 0.762332
\(134\) −11.1915 −0.966798
\(135\) 3.07352 0.264527
\(136\) −23.0369 −1.97540
\(137\) 7.78130 0.664801 0.332401 0.943138i \(-0.392141\pi\)
0.332401 + 0.943138i \(0.392141\pi\)
\(138\) 0 0
\(139\) 12.0941 1.02581 0.512903 0.858446i \(-0.328570\pi\)
0.512903 + 0.858446i \(0.328570\pi\)
\(140\) −1.06823 −0.0902823
\(141\) 5.25484 0.442537
\(142\) −1.17736 −0.0988017
\(143\) 4.10851 0.343571
\(144\) −2.93536 −0.244613
\(145\) −5.15883 −0.428418
\(146\) −2.54273 −0.210438
\(147\) −9.68096 −0.798472
\(148\) 5.44528 0.447599
\(149\) −18.0995 −1.48277 −0.741385 0.671080i \(-0.765831\pi\)
−0.741385 + 0.671080i \(0.765831\pi\)
\(150\) 9.78363 0.798830
\(151\) 3.66819 0.298513 0.149256 0.988799i \(-0.452312\pi\)
0.149256 + 0.988799i \(0.452312\pi\)
\(152\) −17.4063 −1.41184
\(153\) −10.9165 −0.882545
\(154\) −1.75250 −0.141221
\(155\) −0.611297 −0.0491006
\(156\) 6.31684 0.505752
\(157\) −0.962631 −0.0768263 −0.0384132 0.999262i \(-0.512230\pi\)
−0.0384132 + 0.999262i \(0.512230\pi\)
\(158\) −13.0300 −1.03661
\(159\) −1.55888 −0.123627
\(160\) 3.66542 0.289777
\(161\) 0 0
\(162\) 12.6851 0.996637
\(163\) −23.9300 −1.87434 −0.937172 0.348868i \(-0.886566\pi\)
−0.937172 + 0.348868i \(0.886566\pi\)
\(164\) −5.90780 −0.461322
\(165\) 1.99315 0.155166
\(166\) −12.9547 −1.00548
\(167\) −11.1686 −0.864251 −0.432125 0.901814i \(-0.642236\pi\)
−0.432125 + 0.901814i \(0.642236\pi\)
\(168\) −10.0949 −0.778837
\(169\) 3.87989 0.298453
\(170\) −7.97114 −0.611359
\(171\) −8.24832 −0.630764
\(172\) −7.40448 −0.564586
\(173\) −13.6091 −1.03468 −0.517342 0.855779i \(-0.673078\pi\)
−0.517342 + 0.855779i \(0.673078\pi\)
\(174\) −13.0124 −0.986469
\(175\) 6.38513 0.482671
\(176\) 2.01334 0.151762
\(177\) 24.7925 1.86352
\(178\) 2.00931 0.150604
\(179\) 2.61118 0.195169 0.0975844 0.995227i \(-0.468888\pi\)
0.0975844 + 0.995227i \(0.468888\pi\)
\(180\) 1.00222 0.0747009
\(181\) −14.0713 −1.04591 −0.522956 0.852359i \(-0.675171\pi\)
−0.522956 + 0.852359i \(0.675171\pi\)
\(182\) −7.20017 −0.533712
\(183\) −5.52498 −0.408419
\(184\) 0 0
\(185\) 7.05901 0.518989
\(186\) −1.54191 −0.113058
\(187\) 7.48754 0.547543
\(188\) −1.81234 −0.132178
\(189\) 5.05957 0.368029
\(190\) −6.02287 −0.436945
\(191\) −13.2854 −0.961299 −0.480650 0.876913i \(-0.659599\pi\)
−0.480650 + 0.876913i \(0.659599\pi\)
\(192\) 17.7474 1.28081
\(193\) 13.0763 0.941253 0.470626 0.882333i \(-0.344028\pi\)
0.470626 + 0.882333i \(0.344028\pi\)
\(194\) 17.2870 1.24113
\(195\) 8.18887 0.586417
\(196\) 3.33886 0.238490
\(197\) −21.1377 −1.50600 −0.753000 0.658021i \(-0.771394\pi\)
−0.753000 + 0.658021i \(0.771394\pi\)
\(198\) 1.64420 0.116848
\(199\) −2.03252 −0.144082 −0.0720408 0.997402i \(-0.522951\pi\)
−0.0720408 + 0.997402i \(0.522951\pi\)
\(200\) −12.6418 −0.893908
\(201\) 20.9530 1.47791
\(202\) −19.5371 −1.37463
\(203\) −8.49235 −0.596046
\(204\) 11.5121 0.806007
\(205\) −7.65860 −0.534900
\(206\) −8.25476 −0.575136
\(207\) 0 0
\(208\) 8.27185 0.573550
\(209\) 5.65746 0.391335
\(210\) −3.49299 −0.241039
\(211\) −2.59363 −0.178553 −0.0892763 0.996007i \(-0.528455\pi\)
−0.0892763 + 0.996007i \(0.528455\pi\)
\(212\) 0.537641 0.0369253
\(213\) 2.20428 0.151034
\(214\) 1.85253 0.126636
\(215\) −9.59883 −0.654635
\(216\) −10.0173 −0.681592
\(217\) −1.00630 −0.0683124
\(218\) −0.856991 −0.0580427
\(219\) 4.76055 0.321688
\(220\) −0.687414 −0.0463455
\(221\) 30.7627 2.06932
\(222\) 17.8054 1.19502
\(223\) −7.01687 −0.469884 −0.234942 0.972009i \(-0.575490\pi\)
−0.234942 + 0.972009i \(0.575490\pi\)
\(224\) 6.03394 0.403160
\(225\) −5.99053 −0.399369
\(226\) 8.83079 0.587416
\(227\) −4.90623 −0.325638 −0.162819 0.986656i \(-0.552059\pi\)
−0.162819 + 0.986656i \(0.552059\pi\)
\(228\) 8.69835 0.576062
\(229\) −6.22401 −0.411294 −0.205647 0.978626i \(-0.565930\pi\)
−0.205647 + 0.978626i \(0.565930\pi\)
\(230\) 0 0
\(231\) 3.28107 0.215879
\(232\) 16.8138 1.10388
\(233\) 7.32162 0.479655 0.239828 0.970815i \(-0.422909\pi\)
0.239828 + 0.970815i \(0.422909\pi\)
\(234\) 6.75521 0.441602
\(235\) −2.34943 −0.153260
\(236\) −8.55066 −0.556600
\(237\) 24.3950 1.58463
\(238\) −13.1219 −0.850567
\(239\) 25.5011 1.64953 0.824765 0.565476i \(-0.191308\pi\)
0.824765 + 0.565476i \(0.191308\pi\)
\(240\) 4.01289 0.259031
\(241\) 20.8432 1.34263 0.671313 0.741174i \(-0.265731\pi\)
0.671313 + 0.741174i \(0.265731\pi\)
\(242\) −1.12774 −0.0724941
\(243\) −13.9818 −0.896932
\(244\) 1.90551 0.121988
\(245\) 4.32834 0.276528
\(246\) −19.3177 −1.23165
\(247\) 23.2438 1.47897
\(248\) 1.99236 0.126515
\(249\) 24.2541 1.53704
\(250\) −9.69719 −0.613304
\(251\) −2.98135 −0.188181 −0.0940905 0.995564i \(-0.529994\pi\)
−0.0940905 + 0.995564i \(0.529994\pi\)
\(252\) 1.64983 0.103929
\(253\) 0 0
\(254\) 2.94675 0.184895
\(255\) 14.9237 0.934561
\(256\) −14.8787 −0.929916
\(257\) 6.90477 0.430708 0.215354 0.976536i \(-0.430910\pi\)
0.215354 + 0.976536i \(0.430910\pi\)
\(258\) −24.2117 −1.50735
\(259\) 11.6204 0.722056
\(260\) −2.82425 −0.175153
\(261\) 7.96753 0.493177
\(262\) −16.7017 −1.03183
\(263\) 7.35770 0.453696 0.226848 0.973930i \(-0.427158\pi\)
0.226848 + 0.973930i \(0.427158\pi\)
\(264\) −6.49611 −0.399808
\(265\) 0.696974 0.0428147
\(266\) −9.91471 −0.607910
\(267\) −3.76187 −0.230223
\(268\) −7.22646 −0.441426
\(269\) 30.7554 1.87519 0.937595 0.347729i \(-0.113047\pi\)
0.937595 + 0.347729i \(0.113047\pi\)
\(270\) −3.46615 −0.210943
\(271\) 8.05485 0.489297 0.244649 0.969612i \(-0.421327\pi\)
0.244649 + 0.969612i \(0.421327\pi\)
\(272\) 15.0750 0.914055
\(273\) 13.4803 0.815866
\(274\) −8.77531 −0.530136
\(275\) 4.10887 0.247774
\(276\) 0 0
\(277\) −23.4213 −1.40725 −0.703626 0.710571i \(-0.748437\pi\)
−0.703626 + 0.710571i \(0.748437\pi\)
\(278\) −13.6390 −0.818014
\(279\) 0.944114 0.0565227
\(280\) 4.51341 0.269728
\(281\) −1.08512 −0.0647326 −0.0323663 0.999476i \(-0.510304\pi\)
−0.0323663 + 0.999476i \(0.510304\pi\)
\(282\) −5.92611 −0.352895
\(283\) 25.0169 1.48710 0.743549 0.668682i \(-0.233141\pi\)
0.743549 + 0.668682i \(0.233141\pi\)
\(284\) −0.760231 −0.0451114
\(285\) 11.2761 0.667941
\(286\) −4.63335 −0.273976
\(287\) −12.6074 −0.744192
\(288\) −5.66104 −0.333580
\(289\) 39.0632 2.29784
\(290\) 5.81784 0.341635
\(291\) −32.3651 −1.89728
\(292\) −1.64186 −0.0960828
\(293\) −13.0930 −0.764902 −0.382451 0.923976i \(-0.624920\pi\)
−0.382451 + 0.923976i \(0.624920\pi\)
\(294\) 10.9176 0.636730
\(295\) −11.0847 −0.645375
\(296\) −23.0069 −1.33725
\(297\) 3.25586 0.188924
\(298\) 20.4116 1.18241
\(299\) 0 0
\(300\) 6.31738 0.364734
\(301\) −15.8014 −0.910776
\(302\) −4.13677 −0.238045
\(303\) 36.5779 2.10134
\(304\) 11.3904 0.653285
\(305\) 2.47021 0.141444
\(306\) 12.3110 0.703772
\(307\) 0.163593 0.00933677 0.00466839 0.999989i \(-0.498514\pi\)
0.00466839 + 0.999989i \(0.498514\pi\)
\(308\) −1.13161 −0.0644792
\(309\) 15.4547 0.879190
\(310\) 0.689387 0.0391545
\(311\) 18.7208 1.06156 0.530779 0.847510i \(-0.321899\pi\)
0.530779 + 0.847510i \(0.321899\pi\)
\(312\) −26.6894 −1.51099
\(313\) −11.1702 −0.631375 −0.315688 0.948863i \(-0.602235\pi\)
−0.315688 + 0.948863i \(0.602235\pi\)
\(314\) 1.08560 0.0612640
\(315\) 2.13876 0.120506
\(316\) −8.41358 −0.473301
\(317\) 4.79170 0.269129 0.134564 0.990905i \(-0.457036\pi\)
0.134564 + 0.990905i \(0.457036\pi\)
\(318\) 1.75802 0.0985847
\(319\) −5.46487 −0.305974
\(320\) −7.93484 −0.443571
\(321\) −3.46834 −0.193584
\(322\) 0 0
\(323\) 42.3605 2.35700
\(324\) 8.19090 0.455050
\(325\) 16.8813 0.936408
\(326\) 26.9869 1.49467
\(327\) 1.60448 0.0887278
\(328\) 24.9611 1.37825
\(329\) −3.86758 −0.213227
\(330\) −2.24776 −0.123735
\(331\) 2.66261 0.146350 0.0731751 0.997319i \(-0.476687\pi\)
0.0731751 + 0.997319i \(0.476687\pi\)
\(332\) −8.36499 −0.459088
\(333\) −10.9022 −0.597439
\(334\) 12.5953 0.689184
\(335\) −9.36805 −0.511831
\(336\) 6.60592 0.360383
\(337\) −15.7353 −0.857154 −0.428577 0.903505i \(-0.640985\pi\)
−0.428577 + 0.903505i \(0.640985\pi\)
\(338\) −4.37552 −0.237997
\(339\) −16.5332 −0.897961
\(340\) −5.14704 −0.279137
\(341\) −0.647562 −0.0350674
\(342\) 9.30199 0.502994
\(343\) 18.0031 0.972078
\(344\) 31.2848 1.68676
\(345\) 0 0
\(346\) 15.3476 0.825093
\(347\) −20.2894 −1.08919 −0.544595 0.838699i \(-0.683317\pi\)
−0.544595 + 0.838699i \(0.683317\pi\)
\(348\) −8.40224 −0.450407
\(349\) −6.26662 −0.335444 −0.167722 0.985834i \(-0.553641\pi\)
−0.167722 + 0.985834i \(0.553641\pi\)
\(350\) −7.20079 −0.384899
\(351\) 13.3767 0.713998
\(352\) 3.88287 0.206958
\(353\) −19.0784 −1.01544 −0.507720 0.861522i \(-0.669511\pi\)
−0.507720 + 0.861522i \(0.669511\pi\)
\(354\) −27.9595 −1.48603
\(355\) −0.985529 −0.0523064
\(356\) 1.29743 0.0687636
\(357\) 24.5671 1.30023
\(358\) −2.94474 −0.155634
\(359\) 14.7488 0.778410 0.389205 0.921151i \(-0.372750\pi\)
0.389205 + 0.921151i \(0.372750\pi\)
\(360\) −4.23448 −0.223177
\(361\) 13.0069 0.684574
\(362\) 15.8688 0.834048
\(363\) 2.11139 0.110819
\(364\) −4.64922 −0.243685
\(365\) −2.12844 −0.111407
\(366\) 6.23076 0.325687
\(367\) 9.85129 0.514233 0.257116 0.966380i \(-0.417228\pi\)
0.257116 + 0.966380i \(0.417228\pi\)
\(368\) 0 0
\(369\) 11.8283 0.615756
\(370\) −7.96075 −0.413860
\(371\) 1.14734 0.0595670
\(372\) −0.995626 −0.0516208
\(373\) −7.17076 −0.371288 −0.185644 0.982617i \(-0.559437\pi\)
−0.185644 + 0.982617i \(0.559437\pi\)
\(374\) −8.44402 −0.436630
\(375\) 18.1553 0.937535
\(376\) 7.65733 0.394897
\(377\) −22.4525 −1.15636
\(378\) −5.70589 −0.293479
\(379\) −29.7862 −1.53001 −0.765007 0.644021i \(-0.777265\pi\)
−0.765007 + 0.644021i \(0.777265\pi\)
\(380\) −3.88902 −0.199503
\(381\) −5.51697 −0.282643
\(382\) 14.9825 0.766574
\(383\) 8.24992 0.421551 0.210776 0.977534i \(-0.432401\pi\)
0.210776 + 0.977534i \(0.432401\pi\)
\(384\) −3.61804 −0.184632
\(385\) −1.46696 −0.0747633
\(386\) −14.7467 −0.750588
\(387\) 14.8249 0.753590
\(388\) 11.1624 0.566684
\(389\) −26.7898 −1.35830 −0.679148 0.734002i \(-0.737650\pi\)
−0.679148 + 0.734002i \(0.737650\pi\)
\(390\) −9.23494 −0.467629
\(391\) 0 0
\(392\) −14.1071 −0.712514
\(393\) 31.2692 1.57732
\(394\) 23.8379 1.20094
\(395\) −10.9070 −0.548790
\(396\) 1.06167 0.0533511
\(397\) 11.8752 0.595998 0.297999 0.954566i \(-0.403681\pi\)
0.297999 + 0.954566i \(0.403681\pi\)
\(398\) 2.29216 0.114896
\(399\) 18.5625 0.929289
\(400\) 8.27256 0.413628
\(401\) −6.96778 −0.347954 −0.173977 0.984750i \(-0.555662\pi\)
−0.173977 + 0.984750i \(0.555662\pi\)
\(402\) −23.6296 −1.17854
\(403\) −2.66052 −0.132530
\(404\) −12.6153 −0.627635
\(405\) 10.6183 0.527628
\(406\) 9.57719 0.475308
\(407\) 7.47778 0.370660
\(408\) −48.6399 −2.40803
\(409\) −22.6496 −1.11995 −0.559974 0.828510i \(-0.689189\pi\)
−0.559974 + 0.828510i \(0.689189\pi\)
\(410\) 8.63694 0.426548
\(411\) 16.4293 0.810399
\(412\) −5.33018 −0.262599
\(413\) −18.2474 −0.897894
\(414\) 0 0
\(415\) −10.8440 −0.532311
\(416\) 15.9528 0.782152
\(417\) 25.5353 1.25047
\(418\) −6.38017 −0.312064
\(419\) 6.83510 0.333917 0.166958 0.985964i \(-0.446605\pi\)
0.166958 + 0.985964i \(0.446605\pi\)
\(420\) −2.25546 −0.110055
\(421\) 36.4268 1.77533 0.887666 0.460487i \(-0.152325\pi\)
0.887666 + 0.460487i \(0.152325\pi\)
\(422\) 2.92494 0.142384
\(423\) 3.62857 0.176427
\(424\) −2.27159 −0.110318
\(425\) 30.7653 1.49234
\(426\) −2.48586 −0.120440
\(427\) 4.06641 0.196787
\(428\) 1.19619 0.0578202
\(429\) 8.67466 0.418817
\(430\) 10.8250 0.522029
\(431\) 36.8664 1.77579 0.887896 0.460044i \(-0.152166\pi\)
0.887896 + 0.460044i \(0.152166\pi\)
\(432\) 6.55516 0.315385
\(433\) −4.91612 −0.236253 −0.118127 0.992999i \(-0.537689\pi\)
−0.118127 + 0.992999i \(0.537689\pi\)
\(434\) 1.13485 0.0544747
\(435\) −10.8923 −0.522245
\(436\) −0.553367 −0.0265015
\(437\) 0 0
\(438\) −5.36868 −0.256526
\(439\) 5.54972 0.264874 0.132437 0.991191i \(-0.457720\pi\)
0.132437 + 0.991191i \(0.457720\pi\)
\(440\) 2.90440 0.138462
\(441\) −6.68489 −0.318328
\(442\) −34.6924 −1.65015
\(443\) 4.65314 0.221078 0.110539 0.993872i \(-0.464742\pi\)
0.110539 + 0.993872i \(0.464742\pi\)
\(444\) 11.4971 0.545627
\(445\) 1.68193 0.0797310
\(446\) 7.91323 0.374702
\(447\) −38.2151 −1.80751
\(448\) −13.0622 −0.617129
\(449\) 16.6080 0.783782 0.391891 0.920012i \(-0.371821\pi\)
0.391891 + 0.920012i \(0.371821\pi\)
\(450\) 6.75579 0.318471
\(451\) −8.11294 −0.382023
\(452\) 5.70213 0.268205
\(453\) 7.74496 0.363890
\(454\) 5.53297 0.259675
\(455\) −6.02704 −0.282552
\(456\) −36.7515 −1.72105
\(457\) 0.100842 0.00471721 0.00235860 0.999997i \(-0.499249\pi\)
0.00235860 + 0.999997i \(0.499249\pi\)
\(458\) 7.01908 0.327980
\(459\) 24.3784 1.13788
\(460\) 0 0
\(461\) −16.1631 −0.752791 −0.376395 0.926459i \(-0.622837\pi\)
−0.376395 + 0.926459i \(0.622837\pi\)
\(462\) −3.70021 −0.172149
\(463\) 4.07637 0.189445 0.0947225 0.995504i \(-0.469804\pi\)
0.0947225 + 0.995504i \(0.469804\pi\)
\(464\) −11.0027 −0.510786
\(465\) −1.29068 −0.0598541
\(466\) −8.25691 −0.382494
\(467\) −26.3131 −1.21762 −0.608812 0.793314i \(-0.708354\pi\)
−0.608812 + 0.793314i \(0.708354\pi\)
\(468\) 4.36190 0.201629
\(469\) −15.4215 −0.712097
\(470\) 2.64956 0.122215
\(471\) −2.03249 −0.0936520
\(472\) 36.1275 1.66290
\(473\) −10.1683 −0.467538
\(474\) −27.5113 −1.26364
\(475\) 23.2458 1.06659
\(476\) −8.47294 −0.388357
\(477\) −1.07644 −0.0492867
\(478\) −28.7587 −1.31539
\(479\) −15.4158 −0.704366 −0.352183 0.935931i \(-0.614561\pi\)
−0.352183 + 0.935931i \(0.614561\pi\)
\(480\) 7.73913 0.353241
\(481\) 30.7226 1.40083
\(482\) −23.5057 −1.07066
\(483\) 0 0
\(484\) −0.728194 −0.0330997
\(485\) 14.4704 0.657067
\(486\) 15.7679 0.715245
\(487\) 42.9334 1.94550 0.972749 0.231861i \(-0.0744814\pi\)
0.972749 + 0.231861i \(0.0744814\pi\)
\(488\) −8.05098 −0.364451
\(489\) −50.5255 −2.28484
\(490\) −4.88126 −0.220513
\(491\) −8.08837 −0.365023 −0.182511 0.983204i \(-0.558423\pi\)
−0.182511 + 0.983204i \(0.558423\pi\)
\(492\) −12.4736 −0.562355
\(493\) −40.9184 −1.84287
\(494\) −26.2130 −1.17938
\(495\) 1.37630 0.0618603
\(496\) −1.30376 −0.0585408
\(497\) −1.62236 −0.0727726
\(498\) −27.3524 −1.22569
\(499\) 27.1368 1.21481 0.607404 0.794393i \(-0.292211\pi\)
0.607404 + 0.794393i \(0.292211\pi\)
\(500\) −6.26157 −0.280026
\(501\) −23.5812 −1.05353
\(502\) 3.36219 0.150062
\(503\) −34.7664 −1.55016 −0.775078 0.631865i \(-0.782290\pi\)
−0.775078 + 0.631865i \(0.782290\pi\)
\(504\) −6.97071 −0.310500
\(505\) −16.3539 −0.727740
\(506\) 0 0
\(507\) 8.19195 0.363817
\(508\) 1.90274 0.0844206
\(509\) −40.9939 −1.81702 −0.908512 0.417858i \(-0.862781\pi\)
−0.908512 + 0.417858i \(0.862781\pi\)
\(510\) −16.8302 −0.745252
\(511\) −3.50379 −0.154998
\(512\) 20.2065 0.893009
\(513\) 18.4199 0.813258
\(514\) −7.78681 −0.343461
\(515\) −6.90980 −0.304482
\(516\) −15.6337 −0.688236
\(517\) −2.48881 −0.109458
\(518\) −13.1048 −0.575792
\(519\) −28.7341 −1.26129
\(520\) 11.9328 0.523287
\(521\) −9.92597 −0.434865 −0.217432 0.976075i \(-0.569768\pi\)
−0.217432 + 0.976075i \(0.569768\pi\)
\(522\) −8.98533 −0.393277
\(523\) 11.5471 0.504918 0.252459 0.967608i \(-0.418761\pi\)
0.252459 + 0.967608i \(0.418761\pi\)
\(524\) −10.7844 −0.471120
\(525\) 13.4815 0.588380
\(526\) −8.29760 −0.361793
\(527\) −4.84864 −0.211210
\(528\) 4.25095 0.184999
\(529\) 0 0
\(530\) −0.786008 −0.0341420
\(531\) 17.1197 0.742930
\(532\) −6.40202 −0.277563
\(533\) −33.3321 −1.44378
\(534\) 4.24243 0.183588
\(535\) 1.55069 0.0670422
\(536\) 30.5326 1.31881
\(537\) 5.51321 0.237913
\(538\) −34.6842 −1.49534
\(539\) 4.58512 0.197495
\(540\) −2.23812 −0.0963135
\(541\) 17.6371 0.758279 0.379139 0.925340i \(-0.376220\pi\)
0.379139 + 0.925340i \(0.376220\pi\)
\(542\) −9.08380 −0.390183
\(543\) −29.7100 −1.27498
\(544\) 29.0732 1.24650
\(545\) −0.717360 −0.0307283
\(546\) −15.2024 −0.650601
\(547\) 14.4093 0.616096 0.308048 0.951371i \(-0.400324\pi\)
0.308048 + 0.951371i \(0.400324\pi\)
\(548\) −5.66630 −0.242052
\(549\) −3.81511 −0.162825
\(550\) −4.63375 −0.197584
\(551\) −30.9173 −1.31712
\(552\) 0 0
\(553\) −17.9548 −0.763517
\(554\) 26.4133 1.12219
\(555\) 14.9043 0.632652
\(556\) −8.80684 −0.373493
\(557\) 15.3176 0.649027 0.324513 0.945881i \(-0.394799\pi\)
0.324513 + 0.945881i \(0.394799\pi\)
\(558\) −1.06472 −0.0450732
\(559\) −41.7765 −1.76696
\(560\) −2.95350 −0.124808
\(561\) 15.8091 0.667460
\(562\) 1.22373 0.0516200
\(563\) 28.9249 1.21904 0.609519 0.792772i \(-0.291363\pi\)
0.609519 + 0.792772i \(0.291363\pi\)
\(564\) −3.82655 −0.161127
\(565\) 7.39198 0.310983
\(566\) −28.2126 −1.18586
\(567\) 17.4796 0.734075
\(568\) 3.21206 0.134775
\(569\) 12.9460 0.542723 0.271361 0.962478i \(-0.412526\pi\)
0.271361 + 0.962478i \(0.412526\pi\)
\(570\) −12.7166 −0.532640
\(571\) −30.9748 −1.29626 −0.648129 0.761531i \(-0.724448\pi\)
−0.648129 + 0.761531i \(0.724448\pi\)
\(572\) −2.99180 −0.125093
\(573\) −28.0506 −1.17183
\(574\) 14.2179 0.593445
\(575\) 0 0
\(576\) 12.2549 0.510622
\(577\) −12.2699 −0.510804 −0.255402 0.966835i \(-0.582208\pi\)
−0.255402 + 0.966835i \(0.582208\pi\)
\(578\) −44.0533 −1.83238
\(579\) 27.6091 1.14740
\(580\) 3.75663 0.155986
\(581\) −17.8511 −0.740590
\(582\) 36.4995 1.51295
\(583\) 0.738321 0.0305781
\(584\) 6.93706 0.287057
\(585\) 5.65457 0.233788
\(586\) 14.7656 0.609960
\(587\) 7.34814 0.303290 0.151645 0.988435i \(-0.451543\pi\)
0.151645 + 0.988435i \(0.451543\pi\)
\(588\) 7.04962 0.290721
\(589\) −3.66356 −0.150954
\(590\) 12.5007 0.514645
\(591\) −44.6299 −1.83583
\(592\) 15.0553 0.618771
\(593\) 29.7346 1.22105 0.610527 0.791996i \(-0.290958\pi\)
0.610527 + 0.791996i \(0.290958\pi\)
\(594\) −3.67177 −0.150655
\(595\) −10.9839 −0.450298
\(596\) 13.1800 0.539873
\(597\) −4.29144 −0.175637
\(598\) 0 0
\(599\) 38.7237 1.58221 0.791103 0.611683i \(-0.209507\pi\)
0.791103 + 0.611683i \(0.209507\pi\)
\(600\) −26.6917 −1.08968
\(601\) −32.3899 −1.32121 −0.660607 0.750732i \(-0.729701\pi\)
−0.660607 + 0.750732i \(0.729701\pi\)
\(602\) 17.8199 0.726285
\(603\) 14.4684 0.589200
\(604\) −2.67115 −0.108688
\(605\) −0.943998 −0.0383790
\(606\) −41.2505 −1.67569
\(607\) −0.895589 −0.0363508 −0.0181754 0.999835i \(-0.505786\pi\)
−0.0181754 + 0.999835i \(0.505786\pi\)
\(608\) 21.9672 0.890888
\(609\) −17.9306 −0.726586
\(610\) −2.78577 −0.112792
\(611\) −10.2253 −0.413672
\(612\) 7.94932 0.321332
\(613\) 20.8119 0.840586 0.420293 0.907388i \(-0.361927\pi\)
0.420293 + 0.907388i \(0.361927\pi\)
\(614\) −0.184491 −0.00744547
\(615\) −16.1703 −0.652048
\(616\) 4.78116 0.192639
\(617\) −0.129106 −0.00519760 −0.00259880 0.999997i \(-0.500827\pi\)
−0.00259880 + 0.999997i \(0.500827\pi\)
\(618\) −17.4290 −0.701097
\(619\) 46.0045 1.84908 0.924539 0.381087i \(-0.124450\pi\)
0.924539 + 0.381087i \(0.124450\pi\)
\(620\) 0.445143 0.0178774
\(621\) 0 0
\(622\) −21.1122 −0.846524
\(623\) 2.76875 0.110928
\(624\) 17.4651 0.699163
\(625\) 12.4271 0.497085
\(626\) 12.5971 0.503481
\(627\) 11.9451 0.477041
\(628\) 0.700983 0.0279722
\(629\) 55.9902 2.23247
\(630\) −2.41198 −0.0960954
\(631\) −2.55441 −0.101690 −0.0508448 0.998707i \(-0.516191\pi\)
−0.0508448 + 0.998707i \(0.516191\pi\)
\(632\) 35.5483 1.41404
\(633\) −5.47615 −0.217657
\(634\) −5.40381 −0.214613
\(635\) 2.46663 0.0978852
\(636\) 1.13517 0.0450124
\(637\) 18.8380 0.746390
\(638\) 6.16297 0.243994
\(639\) 1.52209 0.0602131
\(640\) 1.61762 0.0639421
\(641\) 6.07687 0.240022 0.120011 0.992773i \(-0.461707\pi\)
0.120011 + 0.992773i \(0.461707\pi\)
\(642\) 3.91140 0.154371
\(643\) −32.1547 −1.26806 −0.634029 0.773309i \(-0.718600\pi\)
−0.634029 + 0.773309i \(0.718600\pi\)
\(644\) 0 0
\(645\) −20.2668 −0.798006
\(646\) −47.7718 −1.87955
\(647\) −44.4290 −1.74669 −0.873343 0.487106i \(-0.838053\pi\)
−0.873343 + 0.487106i \(0.838053\pi\)
\(648\) −34.6075 −1.35951
\(649\) −11.7423 −0.460924
\(650\) −19.0378 −0.746725
\(651\) −2.12470 −0.0832734
\(652\) 17.4257 0.682444
\(653\) 49.1250 1.92241 0.961205 0.275834i \(-0.0889540\pi\)
0.961205 + 0.275834i \(0.0889540\pi\)
\(654\) −1.80944 −0.0707547
\(655\) −13.9804 −0.546261
\(656\) −16.3341 −0.637741
\(657\) 3.28725 0.128248
\(658\) 4.36164 0.170035
\(659\) −9.40434 −0.366341 −0.183171 0.983081i \(-0.558636\pi\)
−0.183171 + 0.983081i \(0.558636\pi\)
\(660\) −1.45140 −0.0564956
\(661\) 38.3424 1.49135 0.745673 0.666312i \(-0.232128\pi\)
0.745673 + 0.666312i \(0.232128\pi\)
\(662\) −3.00274 −0.116705
\(663\) 64.9519 2.52252
\(664\) 35.3430 1.37157
\(665\) −8.29929 −0.321833
\(666\) 12.2949 0.476419
\(667\) 0 0
\(668\) 8.13290 0.314671
\(669\) −14.8153 −0.572793
\(670\) 10.5648 0.408152
\(671\) 2.61676 0.101019
\(672\) 12.7400 0.491455
\(673\) −0.633561 −0.0244220 −0.0122110 0.999925i \(-0.503887\pi\)
−0.0122110 + 0.999925i \(0.503887\pi\)
\(674\) 17.7453 0.683524
\(675\) 13.3779 0.514915
\(676\) −2.82532 −0.108666
\(677\) 10.5852 0.406823 0.203412 0.979093i \(-0.434797\pi\)
0.203412 + 0.979093i \(0.434797\pi\)
\(678\) 18.6452 0.716065
\(679\) 23.8208 0.914160
\(680\) 21.7468 0.833953
\(681\) −10.3590 −0.396956
\(682\) 0.730284 0.0279640
\(683\) −36.3263 −1.38999 −0.694994 0.719016i \(-0.744593\pi\)
−0.694994 + 0.719016i \(0.744593\pi\)
\(684\) 6.00638 0.229660
\(685\) −7.34553 −0.280658
\(686\) −20.3029 −0.775169
\(687\) −13.1413 −0.501371
\(688\) −20.4722 −0.780496
\(689\) 3.03340 0.115563
\(690\) 0 0
\(691\) −20.4187 −0.776763 −0.388382 0.921499i \(-0.626966\pi\)
−0.388382 + 0.921499i \(0.626966\pi\)
\(692\) 9.91009 0.376725
\(693\) 2.26564 0.0860646
\(694\) 22.8812 0.868559
\(695\) −11.4168 −0.433064
\(696\) 35.5004 1.34564
\(697\) −60.7460 −2.30092
\(698\) 7.06714 0.267495
\(699\) 15.4588 0.584705
\(700\) −4.64962 −0.175739
\(701\) 31.5055 1.18995 0.594974 0.803745i \(-0.297162\pi\)
0.594974 + 0.803745i \(0.297162\pi\)
\(702\) −15.0855 −0.569367
\(703\) 42.3053 1.59557
\(704\) −8.40557 −0.316797
\(705\) −4.96056 −0.186826
\(706\) 21.5155 0.809747
\(707\) −26.9215 −1.01249
\(708\) −18.0537 −0.678501
\(709\) −34.4572 −1.29407 −0.647033 0.762462i \(-0.723991\pi\)
−0.647033 + 0.762462i \(0.723991\pi\)
\(710\) 1.11142 0.0417110
\(711\) 16.8452 0.631745
\(712\) −5.48178 −0.205439
\(713\) 0 0
\(714\) −27.7054 −1.03685
\(715\) −3.87843 −0.145045
\(716\) −1.90145 −0.0710604
\(717\) 53.8427 2.01079
\(718\) −16.6328 −0.620731
\(719\) 4.56669 0.170309 0.0851543 0.996368i \(-0.472862\pi\)
0.0851543 + 0.996368i \(0.472862\pi\)
\(720\) 2.77097 0.103268
\(721\) −11.3748 −0.423618
\(722\) −14.6685 −0.545903
\(723\) 44.0079 1.63667
\(724\) 10.2467 0.380814
\(725\) −22.4544 −0.833937
\(726\) −2.38110 −0.0883710
\(727\) 44.6661 1.65657 0.828286 0.560305i \(-0.189316\pi\)
0.828286 + 0.560305i \(0.189316\pi\)
\(728\) 19.6435 0.728036
\(729\) 4.22373 0.156435
\(730\) 2.40033 0.0888402
\(731\) −76.1353 −2.81597
\(732\) 4.02326 0.148704
\(733\) 13.5339 0.499886 0.249943 0.968261i \(-0.419588\pi\)
0.249943 + 0.968261i \(0.419588\pi\)
\(734\) −11.1097 −0.410067
\(735\) 9.13881 0.337090
\(736\) 0 0
\(737\) −9.92380 −0.365548
\(738\) −13.3393 −0.491025
\(739\) 17.3255 0.637330 0.318665 0.947867i \(-0.396765\pi\)
0.318665 + 0.947867i \(0.396765\pi\)
\(740\) −5.14033 −0.188962
\(741\) 49.0766 1.80287
\(742\) −1.29391 −0.0475009
\(743\) −3.73057 −0.136861 −0.0684307 0.997656i \(-0.521799\pi\)
−0.0684307 + 0.997656i \(0.521799\pi\)
\(744\) 4.20663 0.154223
\(745\) 17.0859 0.625980
\(746\) 8.08678 0.296078
\(747\) 16.7479 0.612775
\(748\) −5.45238 −0.199359
\(749\) 2.55271 0.0932741
\(750\) −20.4745 −0.747624
\(751\) −24.0681 −0.878257 −0.439129 0.898424i \(-0.644713\pi\)
−0.439129 + 0.898424i \(0.644713\pi\)
\(752\) −5.01083 −0.182726
\(753\) −6.29477 −0.229394
\(754\) 25.3207 0.922124
\(755\) −3.46276 −0.126023
\(756\) −3.68435 −0.133998
\(757\) −45.6344 −1.65861 −0.829306 0.558795i \(-0.811264\pi\)
−0.829306 + 0.558795i \(0.811264\pi\)
\(758\) 33.5912 1.22009
\(759\) 0 0
\(760\) 16.4316 0.596035
\(761\) −30.4837 −1.10503 −0.552517 0.833501i \(-0.686333\pi\)
−0.552517 + 0.833501i \(0.686333\pi\)
\(762\) 6.22172 0.225389
\(763\) −1.18090 −0.0427515
\(764\) 9.67437 0.350006
\(765\) 10.3051 0.372583
\(766\) −9.30379 −0.336160
\(767\) −48.2433 −1.74196
\(768\) −31.4146 −1.13358
\(769\) −6.28482 −0.226636 −0.113318 0.993559i \(-0.536148\pi\)
−0.113318 + 0.993559i \(0.536148\pi\)
\(770\) 1.65436 0.0596189
\(771\) 14.5786 0.525037
\(772\) −9.52209 −0.342708
\(773\) −33.1780 −1.19333 −0.596665 0.802490i \(-0.703508\pi\)
−0.596665 + 0.802490i \(0.703508\pi\)
\(774\) −16.7186 −0.600939
\(775\) −2.66075 −0.0955768
\(776\) −47.1623 −1.69303
\(777\) 24.5351 0.880193
\(778\) 30.2120 1.08315
\(779\) −45.8987 −1.64449
\(780\) −5.96309 −0.213513
\(781\) −1.04399 −0.0373570
\(782\) 0 0
\(783\) −17.7928 −0.635864
\(784\) 9.23142 0.329694
\(785\) 0.908722 0.0324337
\(786\) −35.2637 −1.25781
\(787\) 47.1122 1.67937 0.839684 0.543075i \(-0.182740\pi\)
0.839684 + 0.543075i \(0.182740\pi\)
\(788\) 15.3924 0.548330
\(789\) 15.5350 0.553059
\(790\) 12.3003 0.437624
\(791\) 12.1685 0.432662
\(792\) −4.48569 −0.159392
\(793\) 10.7510 0.381779
\(794\) −13.3922 −0.475270
\(795\) 1.47158 0.0521916
\(796\) 1.48007 0.0524597
\(797\) 0.301803 0.0106904 0.00534520 0.999986i \(-0.498299\pi\)
0.00534520 + 0.999986i \(0.498299\pi\)
\(798\) −20.9338 −0.741048
\(799\) −18.6351 −0.659261
\(800\) 15.9542 0.564066
\(801\) −2.59764 −0.0917832
\(802\) 7.85787 0.277471
\(803\) −2.25470 −0.0795668
\(804\) −15.2578 −0.538103
\(805\) 0 0
\(806\) 3.00038 0.105684
\(807\) 64.9365 2.28587
\(808\) 53.3011 1.87513
\(809\) 14.1882 0.498831 0.249416 0.968397i \(-0.419761\pi\)
0.249416 + 0.968397i \(0.419761\pi\)
\(810\) −11.9747 −0.420749
\(811\) 24.2418 0.851245 0.425623 0.904901i \(-0.360055\pi\)
0.425623 + 0.904901i \(0.360055\pi\)
\(812\) 6.18408 0.217019
\(813\) 17.0069 0.596458
\(814\) −8.43302 −0.295577
\(815\) 22.5899 0.791290
\(816\) 31.8291 1.11424
\(817\) −57.5266 −2.01260
\(818\) 25.5429 0.893086
\(819\) 9.30842 0.325263
\(820\) 5.57695 0.194756
\(821\) 3.77128 0.131618 0.0658092 0.997832i \(-0.479037\pi\)
0.0658092 + 0.997832i \(0.479037\pi\)
\(822\) −18.5281 −0.646241
\(823\) 35.7647 1.24668 0.623339 0.781952i \(-0.285776\pi\)
0.623339 + 0.781952i \(0.285776\pi\)
\(824\) 22.5206 0.784542
\(825\) 8.67541 0.302039
\(826\) 20.5783 0.716012
\(827\) 4.73807 0.164759 0.0823794 0.996601i \(-0.473748\pi\)
0.0823794 + 0.996601i \(0.473748\pi\)
\(828\) 0 0
\(829\) 27.7132 0.962519 0.481259 0.876578i \(-0.340180\pi\)
0.481259 + 0.876578i \(0.340180\pi\)
\(830\) 12.2292 0.424483
\(831\) −49.4515 −1.71545
\(832\) −34.5344 −1.19727
\(833\) 34.3313 1.18951
\(834\) −28.7972 −0.997167
\(835\) 10.5431 0.364860
\(836\) −4.11973 −0.142484
\(837\) −2.10837 −0.0728759
\(838\) −7.70824 −0.266277
\(839\) 7.29543 0.251866 0.125933 0.992039i \(-0.459808\pi\)
0.125933 + 0.992039i \(0.459808\pi\)
\(840\) 9.52955 0.328801
\(841\) 0.864829 0.0298217
\(842\) −41.0801 −1.41571
\(843\) −2.29110 −0.0789096
\(844\) 1.88866 0.0650105
\(845\) −3.66261 −0.125998
\(846\) −4.09209 −0.140689
\(847\) −1.55399 −0.0533957
\(848\) 1.48649 0.0510464
\(849\) 52.8202 1.81279
\(850\) −34.6954 −1.19004
\(851\) 0 0
\(852\) −1.60514 −0.0549912
\(853\) 50.3906 1.72534 0.862671 0.505765i \(-0.168790\pi\)
0.862671 + 0.505765i \(0.168790\pi\)
\(854\) −4.58587 −0.156925
\(855\) 7.78640 0.266289
\(856\) −5.05405 −0.172744
\(857\) −31.2679 −1.06809 −0.534045 0.845456i \(-0.679329\pi\)
−0.534045 + 0.845456i \(0.679329\pi\)
\(858\) −9.78279 −0.333979
\(859\) −45.5291 −1.55343 −0.776716 0.629851i \(-0.783116\pi\)
−0.776716 + 0.629851i \(0.783116\pi\)
\(860\) 6.98982 0.238351
\(861\) −26.6191 −0.907178
\(862\) −41.5759 −1.41608
\(863\) 25.1496 0.856102 0.428051 0.903755i \(-0.359200\pi\)
0.428051 + 0.903755i \(0.359200\pi\)
\(864\) 12.6421 0.430092
\(865\) 12.8470 0.436811
\(866\) 5.54412 0.188397
\(867\) 82.4776 2.80108
\(868\) 0.732785 0.0248723
\(869\) −11.5540 −0.391944
\(870\) 12.2837 0.416457
\(871\) −40.7721 −1.38151
\(872\) 2.33804 0.0791759
\(873\) −22.3487 −0.756389
\(874\) 0 0
\(875\) −13.3624 −0.451731
\(876\) −3.46661 −0.117126
\(877\) −45.3237 −1.53047 −0.765236 0.643750i \(-0.777378\pi\)
−0.765236 + 0.643750i \(0.777378\pi\)
\(878\) −6.25866 −0.211220
\(879\) −27.6444 −0.932423
\(880\) −1.90059 −0.0640690
\(881\) −27.7285 −0.934197 −0.467098 0.884205i \(-0.654701\pi\)
−0.467098 + 0.884205i \(0.654701\pi\)
\(882\) 7.53884 0.253846
\(883\) 48.0009 1.61536 0.807680 0.589621i \(-0.200723\pi\)
0.807680 + 0.589621i \(0.200723\pi\)
\(884\) −22.4012 −0.753434
\(885\) −23.4040 −0.786718
\(886\) −5.24755 −0.176295
\(887\) 48.1989 1.61836 0.809180 0.587561i \(-0.199912\pi\)
0.809180 + 0.587561i \(0.199912\pi\)
\(888\) −48.5765 −1.63012
\(889\) 4.06051 0.136185
\(890\) −1.89678 −0.0635803
\(891\) 11.2482 0.376830
\(892\) 5.10964 0.171084
\(893\) −14.0804 −0.471181
\(894\) 43.0968 1.44137
\(895\) −2.46495 −0.0823942
\(896\) 2.66289 0.0889610
\(897\) 0 0
\(898\) −18.7296 −0.625015
\(899\) 3.53884 0.118027
\(900\) 4.36227 0.145409
\(901\) 5.52821 0.184171
\(902\) 9.14932 0.304639
\(903\) −33.3628 −1.11024
\(904\) −24.0921 −0.801292
\(905\) 13.2833 0.441552
\(906\) −8.73433 −0.290179
\(907\) 22.4489 0.745405 0.372702 0.927951i \(-0.378431\pi\)
0.372702 + 0.927951i \(0.378431\pi\)
\(908\) 3.57269 0.118564
\(909\) 25.2577 0.837746
\(910\) 6.79695 0.225317
\(911\) 24.2176 0.802364 0.401182 0.915998i \(-0.368600\pi\)
0.401182 + 0.915998i \(0.368600\pi\)
\(912\) 24.0496 0.796361
\(913\) −11.4873 −0.380174
\(914\) −0.113724 −0.00376167
\(915\) 5.21558 0.172422
\(916\) 4.53229 0.149751
\(917\) −23.0143 −0.759999
\(918\) −27.4925 −0.907389
\(919\) −2.87860 −0.0949563 −0.0474781 0.998872i \(-0.515118\pi\)
−0.0474781 + 0.998872i \(0.515118\pi\)
\(920\) 0 0
\(921\) 0.345409 0.0113816
\(922\) 18.2278 0.600302
\(923\) −4.28927 −0.141183
\(924\) −2.38926 −0.0786008
\(925\) 30.7252 1.01024
\(926\) −4.59710 −0.151070
\(927\) 10.6718 0.350508
\(928\) −21.2194 −0.696561
\(929\) −25.1540 −0.825275 −0.412637 0.910895i \(-0.635392\pi\)
−0.412637 + 0.910895i \(0.635392\pi\)
\(930\) 1.45556 0.0477297
\(931\) 25.9401 0.850154
\(932\) −5.33157 −0.174641
\(933\) 39.5268 1.29405
\(934\) 29.6744 0.970977
\(935\) −7.06822 −0.231156
\(936\) −18.4295 −0.602388
\(937\) 53.0570 1.73330 0.866649 0.498919i \(-0.166269\pi\)
0.866649 + 0.498919i \(0.166269\pi\)
\(938\) 17.3915 0.567851
\(939\) −23.5845 −0.769653
\(940\) 1.71084 0.0558016
\(941\) 14.8995 0.485711 0.242855 0.970063i \(-0.421916\pi\)
0.242855 + 0.970063i \(0.421916\pi\)
\(942\) 2.29212 0.0746814
\(943\) 0 0
\(944\) −23.6412 −0.769456
\(945\) −4.77622 −0.155371
\(946\) 11.4672 0.372831
\(947\) −55.4878 −1.80311 −0.901556 0.432663i \(-0.857574\pi\)
−0.901556 + 0.432663i \(0.857574\pi\)
\(948\) −17.7643 −0.576958
\(949\) −9.26349 −0.300705
\(950\) −26.2153 −0.850536
\(951\) 10.1171 0.328071
\(952\) 35.7991 1.16026
\(953\) 34.9473 1.13205 0.566027 0.824387i \(-0.308480\pi\)
0.566027 + 0.824387i \(0.308480\pi\)
\(954\) 1.21394 0.0393029
\(955\) 12.5414 0.405831
\(956\) −18.5698 −0.600589
\(957\) −11.5385 −0.372985
\(958\) 17.3851 0.561686
\(959\) −12.0920 −0.390473
\(960\) −16.7535 −0.540718
\(961\) −30.5807 −0.986473
\(962\) −34.6472 −1.11707
\(963\) −2.39496 −0.0771764
\(964\) −15.1779 −0.488846
\(965\) −12.3440 −0.397368
\(966\) 0 0
\(967\) 22.6734 0.729127 0.364563 0.931179i \(-0.381218\pi\)
0.364563 + 0.931179i \(0.381218\pi\)
\(968\) 3.07670 0.0988890
\(969\) 89.4393 2.87321
\(970\) −16.3189 −0.523968
\(971\) 57.5531 1.84697 0.923483 0.383640i \(-0.125330\pi\)
0.923483 + 0.383640i \(0.125330\pi\)
\(972\) 10.1815 0.326571
\(973\) −18.7941 −0.602510
\(974\) −48.4179 −1.55141
\(975\) 35.6430 1.14149
\(976\) 5.26843 0.168638
\(977\) −4.62307 −0.147905 −0.0739525 0.997262i \(-0.523561\pi\)
−0.0739525 + 0.997262i \(0.523561\pi\)
\(978\) 56.9798 1.82201
\(979\) 1.78171 0.0569436
\(980\) −3.15188 −0.100683
\(981\) 1.10792 0.0353732
\(982\) 9.12160 0.291082
\(983\) 9.92441 0.316539 0.158270 0.987396i \(-0.449408\pi\)
0.158270 + 0.987396i \(0.449408\pi\)
\(984\) 52.7026 1.68010
\(985\) 19.9540 0.635786
\(986\) 46.1455 1.46957
\(987\) −8.16596 −0.259925
\(988\) −16.9260 −0.538487
\(989\) 0 0
\(990\) −1.55212 −0.0493296
\(991\) −15.3200 −0.486656 −0.243328 0.969944i \(-0.578239\pi\)
−0.243328 + 0.969944i \(0.578239\pi\)
\(992\) −2.51440 −0.0798323
\(993\) 5.62179 0.178402
\(994\) 1.82960 0.0580314
\(995\) 1.91870 0.0608267
\(996\) −17.6617 −0.559633
\(997\) 45.7887 1.45014 0.725072 0.688673i \(-0.241807\pi\)
0.725072 + 0.688673i \(0.241807\pi\)
\(998\) −30.6033 −0.968730
\(999\) 24.3466 0.770292
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5819.2.a.t.1.20 60
23.11 odd 22 253.2.i.b.144.5 120
23.21 odd 22 253.2.i.b.188.5 yes 120
23.22 odd 2 5819.2.a.u.1.20 60
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
253.2.i.b.144.5 120 23.11 odd 22
253.2.i.b.188.5 yes 120 23.21 odd 22
5819.2.a.t.1.20 60 1.1 even 1 trivial
5819.2.a.u.1.20 60 23.22 odd 2