gp: [N,k,chi] = [5819,2,Mod(1,5819)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5819, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("5819.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [60,5,9,73,-8]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
\( p \)
Sign
\(11\)
\( +1 \)
\(23\)
\( -1 \)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5819))\):
\( T_{2}^{60} - 5 T_{2}^{59} - 84 T_{2}^{58} + 445 T_{2}^{57} + 3305 T_{2}^{56} - 18701 T_{2}^{55} + \cdots + 314368 \)
T2^60 - 5*T2^59 - 84*T2^58 + 445*T2^57 + 3305*T2^56 - 18701*T2^55 - 80914*T2^54 + 493747*T2^53 + 1380838*T2^52 - 9192781*T2^51 - 17432867*T2^50 + 128428596*T2^49 + 168561526*T2^48 - 1398728047*T2^47 - 1273949454*T2^46 + 12180171231*T2^45 + 7602467011*T2^44 - 86301889447*T2^43 - 35844194509*T2^42 + 503713485898*T2^41 + 131909371074*T2^40 - 2442820443725*T2^39 - 365025445922*T2^38 + 9900942977007*T2^37 + 676200693555*T2^36 - 33658057097278*T2^35 - 390221554929*T2^34 + 96125096602820*T2^33 - 2480878434656*T2^32 - 230600113486335*T2^31 + 11049424151693*T2^30 + 463825461858793*T2^29 - 26904388595286*T2^28 - 779401723938728*T2^27 + 45892419033457*T2^26 + 1088192904447376*T2^25 - 57718262921178*T2^24 - 1252860322498113*T2^23 + 53594366672524*T2^22 + 1177620072870199*T2^21 - 35631178804131*T2^20 - 892054004063206*T2^19 + 15652680743395*T2^18 + 535621871968609*T2^17 - 3543204380301*T2^16 - 249570298071539*T2^15 - 186791702945*T2^14 + 87808604673079*T2^13 + 277061279586*T2^12 - 22510939885543*T2^11 - 1996791381*T2^10 + 4007369602488*T2^9 - 29525084608*T2^8 - 462462863224*T2^7 + 7409356992*T2^6 + 31100429792*T2^5 - 649042240*T2^4 - 1005765888*T2^3 + 14154496*T2^2 + 9689600*T2 + 314368
\( T_{5}^{60} + 8 T_{5}^{59} - 166 T_{5}^{58} - 1478 T_{5}^{57} + 12447 T_{5}^{56} + 127574 T_{5}^{55} + \cdots + 175036061908861 \)
T5^60 + 8*T5^59 - 166*T5^58 - 1478*T5^57 + 12447*T5^56 + 127574*T5^55 - 549048*T5^54 - 6837662*T5^53 + 15284609*T5^52 + 255127595*T5^51 - 250850203*T5^50 - 7042046354*T5^49 + 954072782*T5^48 + 149165381882*T5^47 + 72416601917*T5^46 - 2482777361388*T5^45 - 2407550611089*T5^44 + 32984693858499*T5^43 + 45148821337136*T5^42 - 353402561489570*T5^41 - 606323507930137*T5^40 + 3073307024600189*T5^39 + 6250934194643972*T5^38 - 21768194116479140*T5^37 - 50997214794254782*T5^36 + 125708405187224280*T5^35 + 334377878606487359*T5^34 - 591257397009161743*T5^33 - 1776517822533815374*T5^32 + 2258509775197978113*T5^31 + 7677454681064931140*T5^30 - 6976238448931698785*T5^29 - 27012609319779911381*T5^28 + 17335406531224370732*T5^27 + 77264717726919964806*T5^26 - 34502667538273632961*T5^25 - 179014917065759602057*T5^24 + 55019284262814535454*T5^23 + 333994357484550716210*T5^22 - 71253803416155849270*T5^21 - 497551329794960745099*T5^20 + 77936203887041051664*T5^19 + 584863946279255451853*T5^18 - 76570746089167616005*T5^17 - 533770400236279148591*T5^16 + 69640989243669898622*T5^15 + 369907882157146382756*T5^14 - 55315257101492294928*T5^13 - 188792228567375548103*T5^12 + 34369131753149867532*T5^11 + 68008141257698712801*T5^10 - 15092695330938802111*T5^9 - 16282892197968946923*T5^8 + 4309733796090766326*T5^7 + 2366763922998015763*T5^6 - 737965248497926658*T5^5 - 174970223865476646*T5^4 + 67350190620101699*T5^3 + 3214559429938681*T5^2 - 2481519406982202*T5 + 175036061908861