Properties

Label 5819.2.a.t.1.18
Level $5819$
Weight $2$
Character 5819.1
Self dual yes
Analytic conductor $46.465$
Analytic rank $0$
Dimension $60$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5819,2,Mod(1,5819)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5819, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5819.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5819 = 11 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5819.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [60,5,9,73,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.4649489362\)
Analytic rank: \(0\)
Dimension: \(60\)
Twist minimal: no (minimal twist has level 253)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.18
Character \(\chi\) \(=\) 5819.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.37192 q^{2} -3.24389 q^{3} -0.117831 q^{4} -1.23015 q^{5} +4.45036 q^{6} -3.99271 q^{7} +2.90550 q^{8} +7.52280 q^{9} +1.68767 q^{10} -1.00000 q^{11} +0.382229 q^{12} -2.35213 q^{13} +5.47768 q^{14} +3.99048 q^{15} -3.75045 q^{16} +4.79234 q^{17} -10.3207 q^{18} -0.189173 q^{19} +0.144950 q^{20} +12.9519 q^{21} +1.37192 q^{22} -9.42511 q^{24} -3.48672 q^{25} +3.22694 q^{26} -14.6714 q^{27} +0.470463 q^{28} +9.80675 q^{29} -5.47462 q^{30} +1.10911 q^{31} -0.665665 q^{32} +3.24389 q^{33} -6.57472 q^{34} +4.91164 q^{35} -0.886416 q^{36} +5.60736 q^{37} +0.259530 q^{38} +7.63006 q^{39} -3.57421 q^{40} +10.4777 q^{41} -17.7690 q^{42} +0.255808 q^{43} +0.117831 q^{44} -9.25420 q^{45} +3.04112 q^{47} +12.1660 q^{48} +8.94171 q^{49} +4.78351 q^{50} -15.5458 q^{51} +0.277153 q^{52} +13.0157 q^{53} +20.1281 q^{54} +1.23015 q^{55} -11.6008 q^{56} +0.613655 q^{57} -13.4541 q^{58} +5.85897 q^{59} -0.470200 q^{60} -2.53555 q^{61} -1.52161 q^{62} -30.0363 q^{63} +8.41415 q^{64} +2.89349 q^{65} -4.45036 q^{66} -6.20764 q^{67} -0.564685 q^{68} -6.73839 q^{70} -8.80904 q^{71} +21.8575 q^{72} -4.73282 q^{73} -7.69285 q^{74} +11.3105 q^{75} +0.0222903 q^{76} +3.99271 q^{77} -10.4678 q^{78} -1.45162 q^{79} +4.61363 q^{80} +25.0241 q^{81} -14.3746 q^{82} -5.75581 q^{83} -1.52613 q^{84} -5.89532 q^{85} -0.350949 q^{86} -31.8120 q^{87} -2.90550 q^{88} +9.91146 q^{89} +12.6960 q^{90} +9.39138 q^{91} -3.59782 q^{93} -4.17218 q^{94} +0.232712 q^{95} +2.15934 q^{96} -5.66413 q^{97} -12.2673 q^{98} -7.52280 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q + 5 q^{2} + 9 q^{3} + 73 q^{4} - 8 q^{5} + 26 q^{6} + 30 q^{8} + 75 q^{9} + 7 q^{10} - 60 q^{11} + 41 q^{12} + 46 q^{13} - 16 q^{14} - 4 q^{15} + 99 q^{16} + 5 q^{17} + 36 q^{18} + 8 q^{19} - 82 q^{20}+ \cdots - 75 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.37192 −0.970095 −0.485048 0.874488i \(-0.661198\pi\)
−0.485048 + 0.874488i \(0.661198\pi\)
\(3\) −3.24389 −1.87286 −0.936429 0.350856i \(-0.885891\pi\)
−0.936429 + 0.350856i \(0.885891\pi\)
\(4\) −0.117831 −0.0589153
\(5\) −1.23015 −0.550141 −0.275071 0.961424i \(-0.588701\pi\)
−0.275071 + 0.961424i \(0.588701\pi\)
\(6\) 4.45036 1.81685
\(7\) −3.99271 −1.50910 −0.754551 0.656242i \(-0.772145\pi\)
−0.754551 + 0.656242i \(0.772145\pi\)
\(8\) 2.90550 1.02725
\(9\) 7.52280 2.50760
\(10\) 1.68767 0.533689
\(11\) −1.00000 −0.301511
\(12\) 0.382229 0.110340
\(13\) −2.35213 −0.652365 −0.326182 0.945307i \(-0.605762\pi\)
−0.326182 + 0.945307i \(0.605762\pi\)
\(14\) 5.47768 1.46397
\(15\) 3.99048 1.03034
\(16\) −3.75045 −0.937614
\(17\) 4.79234 1.16231 0.581157 0.813791i \(-0.302600\pi\)
0.581157 + 0.813791i \(0.302600\pi\)
\(18\) −10.3207 −2.43261
\(19\) −0.189173 −0.0433992 −0.0216996 0.999765i \(-0.506908\pi\)
−0.0216996 + 0.999765i \(0.506908\pi\)
\(20\) 0.144950 0.0324117
\(21\) 12.9519 2.82633
\(22\) 1.37192 0.292495
\(23\) 0 0
\(24\) −9.42511 −1.92389
\(25\) −3.48672 −0.697345
\(26\) 3.22694 0.632856
\(27\) −14.6714 −2.82352
\(28\) 0.470463 0.0889091
\(29\) 9.80675 1.82107 0.910534 0.413434i \(-0.135671\pi\)
0.910534 + 0.413434i \(0.135671\pi\)
\(30\) −5.47462 −0.999525
\(31\) 1.10911 0.199201 0.0996007 0.995027i \(-0.468243\pi\)
0.0996007 + 0.995027i \(0.468243\pi\)
\(32\) −0.665665 −0.117674
\(33\) 3.24389 0.564688
\(34\) −6.57472 −1.12756
\(35\) 4.91164 0.830219
\(36\) −0.886416 −0.147736
\(37\) 5.60736 0.921844 0.460922 0.887441i \(-0.347519\pi\)
0.460922 + 0.887441i \(0.347519\pi\)
\(38\) 0.259530 0.0421014
\(39\) 7.63006 1.22179
\(40\) −3.57421 −0.565132
\(41\) 10.4777 1.63634 0.818169 0.574978i \(-0.194989\pi\)
0.818169 + 0.574978i \(0.194989\pi\)
\(42\) −17.7690 −2.74181
\(43\) 0.255808 0.0390104 0.0195052 0.999810i \(-0.493791\pi\)
0.0195052 + 0.999810i \(0.493791\pi\)
\(44\) 0.117831 0.0177636
\(45\) −9.25420 −1.37953
\(46\) 0 0
\(47\) 3.04112 0.443594 0.221797 0.975093i \(-0.428808\pi\)
0.221797 + 0.975093i \(0.428808\pi\)
\(48\) 12.1660 1.75602
\(49\) 8.94171 1.27739
\(50\) 4.78351 0.676491
\(51\) −15.5458 −2.17685
\(52\) 0.277153 0.0384342
\(53\) 13.0157 1.78784 0.893919 0.448228i \(-0.147945\pi\)
0.893919 + 0.448228i \(0.147945\pi\)
\(54\) 20.1281 2.73908
\(55\) 1.23015 0.165874
\(56\) −11.6008 −1.55022
\(57\) 0.613655 0.0812806
\(58\) −13.4541 −1.76661
\(59\) 5.85897 0.762773 0.381386 0.924416i \(-0.375447\pi\)
0.381386 + 0.924416i \(0.375447\pi\)
\(60\) −0.470200 −0.0607026
\(61\) −2.53555 −0.324644 −0.162322 0.986738i \(-0.551898\pi\)
−0.162322 + 0.986738i \(0.551898\pi\)
\(62\) −1.52161 −0.193244
\(63\) −30.0363 −3.78422
\(64\) 8.41415 1.05177
\(65\) 2.89349 0.358893
\(66\) −4.45036 −0.547801
\(67\) −6.20764 −0.758384 −0.379192 0.925318i \(-0.623798\pi\)
−0.379192 + 0.925318i \(0.623798\pi\)
\(68\) −0.564685 −0.0684781
\(69\) 0 0
\(70\) −6.73839 −0.805391
\(71\) −8.80904 −1.04544 −0.522721 0.852504i \(-0.675083\pi\)
−0.522721 + 0.852504i \(0.675083\pi\)
\(72\) 21.8575 2.57593
\(73\) −4.73282 −0.553935 −0.276967 0.960879i \(-0.589329\pi\)
−0.276967 + 0.960879i \(0.589329\pi\)
\(74\) −7.69285 −0.894276
\(75\) 11.3105 1.30603
\(76\) 0.0222903 0.00255688
\(77\) 3.99271 0.455011
\(78\) −10.4678 −1.18525
\(79\) −1.45162 −0.163320 −0.0816599 0.996660i \(-0.526022\pi\)
−0.0816599 + 0.996660i \(0.526022\pi\)
\(80\) 4.61363 0.515820
\(81\) 25.0241 2.78046
\(82\) −14.3746 −1.58740
\(83\) −5.75581 −0.631782 −0.315891 0.948796i \(-0.602303\pi\)
−0.315891 + 0.948796i \(0.602303\pi\)
\(84\) −1.52613 −0.166514
\(85\) −5.89532 −0.639437
\(86\) −0.350949 −0.0378438
\(87\) −31.8120 −3.41060
\(88\) −2.90550 −0.309727
\(89\) 9.91146 1.05061 0.525306 0.850913i \(-0.323951\pi\)
0.525306 + 0.850913i \(0.323951\pi\)
\(90\) 12.6960 1.33828
\(91\) 9.39138 0.984484
\(92\) 0 0
\(93\) −3.59782 −0.373076
\(94\) −4.17218 −0.430328
\(95\) 0.232712 0.0238757
\(96\) 2.15934 0.220387
\(97\) −5.66413 −0.575106 −0.287553 0.957765i \(-0.592842\pi\)
−0.287553 + 0.957765i \(0.592842\pi\)
\(98\) −12.2673 −1.23919
\(99\) −7.52280 −0.756070
\(100\) 0.410843 0.0410843
\(101\) 8.29477 0.825360 0.412680 0.910876i \(-0.364593\pi\)
0.412680 + 0.910876i \(0.364593\pi\)
\(102\) 21.3276 2.11175
\(103\) −1.40436 −0.138375 −0.0691877 0.997604i \(-0.522041\pi\)
−0.0691877 + 0.997604i \(0.522041\pi\)
\(104\) −6.83412 −0.670141
\(105\) −15.9328 −1.55488
\(106\) −17.8565 −1.73437
\(107\) −3.81633 −0.368939 −0.184469 0.982838i \(-0.559057\pi\)
−0.184469 + 0.982838i \(0.559057\pi\)
\(108\) 1.72875 0.166349
\(109\) −9.56978 −0.916618 −0.458309 0.888793i \(-0.651545\pi\)
−0.458309 + 0.888793i \(0.651545\pi\)
\(110\) −1.68767 −0.160913
\(111\) −18.1896 −1.72648
\(112\) 14.9745 1.41495
\(113\) −10.9444 −1.02956 −0.514781 0.857322i \(-0.672127\pi\)
−0.514781 + 0.857322i \(0.672127\pi\)
\(114\) −0.841887 −0.0788500
\(115\) 0 0
\(116\) −1.15554 −0.107289
\(117\) −17.6946 −1.63587
\(118\) −8.03805 −0.739962
\(119\) −19.1344 −1.75405
\(120\) 11.5943 1.05841
\(121\) 1.00000 0.0909091
\(122\) 3.47858 0.314936
\(123\) −33.9884 −3.06463
\(124\) −0.130687 −0.0117360
\(125\) 10.4400 0.933779
\(126\) 41.2075 3.67106
\(127\) −17.2547 −1.53111 −0.765554 0.643372i \(-0.777535\pi\)
−0.765554 + 0.643372i \(0.777535\pi\)
\(128\) −10.2122 −0.902642
\(129\) −0.829813 −0.0730610
\(130\) −3.96964 −0.348160
\(131\) 7.34827 0.642021 0.321011 0.947076i \(-0.395977\pi\)
0.321011 + 0.947076i \(0.395977\pi\)
\(132\) −0.382229 −0.0332688
\(133\) 0.755312 0.0654938
\(134\) 8.51639 0.735704
\(135\) 18.0481 1.55334
\(136\) 13.9241 1.19399
\(137\) 1.34457 0.114874 0.0574372 0.998349i \(-0.481707\pi\)
0.0574372 + 0.998349i \(0.481707\pi\)
\(138\) 0 0
\(139\) −8.53553 −0.723974 −0.361987 0.932183i \(-0.617902\pi\)
−0.361987 + 0.932183i \(0.617902\pi\)
\(140\) −0.578742 −0.0489126
\(141\) −9.86506 −0.830788
\(142\) 12.0853 1.01418
\(143\) 2.35213 0.196695
\(144\) −28.2139 −2.35116
\(145\) −12.0638 −1.00184
\(146\) 6.49306 0.537369
\(147\) −29.0059 −2.39237
\(148\) −0.660718 −0.0543107
\(149\) −4.51694 −0.370042 −0.185021 0.982735i \(-0.559235\pi\)
−0.185021 + 0.982735i \(0.559235\pi\)
\(150\) −15.5172 −1.26697
\(151\) 2.70230 0.219910 0.109955 0.993937i \(-0.464929\pi\)
0.109955 + 0.993937i \(0.464929\pi\)
\(152\) −0.549641 −0.0445818
\(153\) 36.0518 2.91462
\(154\) −5.47768 −0.441404
\(155\) −1.36437 −0.109589
\(156\) −0.899054 −0.0719819
\(157\) −17.1186 −1.36621 −0.683107 0.730318i \(-0.739372\pi\)
−0.683107 + 0.730318i \(0.739372\pi\)
\(158\) 1.99151 0.158436
\(159\) −42.2213 −3.34837
\(160\) 0.818870 0.0647374
\(161\) 0 0
\(162\) −34.3311 −2.69731
\(163\) 8.84919 0.693122 0.346561 0.938027i \(-0.387349\pi\)
0.346561 + 0.938027i \(0.387349\pi\)
\(164\) −1.23459 −0.0964053
\(165\) −3.99048 −0.310658
\(166\) 7.89652 0.612889
\(167\) 5.90443 0.456899 0.228449 0.973556i \(-0.426634\pi\)
0.228449 + 0.973556i \(0.426634\pi\)
\(168\) 37.6317 2.90335
\(169\) −7.46747 −0.574420
\(170\) 8.08791 0.620315
\(171\) −1.42311 −0.108828
\(172\) −0.0301420 −0.00229831
\(173\) 17.8149 1.35444 0.677221 0.735780i \(-0.263184\pi\)
0.677221 + 0.735780i \(0.263184\pi\)
\(174\) 43.6436 3.30861
\(175\) 13.9215 1.05236
\(176\) 3.75045 0.282701
\(177\) −19.0058 −1.42857
\(178\) −13.5977 −1.01919
\(179\) 4.92358 0.368006 0.184003 0.982926i \(-0.441094\pi\)
0.184003 + 0.982926i \(0.441094\pi\)
\(180\) 1.09043 0.0812756
\(181\) −13.4358 −0.998672 −0.499336 0.866409i \(-0.666423\pi\)
−0.499336 + 0.866409i \(0.666423\pi\)
\(182\) −12.8842 −0.955044
\(183\) 8.22505 0.608013
\(184\) 0 0
\(185\) −6.89791 −0.507144
\(186\) 4.93592 0.361919
\(187\) −4.79234 −0.350451
\(188\) −0.358337 −0.0261344
\(189\) 58.5788 4.26098
\(190\) −0.319262 −0.0231617
\(191\) 13.0470 0.944048 0.472024 0.881586i \(-0.343523\pi\)
0.472024 + 0.881586i \(0.343523\pi\)
\(192\) −27.2945 −1.96981
\(193\) −0.857818 −0.0617471 −0.0308735 0.999523i \(-0.509829\pi\)
−0.0308735 + 0.999523i \(0.509829\pi\)
\(194\) 7.77075 0.557907
\(195\) −9.38614 −0.672155
\(196\) −1.05361 −0.0752576
\(197\) −5.65622 −0.402989 −0.201494 0.979490i \(-0.564580\pi\)
−0.201494 + 0.979490i \(0.564580\pi\)
\(198\) 10.3207 0.733460
\(199\) 23.7722 1.68517 0.842583 0.538567i \(-0.181034\pi\)
0.842583 + 0.538567i \(0.181034\pi\)
\(200\) −10.1307 −0.716346
\(201\) 20.1369 1.42035
\(202\) −11.3798 −0.800678
\(203\) −39.1555 −2.74818
\(204\) 1.83177 0.128250
\(205\) −12.8891 −0.900217
\(206\) 1.92667 0.134237
\(207\) 0 0
\(208\) 8.82157 0.611666
\(209\) 0.189173 0.0130854
\(210\) 21.8586 1.50838
\(211\) 7.80198 0.537111 0.268555 0.963264i \(-0.413454\pi\)
0.268555 + 0.963264i \(0.413454\pi\)
\(212\) −1.53364 −0.105331
\(213\) 28.5755 1.95796
\(214\) 5.23571 0.357906
\(215\) −0.314683 −0.0214612
\(216\) −42.6279 −2.90046
\(217\) −4.42834 −0.300615
\(218\) 13.1290 0.889207
\(219\) 15.3527 1.03744
\(220\) −0.144950 −0.00977250
\(221\) −11.2722 −0.758253
\(222\) 24.9547 1.67485
\(223\) 18.2906 1.22483 0.612413 0.790538i \(-0.290199\pi\)
0.612413 + 0.790538i \(0.290199\pi\)
\(224\) 2.65781 0.177582
\(225\) −26.2299 −1.74866
\(226\) 15.0148 0.998772
\(227\) 24.1573 1.60337 0.801687 0.597744i \(-0.203936\pi\)
0.801687 + 0.597744i \(0.203936\pi\)
\(228\) −0.0723074 −0.00478867
\(229\) −12.6252 −0.834299 −0.417150 0.908838i \(-0.636971\pi\)
−0.417150 + 0.908838i \(0.636971\pi\)
\(230\) 0 0
\(231\) −12.9519 −0.852172
\(232\) 28.4935 1.87069
\(233\) 11.3055 0.740647 0.370323 0.928903i \(-0.379247\pi\)
0.370323 + 0.928903i \(0.379247\pi\)
\(234\) 24.2757 1.58695
\(235\) −3.74105 −0.244039
\(236\) −0.690366 −0.0449390
\(237\) 4.70889 0.305875
\(238\) 26.2509 1.70160
\(239\) −19.3570 −1.25210 −0.626050 0.779783i \(-0.715330\pi\)
−0.626050 + 0.779783i \(0.715330\pi\)
\(240\) −14.9661 −0.966058
\(241\) −27.7855 −1.78982 −0.894912 0.446243i \(-0.852762\pi\)
−0.894912 + 0.446243i \(0.852762\pi\)
\(242\) −1.37192 −0.0881905
\(243\) −37.1610 −2.38388
\(244\) 0.298766 0.0191265
\(245\) −10.9997 −0.702743
\(246\) 46.6294 2.97298
\(247\) 0.444960 0.0283121
\(248\) 3.22251 0.204629
\(249\) 18.6712 1.18324
\(250\) −14.3228 −0.905855
\(251\) 16.7436 1.05685 0.528425 0.848980i \(-0.322783\pi\)
0.528425 + 0.848980i \(0.322783\pi\)
\(252\) 3.53920 0.222949
\(253\) 0 0
\(254\) 23.6721 1.48532
\(255\) 19.1237 1.19757
\(256\) −2.81793 −0.176120
\(257\) −28.1826 −1.75798 −0.878992 0.476837i \(-0.841783\pi\)
−0.878992 + 0.476837i \(0.841783\pi\)
\(258\) 1.13844 0.0708761
\(259\) −22.3885 −1.39116
\(260\) −0.340941 −0.0211443
\(261\) 73.7742 4.56651
\(262\) −10.0813 −0.622822
\(263\) −12.7117 −0.783836 −0.391918 0.920000i \(-0.628188\pi\)
−0.391918 + 0.920000i \(0.628188\pi\)
\(264\) 9.42511 0.580075
\(265\) −16.0113 −0.983564
\(266\) −1.03623 −0.0635353
\(267\) −32.1516 −1.96765
\(268\) 0.731450 0.0446804
\(269\) −5.78672 −0.352822 −0.176411 0.984317i \(-0.556449\pi\)
−0.176411 + 0.984317i \(0.556449\pi\)
\(270\) −24.7606 −1.50688
\(271\) 9.99129 0.606928 0.303464 0.952843i \(-0.401857\pi\)
0.303464 + 0.952843i \(0.401857\pi\)
\(272\) −17.9735 −1.08980
\(273\) −30.4646 −1.84380
\(274\) −1.84465 −0.111439
\(275\) 3.48672 0.210257
\(276\) 0 0
\(277\) 7.79230 0.468194 0.234097 0.972213i \(-0.424787\pi\)
0.234097 + 0.972213i \(0.424787\pi\)
\(278\) 11.7101 0.702324
\(279\) 8.34359 0.499518
\(280\) 14.2708 0.852841
\(281\) −4.85861 −0.289840 −0.144920 0.989443i \(-0.546292\pi\)
−0.144920 + 0.989443i \(0.546292\pi\)
\(282\) 13.5341 0.805943
\(283\) −15.3267 −0.911080 −0.455540 0.890215i \(-0.650554\pi\)
−0.455540 + 0.890215i \(0.650554\pi\)
\(284\) 1.03797 0.0615925
\(285\) −0.754890 −0.0447158
\(286\) −3.22694 −0.190813
\(287\) −41.8343 −2.46940
\(288\) −5.00767 −0.295080
\(289\) 5.96656 0.350974
\(290\) 16.5506 0.971885
\(291\) 18.3738 1.07709
\(292\) 0.557671 0.0326352
\(293\) −1.38274 −0.0807804 −0.0403902 0.999184i \(-0.512860\pi\)
−0.0403902 + 0.999184i \(0.512860\pi\)
\(294\) 39.7938 2.32082
\(295\) −7.20743 −0.419633
\(296\) 16.2922 0.946962
\(297\) 14.6714 0.851324
\(298\) 6.19689 0.358976
\(299\) 0 0
\(300\) −1.33273 −0.0769450
\(301\) −1.02137 −0.0588707
\(302\) −3.70735 −0.213334
\(303\) −26.9073 −1.54578
\(304\) 0.709484 0.0406917
\(305\) 3.11912 0.178600
\(306\) −49.4603 −2.82746
\(307\) 0.728973 0.0416047 0.0208024 0.999784i \(-0.493378\pi\)
0.0208024 + 0.999784i \(0.493378\pi\)
\(308\) −0.470463 −0.0268071
\(309\) 4.55558 0.259158
\(310\) 1.87181 0.106312
\(311\) −11.2930 −0.640369 −0.320185 0.947355i \(-0.603745\pi\)
−0.320185 + 0.947355i \(0.603745\pi\)
\(312\) 22.1691 1.25508
\(313\) 14.8533 0.839559 0.419779 0.907626i \(-0.362107\pi\)
0.419779 + 0.907626i \(0.362107\pi\)
\(314\) 23.4854 1.32536
\(315\) 36.9493 2.08186
\(316\) 0.171045 0.00962204
\(317\) 8.19350 0.460193 0.230096 0.973168i \(-0.426096\pi\)
0.230096 + 0.973168i \(0.426096\pi\)
\(318\) 57.9244 3.24824
\(319\) −9.80675 −0.549073
\(320\) −10.3507 −0.578621
\(321\) 12.3798 0.690970
\(322\) 0 0
\(323\) −0.906581 −0.0504435
\(324\) −2.94861 −0.163811
\(325\) 8.20124 0.454923
\(326\) −12.1404 −0.672394
\(327\) 31.0433 1.71670
\(328\) 30.4429 1.68093
\(329\) −12.1423 −0.669428
\(330\) 5.47462 0.301368
\(331\) 22.6120 1.24287 0.621435 0.783466i \(-0.286550\pi\)
0.621435 + 0.783466i \(0.286550\pi\)
\(332\) 0.678210 0.0372216
\(333\) 42.1830 2.31161
\(334\) −8.10042 −0.443235
\(335\) 7.63635 0.417218
\(336\) −48.5755 −2.65001
\(337\) −28.2597 −1.53940 −0.769701 0.638405i \(-0.779595\pi\)
−0.769701 + 0.638405i \(0.779595\pi\)
\(338\) 10.2448 0.557242
\(339\) 35.5023 1.92822
\(340\) 0.694649 0.0376726
\(341\) −1.10911 −0.0600615
\(342\) 1.95240 0.105573
\(343\) −7.75268 −0.418605
\(344\) 0.743251 0.0400734
\(345\) 0 0
\(346\) −24.4406 −1.31394
\(347\) 10.2728 0.551474 0.275737 0.961233i \(-0.411078\pi\)
0.275737 + 0.961233i \(0.411078\pi\)
\(348\) 3.74842 0.200937
\(349\) 31.3368 1.67742 0.838710 0.544578i \(-0.183310\pi\)
0.838710 + 0.544578i \(0.183310\pi\)
\(350\) −19.0992 −1.02089
\(351\) 34.5092 1.84197
\(352\) 0.665665 0.0354801
\(353\) −7.12311 −0.379125 −0.189563 0.981869i \(-0.560707\pi\)
−0.189563 + 0.981869i \(0.560707\pi\)
\(354\) 26.0745 1.38584
\(355\) 10.8365 0.575140
\(356\) −1.16787 −0.0618971
\(357\) 62.0699 3.28509
\(358\) −6.75477 −0.357001
\(359\) 33.1543 1.74982 0.874908 0.484289i \(-0.160922\pi\)
0.874908 + 0.484289i \(0.160922\pi\)
\(360\) −26.8880 −1.41712
\(361\) −18.9642 −0.998117
\(362\) 18.4328 0.968807
\(363\) −3.24389 −0.170260
\(364\) −1.10659 −0.0580012
\(365\) 5.82209 0.304742
\(366\) −11.2841 −0.589831
\(367\) 25.5793 1.33523 0.667613 0.744508i \(-0.267316\pi\)
0.667613 + 0.744508i \(0.267316\pi\)
\(368\) 0 0
\(369\) 78.8215 4.10328
\(370\) 9.46339 0.491978
\(371\) −51.9677 −2.69803
\(372\) 0.423933 0.0219799
\(373\) −10.0264 −0.519148 −0.259574 0.965723i \(-0.583582\pi\)
−0.259574 + 0.965723i \(0.583582\pi\)
\(374\) 6.57472 0.339971
\(375\) −33.8661 −1.74884
\(376\) 8.83598 0.455681
\(377\) −23.0668 −1.18800
\(378\) −80.3655 −4.13356
\(379\) 18.3701 0.943611 0.471805 0.881703i \(-0.343603\pi\)
0.471805 + 0.881703i \(0.343603\pi\)
\(380\) −0.0274205 −0.00140664
\(381\) 55.9723 2.86755
\(382\) −17.8995 −0.915817
\(383\) −27.5710 −1.40881 −0.704406 0.709797i \(-0.748787\pi\)
−0.704406 + 0.709797i \(0.748787\pi\)
\(384\) 33.1273 1.69052
\(385\) −4.91164 −0.250320
\(386\) 1.17686 0.0599005
\(387\) 1.92439 0.0978225
\(388\) 0.667408 0.0338825
\(389\) −4.04267 −0.204971 −0.102486 0.994734i \(-0.532680\pi\)
−0.102486 + 0.994734i \(0.532680\pi\)
\(390\) 12.8770 0.652055
\(391\) 0 0
\(392\) 25.9801 1.31219
\(393\) −23.8370 −1.20242
\(394\) 7.75989 0.390937
\(395\) 1.78571 0.0898490
\(396\) 0.886416 0.0445441
\(397\) 2.32015 0.116445 0.0582225 0.998304i \(-0.481457\pi\)
0.0582225 + 0.998304i \(0.481457\pi\)
\(398\) −32.6136 −1.63477
\(399\) −2.45015 −0.122661
\(400\) 13.0768 0.653840
\(401\) −12.6180 −0.630111 −0.315055 0.949073i \(-0.602023\pi\)
−0.315055 + 0.949073i \(0.602023\pi\)
\(402\) −27.6262 −1.37787
\(403\) −2.60877 −0.129952
\(404\) −0.977377 −0.0486263
\(405\) −30.7835 −1.52964
\(406\) 53.7183 2.66599
\(407\) −5.60736 −0.277946
\(408\) −45.1683 −2.23617
\(409\) −7.64906 −0.378222 −0.189111 0.981956i \(-0.560561\pi\)
−0.189111 + 0.981956i \(0.560561\pi\)
\(410\) 17.6829 0.873296
\(411\) −4.36164 −0.215144
\(412\) 0.165476 0.00815243
\(413\) −23.3932 −1.15110
\(414\) 0 0
\(415\) 7.08052 0.347569
\(416\) 1.56573 0.0767664
\(417\) 27.6883 1.35590
\(418\) −0.259530 −0.0126940
\(419\) 20.4884 1.00093 0.500463 0.865758i \(-0.333163\pi\)
0.500463 + 0.865758i \(0.333163\pi\)
\(420\) 1.87737 0.0916064
\(421\) −29.1001 −1.41825 −0.709126 0.705082i \(-0.750910\pi\)
−0.709126 + 0.705082i \(0.750910\pi\)
\(422\) −10.7037 −0.521048
\(423\) 22.8778 1.11236
\(424\) 37.8170 1.83655
\(425\) −16.7096 −0.810533
\(426\) −39.2034 −1.89941
\(427\) 10.1237 0.489921
\(428\) 0.449681 0.0217361
\(429\) −7.63006 −0.368383
\(430\) 0.431721 0.0208194
\(431\) 32.1876 1.55042 0.775211 0.631703i \(-0.217644\pi\)
0.775211 + 0.631703i \(0.217644\pi\)
\(432\) 55.0246 2.64737
\(433\) 16.1475 0.776002 0.388001 0.921659i \(-0.373166\pi\)
0.388001 + 0.921659i \(0.373166\pi\)
\(434\) 6.07533 0.291625
\(435\) 39.1336 1.87631
\(436\) 1.12761 0.0540028
\(437\) 0 0
\(438\) −21.0627 −1.00642
\(439\) 14.5985 0.696748 0.348374 0.937356i \(-0.386734\pi\)
0.348374 + 0.937356i \(0.386734\pi\)
\(440\) 3.57421 0.170394
\(441\) 67.2667 3.20318
\(442\) 15.4646 0.735577
\(443\) 23.4070 1.11210 0.556050 0.831149i \(-0.312316\pi\)
0.556050 + 0.831149i \(0.312316\pi\)
\(444\) 2.14329 0.101716
\(445\) −12.1926 −0.577985
\(446\) −25.0932 −1.18820
\(447\) 14.6524 0.693037
\(448\) −33.5952 −1.58723
\(449\) 28.6568 1.35240 0.676198 0.736720i \(-0.263626\pi\)
0.676198 + 0.736720i \(0.263626\pi\)
\(450\) 35.9854 1.69637
\(451\) −10.4777 −0.493375
\(452\) 1.28958 0.0606569
\(453\) −8.76596 −0.411861
\(454\) −33.1419 −1.55543
\(455\) −11.5528 −0.541605
\(456\) 1.78297 0.0834954
\(457\) 13.9166 0.650989 0.325494 0.945544i \(-0.394469\pi\)
0.325494 + 0.945544i \(0.394469\pi\)
\(458\) 17.3208 0.809350
\(459\) −70.3106 −3.28182
\(460\) 0 0
\(461\) 8.00154 0.372669 0.186334 0.982486i \(-0.440339\pi\)
0.186334 + 0.982486i \(0.440339\pi\)
\(462\) 17.7690 0.826688
\(463\) −38.8745 −1.80665 −0.903325 0.428958i \(-0.858881\pi\)
−0.903325 + 0.428958i \(0.858881\pi\)
\(464\) −36.7798 −1.70746
\(465\) 4.42587 0.205245
\(466\) −15.5102 −0.718498
\(467\) −21.7071 −1.00448 −0.502242 0.864727i \(-0.667491\pi\)
−0.502242 + 0.864727i \(0.667491\pi\)
\(468\) 2.08497 0.0963777
\(469\) 24.7853 1.14448
\(470\) 5.13243 0.236741
\(471\) 55.5309 2.55873
\(472\) 17.0232 0.783557
\(473\) −0.255808 −0.0117621
\(474\) −6.46022 −0.296728
\(475\) 0.659593 0.0302642
\(476\) 2.25462 0.103340
\(477\) 97.9142 4.48318
\(478\) 26.5563 1.21466
\(479\) −13.5790 −0.620442 −0.310221 0.950664i \(-0.600403\pi\)
−0.310221 + 0.950664i \(0.600403\pi\)
\(480\) −2.65632 −0.121244
\(481\) −13.1893 −0.601378
\(482\) 38.1196 1.73630
\(483\) 0 0
\(484\) −0.117831 −0.00535593
\(485\) 6.96775 0.316389
\(486\) 50.9820 2.31259
\(487\) −38.1095 −1.72691 −0.863453 0.504429i \(-0.831703\pi\)
−0.863453 + 0.504429i \(0.831703\pi\)
\(488\) −7.36705 −0.333491
\(489\) −28.7058 −1.29812
\(490\) 15.0907 0.681728
\(491\) −29.4176 −1.32760 −0.663800 0.747910i \(-0.731057\pi\)
−0.663800 + 0.747910i \(0.731057\pi\)
\(492\) 4.00487 0.180554
\(493\) 46.9973 2.11665
\(494\) −0.610450 −0.0274655
\(495\) 9.25420 0.415945
\(496\) −4.15966 −0.186774
\(497\) 35.1719 1.57768
\(498\) −25.6154 −1.14785
\(499\) −0.159870 −0.00715676 −0.00357838 0.999994i \(-0.501139\pi\)
−0.00357838 + 0.999994i \(0.501139\pi\)
\(500\) −1.23015 −0.0550139
\(501\) −19.1533 −0.855707
\(502\) −22.9710 −1.02524
\(503\) −20.1798 −0.899773 −0.449887 0.893086i \(-0.648536\pi\)
−0.449887 + 0.893086i \(0.648536\pi\)
\(504\) −87.2705 −3.88734
\(505\) −10.2038 −0.454065
\(506\) 0 0
\(507\) 24.2236 1.07581
\(508\) 2.03313 0.0902056
\(509\) 18.5104 0.820461 0.410230 0.911982i \(-0.365448\pi\)
0.410230 + 0.911982i \(0.365448\pi\)
\(510\) −26.2363 −1.16176
\(511\) 18.8968 0.835944
\(512\) 24.2904 1.07350
\(513\) 2.77544 0.122539
\(514\) 38.6643 1.70541
\(515\) 1.72757 0.0761260
\(516\) 0.0977774 0.00430441
\(517\) −3.04112 −0.133748
\(518\) 30.7153 1.34955
\(519\) −57.7895 −2.53668
\(520\) 8.40702 0.368672
\(521\) 21.1474 0.926485 0.463243 0.886232i \(-0.346686\pi\)
0.463243 + 0.886232i \(0.346686\pi\)
\(522\) −101.212 −4.42995
\(523\) −5.94231 −0.259839 −0.129920 0.991525i \(-0.541472\pi\)
−0.129920 + 0.991525i \(0.541472\pi\)
\(524\) −0.865851 −0.0378249
\(525\) −45.1596 −1.97093
\(526\) 17.4394 0.760396
\(527\) 5.31522 0.231535
\(528\) −12.1660 −0.529459
\(529\) 0 0
\(530\) 21.9662 0.954151
\(531\) 44.0759 1.91273
\(532\) −0.0889988 −0.00385859
\(533\) −24.6449 −1.06749
\(534\) 44.1095 1.90881
\(535\) 4.69468 0.202969
\(536\) −18.0363 −0.779049
\(537\) −15.9715 −0.689223
\(538\) 7.93892 0.342271
\(539\) −8.94171 −0.385147
\(540\) −2.12662 −0.0915152
\(541\) 25.3875 1.09149 0.545747 0.837950i \(-0.316246\pi\)
0.545747 + 0.837950i \(0.316246\pi\)
\(542\) −13.7073 −0.588778
\(543\) 43.5841 1.87037
\(544\) −3.19010 −0.136774
\(545\) 11.7723 0.504270
\(546\) 41.7950 1.78866
\(547\) 19.6197 0.838877 0.419438 0.907784i \(-0.362227\pi\)
0.419438 + 0.907784i \(0.362227\pi\)
\(548\) −0.158432 −0.00676786
\(549\) −19.0745 −0.814078
\(550\) −4.78351 −0.203970
\(551\) −1.85517 −0.0790330
\(552\) 0 0
\(553\) 5.79589 0.246466
\(554\) −10.6904 −0.454193
\(555\) 22.3760 0.949809
\(556\) 1.00575 0.0426531
\(557\) 6.35076 0.269091 0.134545 0.990907i \(-0.457043\pi\)
0.134545 + 0.990907i \(0.457043\pi\)
\(558\) −11.4468 −0.484580
\(559\) −0.601696 −0.0254490
\(560\) −18.4209 −0.778425
\(561\) 15.5458 0.656345
\(562\) 6.66563 0.281172
\(563\) 14.4861 0.610515 0.305258 0.952270i \(-0.401257\pi\)
0.305258 + 0.952270i \(0.401257\pi\)
\(564\) 1.16241 0.0489461
\(565\) 13.4633 0.566404
\(566\) 21.0271 0.883834
\(567\) −99.9140 −4.19599
\(568\) −25.5947 −1.07393
\(569\) −27.5334 −1.15426 −0.577131 0.816652i \(-0.695828\pi\)
−0.577131 + 0.816652i \(0.695828\pi\)
\(570\) 1.03565 0.0433786
\(571\) −23.8046 −0.996192 −0.498096 0.867122i \(-0.665967\pi\)
−0.498096 + 0.867122i \(0.665967\pi\)
\(572\) −0.277153 −0.0115884
\(573\) −42.3230 −1.76807
\(574\) 57.3934 2.39555
\(575\) 0 0
\(576\) 63.2980 2.63742
\(577\) 42.0713 1.75145 0.875726 0.482808i \(-0.160383\pi\)
0.875726 + 0.482808i \(0.160383\pi\)
\(578\) −8.18565 −0.340478
\(579\) 2.78266 0.115644
\(580\) 1.42149 0.0590240
\(581\) 22.9812 0.953423
\(582\) −25.2074 −1.04488
\(583\) −13.0157 −0.539054
\(584\) −13.7512 −0.569029
\(585\) 21.7671 0.899959
\(586\) 1.89701 0.0783647
\(587\) −26.1505 −1.07934 −0.539672 0.841875i \(-0.681452\pi\)
−0.539672 + 0.841875i \(0.681452\pi\)
\(588\) 3.41778 0.140947
\(589\) −0.209813 −0.00864519
\(590\) 9.88803 0.407084
\(591\) 18.3481 0.754741
\(592\) −21.0301 −0.864333
\(593\) 30.6551 1.25885 0.629427 0.777059i \(-0.283289\pi\)
0.629427 + 0.777059i \(0.283289\pi\)
\(594\) −20.1281 −0.825865
\(595\) 23.5383 0.964975
\(596\) 0.532234 0.0218011
\(597\) −77.1143 −3.15608
\(598\) 0 0
\(599\) 22.2683 0.909860 0.454930 0.890527i \(-0.349664\pi\)
0.454930 + 0.890527i \(0.349664\pi\)
\(600\) 32.8627 1.34162
\(601\) 8.35696 0.340887 0.170444 0.985367i \(-0.445480\pi\)
0.170444 + 0.985367i \(0.445480\pi\)
\(602\) 1.40124 0.0571101
\(603\) −46.6988 −1.90172
\(604\) −0.318414 −0.0129561
\(605\) −1.23015 −0.0500128
\(606\) 36.9147 1.49956
\(607\) −2.04950 −0.0831867 −0.0415933 0.999135i \(-0.513243\pi\)
−0.0415933 + 0.999135i \(0.513243\pi\)
\(608\) 0.125926 0.00510697
\(609\) 127.016 5.14695
\(610\) −4.27919 −0.173259
\(611\) −7.15313 −0.289385
\(612\) −4.24801 −0.171716
\(613\) −22.9368 −0.926409 −0.463205 0.886251i \(-0.653300\pi\)
−0.463205 + 0.886251i \(0.653300\pi\)
\(614\) −1.00009 −0.0403605
\(615\) 41.8109 1.68598
\(616\) 11.6008 0.467410
\(617\) 48.3801 1.94771 0.973854 0.227174i \(-0.0729486\pi\)
0.973854 + 0.227174i \(0.0729486\pi\)
\(618\) −6.24989 −0.251408
\(619\) 30.0411 1.20745 0.603726 0.797192i \(-0.293682\pi\)
0.603726 + 0.797192i \(0.293682\pi\)
\(620\) 0.160765 0.00645646
\(621\) 0 0
\(622\) 15.4932 0.621219
\(623\) −39.5736 −1.58548
\(624\) −28.6162 −1.14556
\(625\) 4.59085 0.183634
\(626\) −20.3776 −0.814452
\(627\) −0.613655 −0.0245070
\(628\) 2.01710 0.0804909
\(629\) 26.8724 1.07147
\(630\) −50.6915 −2.01960
\(631\) −35.4559 −1.41148 −0.705738 0.708473i \(-0.749384\pi\)
−0.705738 + 0.708473i \(0.749384\pi\)
\(632\) −4.21768 −0.167770
\(633\) −25.3087 −1.00593
\(634\) −11.2408 −0.446431
\(635\) 21.2259 0.842325
\(636\) 4.97496 0.197270
\(637\) −21.0321 −0.833322
\(638\) 13.4541 0.532653
\(639\) −66.2687 −2.62155
\(640\) 12.5626 0.496580
\(641\) 0.232870 0.00919782 0.00459891 0.999989i \(-0.498536\pi\)
0.00459891 + 0.999989i \(0.498536\pi\)
\(642\) −16.9841 −0.670307
\(643\) 33.0573 1.30365 0.651827 0.758368i \(-0.274003\pi\)
0.651827 + 0.758368i \(0.274003\pi\)
\(644\) 0 0
\(645\) 1.02080 0.0401939
\(646\) 1.24376 0.0489350
\(647\) −26.7833 −1.05296 −0.526480 0.850188i \(-0.676488\pi\)
−0.526480 + 0.850188i \(0.676488\pi\)
\(648\) 72.7075 2.85622
\(649\) −5.85897 −0.229985
\(650\) −11.2515 −0.441319
\(651\) 14.3650 0.563010
\(652\) −1.04271 −0.0408355
\(653\) −17.8478 −0.698440 −0.349220 0.937041i \(-0.613553\pi\)
−0.349220 + 0.937041i \(0.613553\pi\)
\(654\) −42.5889 −1.66536
\(655\) −9.03950 −0.353202
\(656\) −39.2961 −1.53425
\(657\) −35.6041 −1.38905
\(658\) 16.6583 0.649409
\(659\) −48.9394 −1.90641 −0.953204 0.302326i \(-0.902237\pi\)
−0.953204 + 0.302326i \(0.902237\pi\)
\(660\) 0.470200 0.0183025
\(661\) −5.60649 −0.218067 −0.109033 0.994038i \(-0.534776\pi\)
−0.109033 + 0.994038i \(0.534776\pi\)
\(662\) −31.0219 −1.20570
\(663\) 36.5658 1.42010
\(664\) −16.7235 −0.648997
\(665\) −0.929149 −0.0360309
\(666\) −57.8718 −2.24249
\(667\) 0 0
\(668\) −0.695723 −0.0269183
\(669\) −59.3325 −2.29393
\(670\) −10.4765 −0.404741
\(671\) 2.53555 0.0978840
\(672\) −8.62162 −0.332586
\(673\) −46.2043 −1.78105 −0.890523 0.454939i \(-0.849661\pi\)
−0.890523 + 0.454939i \(0.849661\pi\)
\(674\) 38.7700 1.49337
\(675\) 51.1553 1.96897
\(676\) 0.879896 0.0338421
\(677\) −1.30310 −0.0500821 −0.0250411 0.999686i \(-0.507972\pi\)
−0.0250411 + 0.999686i \(0.507972\pi\)
\(678\) −48.7064 −1.87056
\(679\) 22.6152 0.867893
\(680\) −17.1288 −0.656861
\(681\) −78.3634 −3.00289
\(682\) 1.52161 0.0582654
\(683\) −47.8924 −1.83255 −0.916276 0.400547i \(-0.868820\pi\)
−0.916276 + 0.400547i \(0.868820\pi\)
\(684\) 0.167686 0.00641163
\(685\) −1.65403 −0.0631972
\(686\) 10.6361 0.406087
\(687\) 40.9548 1.56252
\(688\) −0.959398 −0.0365767
\(689\) −30.6146 −1.16632
\(690\) 0 0
\(691\) 34.9666 1.33019 0.665096 0.746757i \(-0.268390\pi\)
0.665096 + 0.746757i \(0.268390\pi\)
\(692\) −2.09914 −0.0797973
\(693\) 30.0363 1.14099
\(694\) −14.0935 −0.534982
\(695\) 10.5000 0.398288
\(696\) −92.4297 −3.50354
\(697\) 50.2126 1.90194
\(698\) −42.9916 −1.62726
\(699\) −36.6737 −1.38713
\(700\) −1.64037 −0.0620003
\(701\) −4.50343 −0.170092 −0.0850461 0.996377i \(-0.527104\pi\)
−0.0850461 + 0.996377i \(0.527104\pi\)
\(702\) −47.3439 −1.78688
\(703\) −1.06076 −0.0400073
\(704\) −8.41415 −0.317120
\(705\) 12.1355 0.457051
\(706\) 9.77235 0.367787
\(707\) −33.1186 −1.24555
\(708\) 2.23947 0.0841644
\(709\) 9.29682 0.349149 0.174575 0.984644i \(-0.444145\pi\)
0.174575 + 0.984644i \(0.444145\pi\)
\(710\) −14.8668 −0.557941
\(711\) −10.9202 −0.409541
\(712\) 28.7977 1.07924
\(713\) 0 0
\(714\) −85.1550 −3.18685
\(715\) −2.89349 −0.108210
\(716\) −0.580149 −0.0216812
\(717\) 62.7919 2.34501
\(718\) −45.4851 −1.69749
\(719\) 33.6739 1.25582 0.627912 0.778284i \(-0.283910\pi\)
0.627912 + 0.778284i \(0.283910\pi\)
\(720\) 34.7074 1.29347
\(721\) 5.60719 0.208823
\(722\) 26.0174 0.968268
\(723\) 90.1331 3.35209
\(724\) 1.58314 0.0588370
\(725\) −34.1934 −1.26991
\(726\) 4.45036 0.165168
\(727\) −30.0787 −1.11556 −0.557779 0.829990i \(-0.688346\pi\)
−0.557779 + 0.829990i \(0.688346\pi\)
\(728\) 27.2866 1.01131
\(729\) 45.4738 1.68422
\(730\) −7.98746 −0.295629
\(731\) 1.22592 0.0453423
\(732\) −0.969162 −0.0358213
\(733\) 18.7515 0.692603 0.346301 0.938123i \(-0.387437\pi\)
0.346301 + 0.938123i \(0.387437\pi\)
\(734\) −35.0927 −1.29530
\(735\) 35.6817 1.31614
\(736\) 0 0
\(737\) 6.20764 0.228661
\(738\) −108.137 −3.98057
\(739\) 25.3477 0.932432 0.466216 0.884671i \(-0.345617\pi\)
0.466216 + 0.884671i \(0.345617\pi\)
\(740\) 0.812784 0.0298785
\(741\) −1.44340 −0.0530246
\(742\) 71.2957 2.61735
\(743\) 4.94098 0.181267 0.0906336 0.995884i \(-0.471111\pi\)
0.0906336 + 0.995884i \(0.471111\pi\)
\(744\) −10.4534 −0.383242
\(745\) 5.55653 0.203576
\(746\) 13.7554 0.503623
\(747\) −43.2998 −1.58426
\(748\) 0.564685 0.0206469
\(749\) 15.2375 0.556766
\(750\) 46.4616 1.69654
\(751\) −20.8682 −0.761491 −0.380745 0.924680i \(-0.624333\pi\)
−0.380745 + 0.924680i \(0.624333\pi\)
\(752\) −11.4056 −0.415919
\(753\) −54.3145 −1.97933
\(754\) 31.6458 1.15247
\(755\) −3.32425 −0.120982
\(756\) −6.90237 −0.251037
\(757\) 19.7079 0.716296 0.358148 0.933665i \(-0.383408\pi\)
0.358148 + 0.933665i \(0.383408\pi\)
\(758\) −25.2024 −0.915392
\(759\) 0 0
\(760\) 0.676143 0.0245263
\(761\) 30.8222 1.11730 0.558651 0.829403i \(-0.311319\pi\)
0.558651 + 0.829403i \(0.311319\pi\)
\(762\) −76.7896 −2.78179
\(763\) 38.2093 1.38327
\(764\) −1.53734 −0.0556189
\(765\) −44.3493 −1.60345
\(766\) 37.8253 1.36668
\(767\) −13.7811 −0.497606
\(768\) 9.14103 0.329848
\(769\) −30.5881 −1.10303 −0.551517 0.834163i \(-0.685951\pi\)
−0.551517 + 0.834163i \(0.685951\pi\)
\(770\) 6.73839 0.242835
\(771\) 91.4212 3.29245
\(772\) 0.101077 0.00363785
\(773\) −1.70903 −0.0614696 −0.0307348 0.999528i \(-0.509785\pi\)
−0.0307348 + 0.999528i \(0.509785\pi\)
\(774\) −2.64012 −0.0948971
\(775\) −3.86715 −0.138912
\(776\) −16.4571 −0.590777
\(777\) 72.6258 2.60544
\(778\) 5.54622 0.198842
\(779\) −1.98209 −0.0710158
\(780\) 1.10597 0.0396002
\(781\) 8.80904 0.315212
\(782\) 0 0
\(783\) −143.879 −5.14182
\(784\) −33.5355 −1.19770
\(785\) 21.0585 0.751611
\(786\) 32.7024 1.16646
\(787\) −21.4116 −0.763242 −0.381621 0.924319i \(-0.624634\pi\)
−0.381621 + 0.924319i \(0.624634\pi\)
\(788\) 0.666475 0.0237422
\(789\) 41.2353 1.46801
\(790\) −2.44986 −0.0871621
\(791\) 43.6977 1.55371
\(792\) −21.8575 −0.776672
\(793\) 5.96396 0.211787
\(794\) −3.18307 −0.112963
\(795\) 51.9387 1.84208
\(796\) −2.80109 −0.0992820
\(797\) 26.7963 0.949174 0.474587 0.880209i \(-0.342597\pi\)
0.474587 + 0.880209i \(0.342597\pi\)
\(798\) 3.36141 0.118993
\(799\) 14.5741 0.515595
\(800\) 2.32099 0.0820594
\(801\) 74.5619 2.63452
\(802\) 17.3109 0.611268
\(803\) 4.73282 0.167018
\(804\) −2.37274 −0.0836801
\(805\) 0 0
\(806\) 3.57903 0.126066
\(807\) 18.7714 0.660786
\(808\) 24.1004 0.847850
\(809\) −22.7104 −0.798454 −0.399227 0.916852i \(-0.630722\pi\)
−0.399227 + 0.916852i \(0.630722\pi\)
\(810\) 42.2325 1.48390
\(811\) 11.0095 0.386595 0.193298 0.981140i \(-0.438082\pi\)
0.193298 + 0.981140i \(0.438082\pi\)
\(812\) 4.61371 0.161910
\(813\) −32.4106 −1.13669
\(814\) 7.69285 0.269634
\(815\) −10.8859 −0.381315
\(816\) 58.3039 2.04104
\(817\) −0.0483920 −0.00169302
\(818\) 10.4939 0.366911
\(819\) 70.6495 2.46869
\(820\) 1.51874 0.0530365
\(821\) 27.0333 0.943470 0.471735 0.881740i \(-0.343628\pi\)
0.471735 + 0.881740i \(0.343628\pi\)
\(822\) 5.98382 0.208710
\(823\) −14.0370 −0.489298 −0.244649 0.969612i \(-0.578673\pi\)
−0.244649 + 0.969612i \(0.578673\pi\)
\(824\) −4.08036 −0.142146
\(825\) −11.3105 −0.393782
\(826\) 32.0936 1.11668
\(827\) −9.76163 −0.339445 −0.169723 0.985492i \(-0.554287\pi\)
−0.169723 + 0.985492i \(0.554287\pi\)
\(828\) 0 0
\(829\) −40.4957 −1.40647 −0.703237 0.710955i \(-0.748263\pi\)
−0.703237 + 0.710955i \(0.748263\pi\)
\(830\) −9.71393 −0.337175
\(831\) −25.2773 −0.876861
\(832\) −19.7912 −0.686137
\(833\) 42.8517 1.48472
\(834\) −37.9862 −1.31535
\(835\) −7.26336 −0.251359
\(836\) −0.0222903 −0.000770928 0
\(837\) −16.2722 −0.562450
\(838\) −28.1085 −0.970993
\(839\) −36.7795 −1.26977 −0.634885 0.772607i \(-0.718952\pi\)
−0.634885 + 0.772607i \(0.718952\pi\)
\(840\) −46.2927 −1.59725
\(841\) 67.1724 2.31629
\(842\) 39.9230 1.37584
\(843\) 15.7608 0.542830
\(844\) −0.919312 −0.0316440
\(845\) 9.18613 0.316012
\(846\) −31.3865 −1.07909
\(847\) −3.99271 −0.137191
\(848\) −48.8147 −1.67630
\(849\) 49.7182 1.70632
\(850\) 22.9242 0.786295
\(851\) 0 0
\(852\) −3.36707 −0.115354
\(853\) −5.75961 −0.197205 −0.0986026 0.995127i \(-0.531437\pi\)
−0.0986026 + 0.995127i \(0.531437\pi\)
\(854\) −13.8890 −0.475270
\(855\) 1.75064 0.0598707
\(856\) −11.0883 −0.378992
\(857\) −11.2601 −0.384639 −0.192320 0.981332i \(-0.561601\pi\)
−0.192320 + 0.981332i \(0.561601\pi\)
\(858\) 10.4678 0.357366
\(859\) 20.4905 0.699127 0.349563 0.936913i \(-0.386330\pi\)
0.349563 + 0.936913i \(0.386330\pi\)
\(860\) 0.0370793 0.00126439
\(861\) 135.706 4.62484
\(862\) −44.1588 −1.50406
\(863\) 34.6889 1.18082 0.590412 0.807102i \(-0.298965\pi\)
0.590412 + 0.807102i \(0.298965\pi\)
\(864\) 9.76627 0.332255
\(865\) −21.9151 −0.745134
\(866\) −22.1532 −0.752795
\(867\) −19.3548 −0.657324
\(868\) 0.521794 0.0177108
\(869\) 1.45162 0.0492428
\(870\) −53.6883 −1.82020
\(871\) 14.6012 0.494743
\(872\) −27.8050 −0.941595
\(873\) −42.6102 −1.44214
\(874\) 0 0
\(875\) −41.6837 −1.40917
\(876\) −1.80902 −0.0611212
\(877\) 12.7578 0.430801 0.215401 0.976526i \(-0.430894\pi\)
0.215401 + 0.976526i \(0.430894\pi\)
\(878\) −20.0280 −0.675912
\(879\) 4.48544 0.151290
\(880\) −4.61363 −0.155526
\(881\) −19.6112 −0.660718 −0.330359 0.943855i \(-0.607170\pi\)
−0.330359 + 0.943855i \(0.607170\pi\)
\(882\) −92.2846 −3.10739
\(883\) 2.72550 0.0917205 0.0458603 0.998948i \(-0.485397\pi\)
0.0458603 + 0.998948i \(0.485397\pi\)
\(884\) 1.32821 0.0446727
\(885\) 23.3801 0.785913
\(886\) −32.1126 −1.07884
\(887\) 14.8874 0.499870 0.249935 0.968263i \(-0.419591\pi\)
0.249935 + 0.968263i \(0.419591\pi\)
\(888\) −52.8499 −1.77353
\(889\) 68.8930 2.31060
\(890\) 16.7273 0.560701
\(891\) −25.0241 −0.838339
\(892\) −2.15519 −0.0721610
\(893\) −0.575298 −0.0192516
\(894\) −20.1020 −0.672312
\(895\) −6.05676 −0.202455
\(896\) 40.7744 1.36218
\(897\) 0 0
\(898\) −39.3148 −1.31195
\(899\) 10.8767 0.362759
\(900\) 3.09069 0.103023
\(901\) 62.3755 2.07803
\(902\) 14.3746 0.478620
\(903\) 3.31320 0.110256
\(904\) −31.7989 −1.05762
\(905\) 16.5280 0.549410
\(906\) 12.0262 0.399544
\(907\) −10.2394 −0.339994 −0.169997 0.985445i \(-0.554376\pi\)
−0.169997 + 0.985445i \(0.554376\pi\)
\(908\) −2.84646 −0.0944632
\(909\) 62.3999 2.06967
\(910\) 15.8496 0.525409
\(911\) 14.6756 0.486224 0.243112 0.969998i \(-0.421832\pi\)
0.243112 + 0.969998i \(0.421832\pi\)
\(912\) −2.30149 −0.0762098
\(913\) 5.75581 0.190489
\(914\) −19.0924 −0.631521
\(915\) −10.1181 −0.334493
\(916\) 1.48764 0.0491530
\(917\) −29.3395 −0.968875
\(918\) 96.4607 3.18368
\(919\) −25.7121 −0.848164 −0.424082 0.905624i \(-0.639403\pi\)
−0.424082 + 0.905624i \(0.639403\pi\)
\(920\) 0 0
\(921\) −2.36471 −0.0779197
\(922\) −10.9775 −0.361524
\(923\) 20.7201 0.682009
\(924\) 1.52613 0.0502059
\(925\) −19.5513 −0.642843
\(926\) 53.3327 1.75262
\(927\) −10.5647 −0.346990
\(928\) −6.52801 −0.214292
\(929\) 9.09209 0.298302 0.149151 0.988814i \(-0.452346\pi\)
0.149151 + 0.988814i \(0.452346\pi\)
\(930\) −6.07194 −0.199107
\(931\) −1.69153 −0.0554376
\(932\) −1.33213 −0.0436354
\(933\) 36.6333 1.19932
\(934\) 29.7804 0.974444
\(935\) 5.89532 0.192797
\(936\) −51.4117 −1.68044
\(937\) −12.6743 −0.414053 −0.207026 0.978335i \(-0.566379\pi\)
−0.207026 + 0.978335i \(0.566379\pi\)
\(938\) −34.0035 −1.11025
\(939\) −48.1824 −1.57237
\(940\) 0.440810 0.0143776
\(941\) −42.7437 −1.39341 −0.696703 0.717360i \(-0.745350\pi\)
−0.696703 + 0.717360i \(0.745350\pi\)
\(942\) −76.1840 −2.48221
\(943\) 0 0
\(944\) −21.9738 −0.715186
\(945\) −72.0609 −2.34414
\(946\) 0.350949 0.0114103
\(947\) 8.35261 0.271423 0.135712 0.990748i \(-0.456668\pi\)
0.135712 + 0.990748i \(0.456668\pi\)
\(948\) −0.554851 −0.0180207
\(949\) 11.1322 0.361367
\(950\) −0.904911 −0.0293592
\(951\) −26.5788 −0.861876
\(952\) −55.5950 −1.80185
\(953\) 10.0321 0.324972 0.162486 0.986711i \(-0.448049\pi\)
0.162486 + 0.986711i \(0.448049\pi\)
\(954\) −134.331 −4.34912
\(955\) −16.0498 −0.519360
\(956\) 2.28085 0.0737679
\(957\) 31.8120 1.02834
\(958\) 18.6294 0.601888
\(959\) −5.36848 −0.173357
\(960\) 33.5765 1.08368
\(961\) −29.7699 −0.960319
\(962\) 18.0946 0.583394
\(963\) −28.7095 −0.925151
\(964\) 3.27399 0.105448
\(965\) 1.05525 0.0339696
\(966\) 0 0
\(967\) 30.1635 0.969992 0.484996 0.874516i \(-0.338821\pi\)
0.484996 + 0.874516i \(0.338821\pi\)
\(968\) 2.90550 0.0933862
\(969\) 2.94085 0.0944736
\(970\) −9.55921 −0.306928
\(971\) 24.5376 0.787449 0.393725 0.919228i \(-0.371186\pi\)
0.393725 + 0.919228i \(0.371186\pi\)
\(972\) 4.37871 0.140447
\(973\) 34.0799 1.09255
\(974\) 52.2833 1.67526
\(975\) −26.6039 −0.852006
\(976\) 9.50948 0.304391
\(977\) −53.0918 −1.69856 −0.849279 0.527944i \(-0.822963\pi\)
−0.849279 + 0.527944i \(0.822963\pi\)
\(978\) 39.3821 1.25930
\(979\) −9.91146 −0.316772
\(980\) 1.29610 0.0414023
\(981\) −71.9915 −2.29851
\(982\) 40.3587 1.28790
\(983\) −47.6674 −1.52035 −0.760177 0.649717i \(-0.774888\pi\)
−0.760177 + 0.649717i \(0.774888\pi\)
\(984\) −98.7532 −3.14814
\(985\) 6.95801 0.221701
\(986\) −64.4766 −2.05335
\(987\) 39.3883 1.25374
\(988\) −0.0524299 −0.00166802
\(989\) 0 0
\(990\) −12.6960 −0.403506
\(991\) 14.1129 0.448310 0.224155 0.974553i \(-0.428038\pi\)
0.224155 + 0.974553i \(0.428038\pi\)
\(992\) −0.738294 −0.0234408
\(993\) −73.3508 −2.32772
\(994\) −48.2531 −1.53050
\(995\) −29.2434 −0.927079
\(996\) −2.20004 −0.0697108
\(997\) 1.20969 0.0383112 0.0191556 0.999817i \(-0.493902\pi\)
0.0191556 + 0.999817i \(0.493902\pi\)
\(998\) 0.219329 0.00694274
\(999\) −82.2680 −2.60284
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5819.2.a.t.1.18 60
23.15 odd 22 253.2.i.b.133.9 yes 120
23.20 odd 22 253.2.i.b.78.9 120
23.22 odd 2 5819.2.a.u.1.18 60
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
253.2.i.b.78.9 120 23.20 odd 22
253.2.i.b.133.9 yes 120 23.15 odd 22
5819.2.a.t.1.18 60 1.1 even 1 trivial
5819.2.a.u.1.18 60 23.22 odd 2