Properties

Label 5819.2.a.t.1.13
Level $5819$
Weight $2$
Character 5819.1
Self dual yes
Analytic conductor $46.465$
Analytic rank $0$
Dimension $60$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5819,2,Mod(1,5819)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5819, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5819.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5819 = 11 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5819.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [60,5,9,73,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.4649489362\)
Analytic rank: \(0\)
Dimension: \(60\)
Twist minimal: no (minimal twist has level 253)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.13
Character \(\chi\) \(=\) 5819.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.67053 q^{2} +3.39922 q^{3} +0.790674 q^{4} +1.45882 q^{5} -5.67850 q^{6} +1.59098 q^{7} +2.02022 q^{8} +8.55467 q^{9} -2.43701 q^{10} -1.00000 q^{11} +2.68767 q^{12} -1.30794 q^{13} -2.65778 q^{14} +4.95885 q^{15} -4.95618 q^{16} +2.95107 q^{17} -14.2908 q^{18} +3.43321 q^{19} +1.15345 q^{20} +5.40808 q^{21} +1.67053 q^{22} +6.86716 q^{24} -2.87184 q^{25} +2.18496 q^{26} +18.8815 q^{27} +1.25794 q^{28} +6.51587 q^{29} -8.28392 q^{30} +1.28950 q^{31} +4.23902 q^{32} -3.39922 q^{33} -4.92985 q^{34} +2.32095 q^{35} +6.76395 q^{36} +0.915746 q^{37} -5.73529 q^{38} -4.44597 q^{39} +2.94714 q^{40} +0.847520 q^{41} -9.03436 q^{42} +4.84131 q^{43} -0.790674 q^{44} +12.4797 q^{45} +4.08129 q^{47} -16.8471 q^{48} -4.46879 q^{49} +4.79749 q^{50} +10.0313 q^{51} -1.03415 q^{52} -9.11028 q^{53} -31.5422 q^{54} -1.45882 q^{55} +3.21412 q^{56} +11.6702 q^{57} -10.8850 q^{58} -7.33808 q^{59} +3.92083 q^{60} -14.6241 q^{61} -2.15415 q^{62} +13.6103 q^{63} +2.83095 q^{64} -1.90805 q^{65} +5.67850 q^{66} -14.4825 q^{67} +2.33333 q^{68} -3.87723 q^{70} +15.3390 q^{71} +17.2823 q^{72} +12.0890 q^{73} -1.52978 q^{74} -9.76199 q^{75} +2.71455 q^{76} -1.59098 q^{77} +7.42714 q^{78} +5.34111 q^{79} -7.23019 q^{80} +38.5184 q^{81} -1.41581 q^{82} -8.73373 q^{83} +4.27602 q^{84} +4.30508 q^{85} -8.08756 q^{86} +22.1489 q^{87} -2.02022 q^{88} +0.274393 q^{89} -20.8478 q^{90} -2.08091 q^{91} +4.38330 q^{93} -6.81792 q^{94} +5.00845 q^{95} +14.4094 q^{96} -13.2094 q^{97} +7.46525 q^{98} -8.55467 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q + 5 q^{2} + 9 q^{3} + 73 q^{4} - 8 q^{5} + 26 q^{6} + 30 q^{8} + 75 q^{9} + 7 q^{10} - 60 q^{11} + 41 q^{12} + 46 q^{13} - 16 q^{14} - 4 q^{15} + 99 q^{16} + 5 q^{17} + 36 q^{18} + 8 q^{19} - 82 q^{20}+ \cdots - 75 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.67053 −1.18124 −0.590622 0.806948i \(-0.701118\pi\)
−0.590622 + 0.806948i \(0.701118\pi\)
\(3\) 3.39922 1.96254 0.981269 0.192641i \(-0.0617054\pi\)
0.981269 + 0.192641i \(0.0617054\pi\)
\(4\) 0.790674 0.395337
\(5\) 1.45882 0.652405 0.326203 0.945300i \(-0.394231\pi\)
0.326203 + 0.945300i \(0.394231\pi\)
\(6\) −5.67850 −2.31824
\(7\) 1.59098 0.601333 0.300667 0.953729i \(-0.402791\pi\)
0.300667 + 0.953729i \(0.402791\pi\)
\(8\) 2.02022 0.714255
\(9\) 8.55467 2.85156
\(10\) −2.43701 −0.770650
\(11\) −1.00000 −0.301511
\(12\) 2.68767 0.775864
\(13\) −1.30794 −0.362758 −0.181379 0.983413i \(-0.558056\pi\)
−0.181379 + 0.983413i \(0.558056\pi\)
\(14\) −2.65778 −0.710321
\(15\) 4.95885 1.28037
\(16\) −4.95618 −1.23905
\(17\) 2.95107 0.715739 0.357870 0.933772i \(-0.383503\pi\)
0.357870 + 0.933772i \(0.383503\pi\)
\(18\) −14.2908 −3.36838
\(19\) 3.43321 0.787633 0.393817 0.919189i \(-0.371155\pi\)
0.393817 + 0.919189i \(0.371155\pi\)
\(20\) 1.15345 0.257920
\(21\) 5.40808 1.18014
\(22\) 1.67053 0.356158
\(23\) 0 0
\(24\) 6.86716 1.40175
\(25\) −2.87184 −0.574367
\(26\) 2.18496 0.428505
\(27\) 18.8815 3.63375
\(28\) 1.25794 0.237729
\(29\) 6.51587 1.20997 0.604984 0.796238i \(-0.293180\pi\)
0.604984 + 0.796238i \(0.293180\pi\)
\(30\) −8.28392 −1.51243
\(31\) 1.28950 0.231601 0.115801 0.993272i \(-0.463057\pi\)
0.115801 + 0.993272i \(0.463057\pi\)
\(32\) 4.23902 0.749360
\(33\) −3.39922 −0.591728
\(34\) −4.92985 −0.845462
\(35\) 2.32095 0.392313
\(36\) 6.76395 1.12733
\(37\) 0.915746 0.150548 0.0752739 0.997163i \(-0.476017\pi\)
0.0752739 + 0.997163i \(0.476017\pi\)
\(38\) −5.73529 −0.930387
\(39\) −4.44597 −0.711926
\(40\) 2.94714 0.465984
\(41\) 0.847520 0.132360 0.0661802 0.997808i \(-0.478919\pi\)
0.0661802 + 0.997808i \(0.478919\pi\)
\(42\) −9.03436 −1.39403
\(43\) 4.84131 0.738293 0.369147 0.929371i \(-0.379650\pi\)
0.369147 + 0.929371i \(0.379650\pi\)
\(44\) −0.790674 −0.119199
\(45\) 12.4797 1.86037
\(46\) 0 0
\(47\) 4.08129 0.595318 0.297659 0.954672i \(-0.403794\pi\)
0.297659 + 0.954672i \(0.403794\pi\)
\(48\) −16.8471 −2.43167
\(49\) −4.46879 −0.638398
\(50\) 4.79749 0.678468
\(51\) 10.0313 1.40467
\(52\) −1.03415 −0.143411
\(53\) −9.11028 −1.25139 −0.625697 0.780067i \(-0.715185\pi\)
−0.625697 + 0.780067i \(0.715185\pi\)
\(54\) −31.5422 −4.29235
\(55\) −1.45882 −0.196708
\(56\) 3.21412 0.429505
\(57\) 11.6702 1.54576
\(58\) −10.8850 −1.42927
\(59\) −7.33808 −0.955336 −0.477668 0.878540i \(-0.658518\pi\)
−0.477668 + 0.878540i \(0.658518\pi\)
\(60\) 3.92083 0.506178
\(61\) −14.6241 −1.87243 −0.936214 0.351430i \(-0.885696\pi\)
−0.936214 + 0.351430i \(0.885696\pi\)
\(62\) −2.15415 −0.273578
\(63\) 13.6103 1.71474
\(64\) 2.83095 0.353869
\(65\) −1.90805 −0.236665
\(66\) 5.67850 0.698975
\(67\) −14.4825 −1.76932 −0.884659 0.466239i \(-0.845609\pi\)
−0.884659 + 0.466239i \(0.845609\pi\)
\(68\) 2.33333 0.282958
\(69\) 0 0
\(70\) −3.87723 −0.463417
\(71\) 15.3390 1.82040 0.910200 0.414170i \(-0.135928\pi\)
0.910200 + 0.414170i \(0.135928\pi\)
\(72\) 17.2823 2.03674
\(73\) 12.0890 1.41491 0.707454 0.706760i \(-0.249844\pi\)
0.707454 + 0.706760i \(0.249844\pi\)
\(74\) −1.52978 −0.177834
\(75\) −9.76199 −1.12722
\(76\) 2.71455 0.311380
\(77\) −1.59098 −0.181309
\(78\) 7.42714 0.840958
\(79\) 5.34111 0.600922 0.300461 0.953794i \(-0.402859\pi\)
0.300461 + 0.953794i \(0.402859\pi\)
\(80\) −7.23019 −0.808360
\(81\) 38.5184 4.27982
\(82\) −1.41581 −0.156350
\(83\) −8.73373 −0.958652 −0.479326 0.877637i \(-0.659119\pi\)
−0.479326 + 0.877637i \(0.659119\pi\)
\(84\) 4.27602 0.466552
\(85\) 4.30508 0.466952
\(86\) −8.08756 −0.872104
\(87\) 22.1489 2.37461
\(88\) −2.02022 −0.215356
\(89\) 0.274393 0.0290856 0.0145428 0.999894i \(-0.495371\pi\)
0.0145428 + 0.999894i \(0.495371\pi\)
\(90\) −20.8478 −2.19755
\(91\) −2.08091 −0.218138
\(92\) 0 0
\(93\) 4.38330 0.454527
\(94\) −6.81792 −0.703215
\(95\) 5.00845 0.513856
\(96\) 14.4094 1.47065
\(97\) −13.2094 −1.34121 −0.670605 0.741815i \(-0.733965\pi\)
−0.670605 + 0.741815i \(0.733965\pi\)
\(98\) 7.46525 0.754104
\(99\) −8.55467 −0.859777
\(100\) −2.27069 −0.227069
\(101\) −2.18688 −0.217603 −0.108801 0.994064i \(-0.534701\pi\)
−0.108801 + 0.994064i \(0.534701\pi\)
\(102\) −16.7576 −1.65925
\(103\) 0.835944 0.0823680 0.0411840 0.999152i \(-0.486887\pi\)
0.0411840 + 0.999152i \(0.486887\pi\)
\(104\) −2.64232 −0.259101
\(105\) 7.88943 0.769929
\(106\) 15.2190 1.47820
\(107\) 18.7243 1.81015 0.905073 0.425256i \(-0.139816\pi\)
0.905073 + 0.425256i \(0.139816\pi\)
\(108\) 14.9291 1.43656
\(109\) 19.5235 1.87002 0.935008 0.354626i \(-0.115392\pi\)
0.935008 + 0.354626i \(0.115392\pi\)
\(110\) 2.43701 0.232360
\(111\) 3.11282 0.295456
\(112\) −7.88518 −0.745079
\(113\) −7.23233 −0.680360 −0.340180 0.940360i \(-0.610488\pi\)
−0.340180 + 0.940360i \(0.610488\pi\)
\(114\) −19.4955 −1.82592
\(115\) 0 0
\(116\) 5.15193 0.478345
\(117\) −11.1890 −1.03442
\(118\) 12.2585 1.12848
\(119\) 4.69508 0.430398
\(120\) 10.0180 0.914511
\(121\) 1.00000 0.0909091
\(122\) 24.4301 2.21179
\(123\) 2.88090 0.259762
\(124\) 1.01958 0.0915606
\(125\) −11.4836 −1.02713
\(126\) −22.7364 −2.02552
\(127\) 6.05213 0.537040 0.268520 0.963274i \(-0.413465\pi\)
0.268520 + 0.963274i \(0.413465\pi\)
\(128\) −13.2072 −1.16737
\(129\) 16.4567 1.44893
\(130\) 3.18746 0.279559
\(131\) 12.3371 1.07790 0.538950 0.842338i \(-0.318821\pi\)
0.538950 + 0.842338i \(0.318821\pi\)
\(132\) −2.68767 −0.233932
\(133\) 5.46217 0.473630
\(134\) 24.1934 2.09000
\(135\) 27.5448 2.37068
\(136\) 5.96180 0.511220
\(137\) −1.45154 −0.124014 −0.0620068 0.998076i \(-0.519750\pi\)
−0.0620068 + 0.998076i \(0.519750\pi\)
\(138\) 0 0
\(139\) −9.77385 −0.829007 −0.414504 0.910048i \(-0.636045\pi\)
−0.414504 + 0.910048i \(0.636045\pi\)
\(140\) 1.83512 0.155096
\(141\) 13.8732 1.16833
\(142\) −25.6242 −2.15034
\(143\) 1.30794 0.109376
\(144\) −42.3985 −3.53321
\(145\) 9.50551 0.789389
\(146\) −20.1950 −1.67135
\(147\) −15.1904 −1.25288
\(148\) 0.724056 0.0595171
\(149\) −16.7206 −1.36981 −0.684903 0.728635i \(-0.740155\pi\)
−0.684903 + 0.728635i \(0.740155\pi\)
\(150\) 16.3077 1.33152
\(151\) −0.354848 −0.0288771 −0.0144386 0.999896i \(-0.504596\pi\)
−0.0144386 + 0.999896i \(0.504596\pi\)
\(152\) 6.93584 0.562571
\(153\) 25.2454 2.04097
\(154\) 2.65778 0.214170
\(155\) 1.88115 0.151098
\(156\) −3.51531 −0.281450
\(157\) 0.798909 0.0637599 0.0318799 0.999492i \(-0.489851\pi\)
0.0318799 + 0.999492i \(0.489851\pi\)
\(158\) −8.92249 −0.709835
\(159\) −30.9678 −2.45591
\(160\) 6.18398 0.488887
\(161\) 0 0
\(162\) −64.3462 −5.05551
\(163\) 15.4842 1.21282 0.606408 0.795154i \(-0.292610\pi\)
0.606408 + 0.795154i \(0.292610\pi\)
\(164\) 0.670112 0.0523269
\(165\) −4.95885 −0.386046
\(166\) 14.5900 1.13240
\(167\) −6.09555 −0.471688 −0.235844 0.971791i \(-0.575785\pi\)
−0.235844 + 0.971791i \(0.575785\pi\)
\(168\) 10.9255 0.842920
\(169\) −11.2893 −0.868407
\(170\) −7.19178 −0.551584
\(171\) 29.3700 2.24598
\(172\) 3.82790 0.291875
\(173\) −15.1301 −1.15032 −0.575160 0.818041i \(-0.695060\pi\)
−0.575160 + 0.818041i \(0.695060\pi\)
\(174\) −37.0004 −2.80499
\(175\) −4.56903 −0.345386
\(176\) 4.95618 0.373586
\(177\) −24.9437 −1.87488
\(178\) −0.458382 −0.0343572
\(179\) 1.93248 0.144441 0.0722204 0.997389i \(-0.476992\pi\)
0.0722204 + 0.997389i \(0.476992\pi\)
\(180\) 9.86741 0.735473
\(181\) −6.40393 −0.476000 −0.238000 0.971265i \(-0.576492\pi\)
−0.238000 + 0.971265i \(0.576492\pi\)
\(182\) 3.47622 0.257674
\(183\) −49.7106 −3.67471
\(184\) 0 0
\(185\) 1.33591 0.0982181
\(186\) −7.32243 −0.536907
\(187\) −2.95107 −0.215803
\(188\) 3.22697 0.235351
\(189\) 30.0401 2.18510
\(190\) −8.36677 −0.606989
\(191\) −2.79437 −0.202194 −0.101097 0.994877i \(-0.532235\pi\)
−0.101097 + 0.994877i \(0.532235\pi\)
\(192\) 9.62301 0.694481
\(193\) 5.39665 0.388459 0.194230 0.980956i \(-0.437779\pi\)
0.194230 + 0.980956i \(0.437779\pi\)
\(194\) 22.0667 1.58430
\(195\) −6.48589 −0.464464
\(196\) −3.53335 −0.252382
\(197\) 5.28974 0.376879 0.188439 0.982085i \(-0.439657\pi\)
0.188439 + 0.982085i \(0.439657\pi\)
\(198\) 14.2908 1.01561
\(199\) −10.3419 −0.733116 −0.366558 0.930395i \(-0.619464\pi\)
−0.366558 + 0.930395i \(0.619464\pi\)
\(200\) −5.80173 −0.410245
\(201\) −49.2291 −3.47235
\(202\) 3.65325 0.257042
\(203\) 10.3666 0.727594
\(204\) 7.93150 0.555316
\(205\) 1.23638 0.0863526
\(206\) −1.39647 −0.0972967
\(207\) 0 0
\(208\) 6.48239 0.449473
\(209\) −3.43321 −0.237480
\(210\) −13.1795 −0.909474
\(211\) 3.24458 0.223366 0.111683 0.993744i \(-0.464376\pi\)
0.111683 + 0.993744i \(0.464376\pi\)
\(212\) −7.20326 −0.494722
\(213\) 52.1404 3.57260
\(214\) −31.2795 −2.13822
\(215\) 7.06262 0.481667
\(216\) 38.1448 2.59542
\(217\) 2.05157 0.139270
\(218\) −32.6147 −2.20894
\(219\) 41.0930 2.77681
\(220\) −1.15345 −0.0777658
\(221\) −3.85982 −0.259640
\(222\) −5.20006 −0.349005
\(223\) 5.45173 0.365075 0.182537 0.983199i \(-0.441569\pi\)
0.182537 + 0.983199i \(0.441569\pi\)
\(224\) 6.74419 0.450615
\(225\) −24.5676 −1.63784
\(226\) 12.0818 0.803671
\(227\) −5.32468 −0.353411 −0.176706 0.984264i \(-0.556544\pi\)
−0.176706 + 0.984264i \(0.556544\pi\)
\(228\) 9.22735 0.611096
\(229\) −17.2717 −1.14134 −0.570672 0.821178i \(-0.693317\pi\)
−0.570672 + 0.821178i \(0.693317\pi\)
\(230\) 0 0
\(231\) −5.40808 −0.355825
\(232\) 13.1635 0.864225
\(233\) −5.12686 −0.335872 −0.167936 0.985798i \(-0.553710\pi\)
−0.167936 + 0.985798i \(0.553710\pi\)
\(234\) 18.6916 1.22191
\(235\) 5.95388 0.388388
\(236\) −5.80202 −0.377679
\(237\) 18.1556 1.17933
\(238\) −7.84328 −0.508404
\(239\) −20.4852 −1.32508 −0.662539 0.749027i \(-0.730521\pi\)
−0.662539 + 0.749027i \(0.730521\pi\)
\(240\) −24.5770 −1.58644
\(241\) 19.3556 1.24681 0.623403 0.781901i \(-0.285750\pi\)
0.623403 + 0.781901i \(0.285750\pi\)
\(242\) −1.67053 −0.107386
\(243\) 74.2878 4.76556
\(244\) −11.5629 −0.740240
\(245\) −6.51917 −0.416495
\(246\) −4.81264 −0.306843
\(247\) −4.49044 −0.285720
\(248\) 2.60507 0.165422
\(249\) −29.6878 −1.88139
\(250\) 19.1837 1.21329
\(251\) 20.7713 1.31107 0.655535 0.755165i \(-0.272443\pi\)
0.655535 + 0.755165i \(0.272443\pi\)
\(252\) 10.7613 0.677898
\(253\) 0 0
\(254\) −10.1103 −0.634375
\(255\) 14.6339 0.916411
\(256\) 16.4012 1.02507
\(257\) −18.7383 −1.16886 −0.584431 0.811443i \(-0.698682\pi\)
−0.584431 + 0.811443i \(0.698682\pi\)
\(258\) −27.4914 −1.71154
\(259\) 1.45693 0.0905293
\(260\) −1.50865 −0.0935624
\(261\) 55.7412 3.45029
\(262\) −20.6096 −1.27326
\(263\) 26.1960 1.61532 0.807659 0.589650i \(-0.200734\pi\)
0.807659 + 0.589650i \(0.200734\pi\)
\(264\) −6.86716 −0.422644
\(265\) −13.2903 −0.816416
\(266\) −9.12472 −0.559472
\(267\) 0.932721 0.0570816
\(268\) −11.4509 −0.699476
\(269\) 17.7600 1.08285 0.541424 0.840750i \(-0.317885\pi\)
0.541424 + 0.840750i \(0.317885\pi\)
\(270\) −46.0145 −2.80035
\(271\) 13.3854 0.813107 0.406553 0.913627i \(-0.366731\pi\)
0.406553 + 0.913627i \(0.366731\pi\)
\(272\) −14.6260 −0.886833
\(273\) −7.07345 −0.428104
\(274\) 2.42485 0.146490
\(275\) 2.87184 0.173178
\(276\) 0 0
\(277\) 10.7484 0.645809 0.322905 0.946431i \(-0.395341\pi\)
0.322905 + 0.946431i \(0.395341\pi\)
\(278\) 16.3275 0.979260
\(279\) 11.0313 0.660425
\(280\) 4.68883 0.280211
\(281\) −6.09616 −0.363666 −0.181833 0.983329i \(-0.558203\pi\)
−0.181833 + 0.983329i \(0.558203\pi\)
\(282\) −23.1756 −1.38009
\(283\) −14.0335 −0.834207 −0.417104 0.908859i \(-0.636955\pi\)
−0.417104 + 0.908859i \(0.636955\pi\)
\(284\) 12.1281 0.719671
\(285\) 17.0248 1.00846
\(286\) −2.18496 −0.129199
\(287\) 1.34839 0.0795927
\(288\) 36.2634 2.13684
\(289\) −8.29120 −0.487718
\(290\) −15.8792 −0.932461
\(291\) −44.9015 −2.63217
\(292\) 9.55843 0.559365
\(293\) −17.1214 −1.00024 −0.500122 0.865955i \(-0.666711\pi\)
−0.500122 + 0.865955i \(0.666711\pi\)
\(294\) 25.3760 1.47996
\(295\) −10.7050 −0.623266
\(296\) 1.85001 0.107529
\(297\) −18.8815 −1.09562
\(298\) 27.9323 1.61807
\(299\) 0 0
\(300\) −7.71855 −0.445631
\(301\) 7.70242 0.443960
\(302\) 0.592785 0.0341109
\(303\) −7.43368 −0.427054
\(304\) −17.0156 −0.975913
\(305\) −21.3340 −1.22158
\(306\) −42.1732 −2.41088
\(307\) −17.1016 −0.976040 −0.488020 0.872833i \(-0.662281\pi\)
−0.488020 + 0.872833i \(0.662281\pi\)
\(308\) −1.25794 −0.0716780
\(309\) 2.84156 0.161650
\(310\) −3.14253 −0.178484
\(311\) 22.6738 1.28572 0.642858 0.765986i \(-0.277749\pi\)
0.642858 + 0.765986i \(0.277749\pi\)
\(312\) −8.98183 −0.508496
\(313\) 13.6959 0.774141 0.387070 0.922050i \(-0.373487\pi\)
0.387070 + 0.922050i \(0.373487\pi\)
\(314\) −1.33460 −0.0753159
\(315\) 19.8550 1.11870
\(316\) 4.22308 0.237567
\(317\) −0.137911 −0.00774584 −0.00387292 0.999993i \(-0.501233\pi\)
−0.00387292 + 0.999993i \(0.501233\pi\)
\(318\) 51.7327 2.90103
\(319\) −6.51587 −0.364819
\(320\) 4.12985 0.230866
\(321\) 63.6479 3.55248
\(322\) 0 0
\(323\) 10.1316 0.563740
\(324\) 30.4555 1.69197
\(325\) 3.75619 0.208356
\(326\) −25.8668 −1.43263
\(327\) 66.3647 3.66998
\(328\) 1.71217 0.0945390
\(329\) 6.49325 0.357984
\(330\) 8.28392 0.456015
\(331\) −1.99732 −0.109783 −0.0548914 0.998492i \(-0.517481\pi\)
−0.0548914 + 0.998492i \(0.517481\pi\)
\(332\) −6.90553 −0.378990
\(333\) 7.83391 0.429295
\(334\) 10.1828 0.557179
\(335\) −21.1274 −1.15431
\(336\) −26.8034 −1.46225
\(337\) −22.0275 −1.19991 −0.599957 0.800033i \(-0.704815\pi\)
−0.599957 + 0.800033i \(0.704815\pi\)
\(338\) 18.8591 1.02580
\(339\) −24.5843 −1.33523
\(340\) 3.40392 0.184603
\(341\) −1.28950 −0.0698305
\(342\) −49.0635 −2.65305
\(343\) −18.2466 −0.985223
\(344\) 9.78050 0.527329
\(345\) 0 0
\(346\) 25.2753 1.35881
\(347\) −16.6573 −0.894211 −0.447105 0.894481i \(-0.647545\pi\)
−0.447105 + 0.894481i \(0.647545\pi\)
\(348\) 17.5125 0.938770
\(349\) 26.8844 1.43909 0.719545 0.694446i \(-0.244351\pi\)
0.719545 + 0.694446i \(0.244351\pi\)
\(350\) 7.63270 0.407985
\(351\) −24.6959 −1.31817
\(352\) −4.23902 −0.225941
\(353\) −8.75166 −0.465804 −0.232902 0.972500i \(-0.574822\pi\)
−0.232902 + 0.972500i \(0.574822\pi\)
\(354\) 41.6692 2.21469
\(355\) 22.3768 1.18764
\(356\) 0.216955 0.0114986
\(357\) 15.9596 0.844672
\(358\) −3.22828 −0.170620
\(359\) −34.9012 −1.84202 −0.921008 0.389544i \(-0.872633\pi\)
−0.921008 + 0.389544i \(0.872633\pi\)
\(360\) 25.2118 1.32878
\(361\) −7.21304 −0.379634
\(362\) 10.6980 0.562273
\(363\) 3.39922 0.178413
\(364\) −1.64532 −0.0862380
\(365\) 17.6357 0.923093
\(366\) 83.0431 4.34073
\(367\) −2.94041 −0.153488 −0.0767441 0.997051i \(-0.524452\pi\)
−0.0767441 + 0.997051i \(0.524452\pi\)
\(368\) 0 0
\(369\) 7.25026 0.377433
\(370\) −2.23168 −0.116020
\(371\) −14.4943 −0.752504
\(372\) 3.46576 0.179691
\(373\) 3.11175 0.161120 0.0805600 0.996750i \(-0.474329\pi\)
0.0805600 + 0.996750i \(0.474329\pi\)
\(374\) 4.92985 0.254916
\(375\) −39.0353 −2.01577
\(376\) 8.24510 0.425208
\(377\) −8.52238 −0.438925
\(378\) −50.1829 −2.58113
\(379\) −25.0966 −1.28913 −0.644563 0.764551i \(-0.722961\pi\)
−0.644563 + 0.764551i \(0.722961\pi\)
\(380\) 3.96005 0.203146
\(381\) 20.5725 1.05396
\(382\) 4.66808 0.238840
\(383\) −12.1717 −0.621945 −0.310972 0.950419i \(-0.600655\pi\)
−0.310972 + 0.950419i \(0.600655\pi\)
\(384\) −44.8942 −2.29100
\(385\) −2.32095 −0.118287
\(386\) −9.01527 −0.458865
\(387\) 41.4158 2.10529
\(388\) −10.4443 −0.530229
\(389\) 29.3724 1.48924 0.744621 0.667488i \(-0.232630\pi\)
0.744621 + 0.667488i \(0.232630\pi\)
\(390\) 10.8349 0.548645
\(391\) 0 0
\(392\) −9.02793 −0.455979
\(393\) 41.9366 2.11542
\(394\) −8.83668 −0.445185
\(395\) 7.79173 0.392045
\(396\) −6.76395 −0.339901
\(397\) 17.7400 0.890346 0.445173 0.895445i \(-0.353142\pi\)
0.445173 + 0.895445i \(0.353142\pi\)
\(398\) 17.2764 0.865989
\(399\) 18.5671 0.929517
\(400\) 14.2333 0.711667
\(401\) −17.0670 −0.852285 −0.426143 0.904656i \(-0.640128\pi\)
−0.426143 + 0.904656i \(0.640128\pi\)
\(402\) 82.2387 4.10170
\(403\) −1.68659 −0.0840152
\(404\) −1.72911 −0.0860264
\(405\) 56.1915 2.79218
\(406\) −17.3177 −0.859465
\(407\) −0.915746 −0.0453918
\(408\) 20.2654 1.00329
\(409\) 30.7419 1.52009 0.760046 0.649870i \(-0.225176\pi\)
0.760046 + 0.649870i \(0.225176\pi\)
\(410\) −2.06541 −0.102003
\(411\) −4.93411 −0.243382
\(412\) 0.660959 0.0325631
\(413\) −11.6747 −0.574475
\(414\) 0 0
\(415\) −12.7410 −0.625429
\(416\) −5.54439 −0.271836
\(417\) −33.2234 −1.62696
\(418\) 5.73529 0.280522
\(419\) 9.59178 0.468589 0.234294 0.972166i \(-0.424722\pi\)
0.234294 + 0.972166i \(0.424722\pi\)
\(420\) 6.23796 0.304381
\(421\) 1.83846 0.0896013 0.0448006 0.998996i \(-0.485735\pi\)
0.0448006 + 0.998996i \(0.485735\pi\)
\(422\) −5.42017 −0.263850
\(423\) 34.9141 1.69758
\(424\) −18.4047 −0.893813
\(425\) −8.47498 −0.411097
\(426\) −87.1022 −4.22012
\(427\) −23.2667 −1.12595
\(428\) 14.8048 0.715617
\(429\) 4.44597 0.214654
\(430\) −11.7983 −0.568966
\(431\) 8.00207 0.385446 0.192723 0.981253i \(-0.438268\pi\)
0.192723 + 0.981253i \(0.438268\pi\)
\(432\) −93.5803 −4.50239
\(433\) −22.6248 −1.08728 −0.543640 0.839319i \(-0.682954\pi\)
−0.543640 + 0.839319i \(0.682954\pi\)
\(434\) −3.42721 −0.164511
\(435\) 32.3113 1.54921
\(436\) 15.4367 0.739286
\(437\) 0 0
\(438\) −68.6472 −3.28009
\(439\) −3.22057 −0.153709 −0.0768547 0.997042i \(-0.524488\pi\)
−0.0768547 + 0.997042i \(0.524488\pi\)
\(440\) −2.94714 −0.140499
\(441\) −38.2290 −1.82043
\(442\) 6.44795 0.306698
\(443\) −5.89971 −0.280304 −0.140152 0.990130i \(-0.544759\pi\)
−0.140152 + 0.990130i \(0.544759\pi\)
\(444\) 2.46122 0.116805
\(445\) 0.400291 0.0189756
\(446\) −9.10728 −0.431242
\(447\) −56.8370 −2.68830
\(448\) 4.50398 0.212793
\(449\) −3.92735 −0.185343 −0.0926715 0.995697i \(-0.529541\pi\)
−0.0926715 + 0.995697i \(0.529541\pi\)
\(450\) 41.0410 1.93469
\(451\) −0.847520 −0.0399082
\(452\) −5.71841 −0.268971
\(453\) −1.20621 −0.0566725
\(454\) 8.89504 0.417465
\(455\) −3.03567 −0.142314
\(456\) 23.5764 1.10407
\(457\) −11.8598 −0.554779 −0.277389 0.960758i \(-0.589469\pi\)
−0.277389 + 0.960758i \(0.589469\pi\)
\(458\) 28.8529 1.34821
\(459\) 55.7207 2.60082
\(460\) 0 0
\(461\) 1.79399 0.0835545 0.0417773 0.999127i \(-0.486698\pi\)
0.0417773 + 0.999127i \(0.486698\pi\)
\(462\) 9.03436 0.420317
\(463\) 18.3448 0.852557 0.426278 0.904592i \(-0.359824\pi\)
0.426278 + 0.904592i \(0.359824\pi\)
\(464\) −32.2939 −1.49920
\(465\) 6.39445 0.296536
\(466\) 8.56458 0.396747
\(467\) −7.60437 −0.351888 −0.175944 0.984400i \(-0.556298\pi\)
−0.175944 + 0.984400i \(0.556298\pi\)
\(468\) −8.84685 −0.408946
\(469\) −23.0413 −1.06395
\(470\) −9.94614 −0.458781
\(471\) 2.71566 0.125131
\(472\) −14.8245 −0.682353
\(473\) −4.84131 −0.222604
\(474\) −30.3295 −1.39308
\(475\) −9.85963 −0.452391
\(476\) 3.71228 0.170152
\(477\) −77.9355 −3.56842
\(478\) 34.2212 1.56524
\(479\) 1.34460 0.0614362 0.0307181 0.999528i \(-0.490221\pi\)
0.0307181 + 0.999528i \(0.490221\pi\)
\(480\) 21.0207 0.959459
\(481\) −1.19774 −0.0546123
\(482\) −32.3342 −1.47278
\(483\) 0 0
\(484\) 0.790674 0.0359397
\(485\) −19.2701 −0.875012
\(486\) −124.100 −5.62929
\(487\) −3.48264 −0.157813 −0.0789067 0.996882i \(-0.525143\pi\)
−0.0789067 + 0.996882i \(0.525143\pi\)
\(488\) −29.5439 −1.33739
\(489\) 52.6341 2.38020
\(490\) 10.8905 0.491982
\(491\) −25.2303 −1.13863 −0.569314 0.822120i \(-0.692791\pi\)
−0.569314 + 0.822120i \(0.692791\pi\)
\(492\) 2.27785 0.102694
\(493\) 19.2288 0.866021
\(494\) 7.50142 0.337505
\(495\) −12.4797 −0.560923
\(496\) −6.39101 −0.286965
\(497\) 24.4039 1.09467
\(498\) 49.5945 2.22238
\(499\) −15.7643 −0.705706 −0.352853 0.935679i \(-0.614788\pi\)
−0.352853 + 0.935679i \(0.614788\pi\)
\(500\) −9.07979 −0.406061
\(501\) −20.7201 −0.925706
\(502\) −34.6990 −1.54869
\(503\) −6.54121 −0.291658 −0.145829 0.989310i \(-0.546585\pi\)
−0.145829 + 0.989310i \(0.546585\pi\)
\(504\) 27.4958 1.22476
\(505\) −3.19027 −0.141965
\(506\) 0 0
\(507\) −38.3747 −1.70428
\(508\) 4.78526 0.212312
\(509\) 20.2932 0.899479 0.449740 0.893160i \(-0.351517\pi\)
0.449740 + 0.893160i \(0.351517\pi\)
\(510\) −24.4464 −1.08250
\(511\) 19.2333 0.850831
\(512\) −0.984233 −0.0434974
\(513\) 64.8243 2.86206
\(514\) 31.3029 1.38071
\(515\) 1.21949 0.0537374
\(516\) 13.0119 0.572815
\(517\) −4.08129 −0.179495
\(518\) −2.43385 −0.106937
\(519\) −51.4305 −2.25755
\(520\) −3.85468 −0.169039
\(521\) −33.4891 −1.46718 −0.733591 0.679591i \(-0.762157\pi\)
−0.733591 + 0.679591i \(0.762157\pi\)
\(522\) −93.1173 −4.07564
\(523\) 36.5090 1.59643 0.798215 0.602373i \(-0.205778\pi\)
0.798215 + 0.602373i \(0.205778\pi\)
\(524\) 9.75464 0.426133
\(525\) −15.5311 −0.677833
\(526\) −43.7613 −1.90808
\(527\) 3.80541 0.165766
\(528\) 16.8471 0.733178
\(529\) 0 0
\(530\) 22.2018 0.964386
\(531\) −62.7748 −2.72420
\(532\) 4.31879 0.187243
\(533\) −1.10851 −0.0480147
\(534\) −1.55814 −0.0674273
\(535\) 27.3154 1.18095
\(536\) −29.2578 −1.26374
\(537\) 6.56893 0.283470
\(538\) −29.6687 −1.27911
\(539\) 4.46879 0.192484
\(540\) 21.7790 0.937217
\(541\) 1.95587 0.0840895 0.0420447 0.999116i \(-0.486613\pi\)
0.0420447 + 0.999116i \(0.486613\pi\)
\(542\) −22.3608 −0.960477
\(543\) −21.7683 −0.934169
\(544\) 12.5096 0.536346
\(545\) 28.4814 1.22001
\(546\) 11.8164 0.505696
\(547\) 26.4000 1.12878 0.564391 0.825508i \(-0.309111\pi\)
0.564391 + 0.825508i \(0.309111\pi\)
\(548\) −1.14770 −0.0490272
\(549\) −125.105 −5.33934
\(550\) −4.79749 −0.204566
\(551\) 22.3704 0.953011
\(552\) 0 0
\(553\) 8.49759 0.361354
\(554\) −17.9555 −0.762858
\(555\) 4.54105 0.192757
\(556\) −7.72793 −0.327737
\(557\) 42.5409 1.80251 0.901257 0.433284i \(-0.142645\pi\)
0.901257 + 0.433284i \(0.142645\pi\)
\(558\) −18.4281 −0.780123
\(559\) −6.33215 −0.267822
\(560\) −11.5031 −0.486094
\(561\) −10.0313 −0.423523
\(562\) 10.1838 0.429578
\(563\) −18.3252 −0.772317 −0.386159 0.922432i \(-0.626198\pi\)
−0.386159 + 0.922432i \(0.626198\pi\)
\(564\) 10.9692 0.461885
\(565\) −10.5507 −0.443871
\(566\) 23.4435 0.985402
\(567\) 61.2819 2.57360
\(568\) 30.9880 1.30023
\(569\) −7.54526 −0.316314 −0.158157 0.987414i \(-0.550555\pi\)
−0.158157 + 0.987414i \(0.550555\pi\)
\(570\) −28.4405 −1.19124
\(571\) 16.2373 0.679508 0.339754 0.940514i \(-0.389656\pi\)
0.339754 + 0.940514i \(0.389656\pi\)
\(572\) 1.03415 0.0432402
\(573\) −9.49868 −0.396813
\(574\) −2.25252 −0.0940184
\(575\) 0 0
\(576\) 24.2178 1.00908
\(577\) −9.85003 −0.410062 −0.205031 0.978755i \(-0.565730\pi\)
−0.205031 + 0.978755i \(0.565730\pi\)
\(578\) 13.8507 0.576113
\(579\) 18.3444 0.762366
\(580\) 7.51575 0.312075
\(581\) −13.8952 −0.576469
\(582\) 75.0094 3.10924
\(583\) 9.11028 0.377309
\(584\) 24.4224 1.01060
\(585\) −16.3228 −0.674864
\(586\) 28.6019 1.18153
\(587\) −37.6852 −1.55544 −0.777718 0.628614i \(-0.783623\pi\)
−0.777718 + 0.628614i \(0.783623\pi\)
\(588\) −12.0106 −0.495310
\(589\) 4.42714 0.182417
\(590\) 17.8830 0.736230
\(591\) 17.9810 0.739639
\(592\) −4.53860 −0.186535
\(593\) −9.95792 −0.408923 −0.204461 0.978875i \(-0.565544\pi\)
−0.204461 + 0.978875i \(0.565544\pi\)
\(594\) 31.5422 1.29419
\(595\) 6.84929 0.280794
\(596\) −13.2205 −0.541534
\(597\) −35.1543 −1.43877
\(598\) 0 0
\(599\) −4.01858 −0.164195 −0.0820974 0.996624i \(-0.526162\pi\)
−0.0820974 + 0.996624i \(0.526162\pi\)
\(600\) −19.7213 −0.805121
\(601\) −3.15220 −0.128581 −0.0642904 0.997931i \(-0.520478\pi\)
−0.0642904 + 0.997931i \(0.520478\pi\)
\(602\) −12.8671 −0.524425
\(603\) −123.893 −5.04531
\(604\) −0.280569 −0.0114162
\(605\) 1.45882 0.0593096
\(606\) 12.4182 0.504455
\(607\) −4.86550 −0.197484 −0.0987422 0.995113i \(-0.531482\pi\)
−0.0987422 + 0.995113i \(0.531482\pi\)
\(608\) 14.5535 0.590221
\(609\) 35.2384 1.42793
\(610\) 35.6391 1.44299
\(611\) −5.33809 −0.215956
\(612\) 19.9609 0.806871
\(613\) −7.69499 −0.310798 −0.155399 0.987852i \(-0.549666\pi\)
−0.155399 + 0.987852i \(0.549666\pi\)
\(614\) 28.5687 1.15294
\(615\) 4.20273 0.169470
\(616\) −3.21412 −0.129501
\(617\) 33.1545 1.33475 0.667376 0.744721i \(-0.267417\pi\)
0.667376 + 0.744721i \(0.267417\pi\)
\(618\) −4.74691 −0.190949
\(619\) 36.3788 1.46219 0.731095 0.682276i \(-0.239010\pi\)
0.731095 + 0.682276i \(0.239010\pi\)
\(620\) 1.48738 0.0597346
\(621\) 0 0
\(622\) −37.8773 −1.51874
\(623\) 0.436553 0.0174901
\(624\) 22.0351 0.882108
\(625\) −2.39337 −0.0957349
\(626\) −22.8795 −0.914449
\(627\) −11.6702 −0.466064
\(628\) 0.631676 0.0252066
\(629\) 2.70243 0.107753
\(630\) −33.1684 −1.32146
\(631\) 9.05699 0.360553 0.180277 0.983616i \(-0.442301\pi\)
0.180277 + 0.983616i \(0.442301\pi\)
\(632\) 10.7902 0.429211
\(633\) 11.0290 0.438364
\(634\) 0.230384 0.00914973
\(635\) 8.82899 0.350368
\(636\) −24.4854 −0.970910
\(637\) 5.84491 0.231584
\(638\) 10.8850 0.430940
\(639\) 131.220 5.19097
\(640\) −19.2670 −0.761595
\(641\) 13.7489 0.543047 0.271524 0.962432i \(-0.412472\pi\)
0.271524 + 0.962432i \(0.412472\pi\)
\(642\) −106.326 −4.19635
\(643\) 8.75949 0.345441 0.172720 0.984971i \(-0.444744\pi\)
0.172720 + 0.984971i \(0.444744\pi\)
\(644\) 0 0
\(645\) 24.0074 0.945289
\(646\) −16.9252 −0.665914
\(647\) −13.6240 −0.535613 −0.267807 0.963473i \(-0.586299\pi\)
−0.267807 + 0.963473i \(0.586299\pi\)
\(648\) 77.8155 3.05688
\(649\) 7.33808 0.288045
\(650\) −6.27484 −0.246119
\(651\) 6.97373 0.273322
\(652\) 12.2429 0.479471
\(653\) −25.1229 −0.983136 −0.491568 0.870839i \(-0.663576\pi\)
−0.491568 + 0.870839i \(0.663576\pi\)
\(654\) −110.864 −4.33514
\(655\) 17.9977 0.703228
\(656\) −4.20046 −0.164001
\(657\) 103.417 4.03469
\(658\) −10.8472 −0.422867
\(659\) −16.7202 −0.651326 −0.325663 0.945486i \(-0.605588\pi\)
−0.325663 + 0.945486i \(0.605588\pi\)
\(660\) −3.92083 −0.152618
\(661\) −13.1288 −0.510651 −0.255326 0.966855i \(-0.582183\pi\)
−0.255326 + 0.966855i \(0.582183\pi\)
\(662\) 3.33659 0.129680
\(663\) −13.1204 −0.509553
\(664\) −17.6440 −0.684721
\(665\) 7.96833 0.308999
\(666\) −13.0868 −0.507103
\(667\) 0 0
\(668\) −4.81959 −0.186476
\(669\) 18.5316 0.716473
\(670\) 35.2939 1.36352
\(671\) 14.6241 0.564558
\(672\) 22.9250 0.884350
\(673\) 32.4311 1.25013 0.625064 0.780574i \(-0.285073\pi\)
0.625064 + 0.780574i \(0.285073\pi\)
\(674\) 36.7976 1.41739
\(675\) −54.2247 −2.08711
\(676\) −8.92614 −0.343313
\(677\) 36.1771 1.39040 0.695200 0.718817i \(-0.255316\pi\)
0.695200 + 0.718817i \(0.255316\pi\)
\(678\) 41.0688 1.57724
\(679\) −21.0158 −0.806514
\(680\) 8.69721 0.333523
\(681\) −18.0997 −0.693583
\(682\) 2.15415 0.0824868
\(683\) 11.5573 0.442227 0.221113 0.975248i \(-0.429031\pi\)
0.221113 + 0.975248i \(0.429031\pi\)
\(684\) 23.2221 0.887919
\(685\) −2.11754 −0.0809072
\(686\) 30.4815 1.16379
\(687\) −58.7102 −2.23993
\(688\) −23.9944 −0.914779
\(689\) 11.9157 0.453952
\(690\) 0 0
\(691\) 24.9023 0.947328 0.473664 0.880706i \(-0.342931\pi\)
0.473664 + 0.880706i \(0.342931\pi\)
\(692\) −11.9630 −0.454764
\(693\) −13.6103 −0.517012
\(694\) 27.8265 1.05628
\(695\) −14.2583 −0.540849
\(696\) 44.7455 1.69607
\(697\) 2.50109 0.0947355
\(698\) −44.9112 −1.69992
\(699\) −17.4273 −0.659162
\(700\) −3.61261 −0.136544
\(701\) −45.5889 −1.72187 −0.860934 0.508717i \(-0.830120\pi\)
−0.860934 + 0.508717i \(0.830120\pi\)
\(702\) 41.2553 1.55708
\(703\) 3.14395 0.118576
\(704\) −2.83095 −0.106695
\(705\) 20.2385 0.762227
\(706\) 14.6199 0.550228
\(707\) −3.47928 −0.130852
\(708\) −19.7223 −0.741211
\(709\) −10.8607 −0.407881 −0.203940 0.978983i \(-0.565375\pi\)
−0.203940 + 0.978983i \(0.565375\pi\)
\(710\) −37.3812 −1.40289
\(711\) 45.6915 1.71356
\(712\) 0.554333 0.0207745
\(713\) 0 0
\(714\) −26.6610 −0.997763
\(715\) 1.90805 0.0713572
\(716\) 1.52796 0.0571027
\(717\) −69.6337 −2.60052
\(718\) 58.3036 2.17587
\(719\) −32.4082 −1.20862 −0.604311 0.796748i \(-0.706552\pi\)
−0.604311 + 0.796748i \(0.706552\pi\)
\(720\) −61.8519 −2.30508
\(721\) 1.32997 0.0495306
\(722\) 12.0496 0.448440
\(723\) 65.7940 2.44690
\(724\) −5.06342 −0.188180
\(725\) −18.7125 −0.694966
\(726\) −5.67850 −0.210749
\(727\) 27.1330 1.00631 0.503154 0.864197i \(-0.332173\pi\)
0.503154 + 0.864197i \(0.332173\pi\)
\(728\) −4.20388 −0.155806
\(729\) 136.965 5.07278
\(730\) −29.4609 −1.09040
\(731\) 14.2870 0.528425
\(732\) −39.3048 −1.45275
\(733\) 34.7331 1.28290 0.641448 0.767166i \(-0.278334\pi\)
0.641448 + 0.767166i \(0.278334\pi\)
\(734\) 4.91204 0.181307
\(735\) −22.1601 −0.817387
\(736\) 0 0
\(737\) 14.4825 0.533469
\(738\) −12.1118 −0.445841
\(739\) −0.820303 −0.0301753 −0.0150877 0.999886i \(-0.504803\pi\)
−0.0150877 + 0.999886i \(0.504803\pi\)
\(740\) 1.05627 0.0388292
\(741\) −15.2640 −0.560736
\(742\) 24.2131 0.888891
\(743\) −21.3971 −0.784982 −0.392491 0.919756i \(-0.628387\pi\)
−0.392491 + 0.919756i \(0.628387\pi\)
\(744\) 8.85521 0.324648
\(745\) −24.3924 −0.893668
\(746\) −5.19827 −0.190322
\(747\) −74.7142 −2.73365
\(748\) −2.33333 −0.0853150
\(749\) 29.7899 1.08850
\(750\) 65.2097 2.38112
\(751\) −11.2209 −0.409457 −0.204729 0.978819i \(-0.565631\pi\)
−0.204729 + 0.978819i \(0.565631\pi\)
\(752\) −20.2276 −0.737626
\(753\) 70.6060 2.57303
\(754\) 14.2369 0.518477
\(755\) −0.517661 −0.0188396
\(756\) 23.7519 0.863849
\(757\) −21.7168 −0.789310 −0.394655 0.918829i \(-0.629136\pi\)
−0.394655 + 0.918829i \(0.629136\pi\)
\(758\) 41.9247 1.52277
\(759\) 0 0
\(760\) 10.1182 0.367024
\(761\) 29.6496 1.07480 0.537399 0.843328i \(-0.319407\pi\)
0.537399 + 0.843328i \(0.319407\pi\)
\(762\) −34.3670 −1.24499
\(763\) 31.0615 1.12450
\(764\) −2.20944 −0.0799346
\(765\) 36.8286 1.33154
\(766\) 20.3332 0.734668
\(767\) 9.59777 0.346555
\(768\) 55.7512 2.01175
\(769\) 31.9851 1.15341 0.576706 0.816952i \(-0.304338\pi\)
0.576706 + 0.816952i \(0.304338\pi\)
\(770\) 3.87723 0.139726
\(771\) −63.6955 −2.29394
\(772\) 4.26699 0.153572
\(773\) 10.6542 0.383205 0.191603 0.981473i \(-0.438632\pi\)
0.191603 + 0.981473i \(0.438632\pi\)
\(774\) −69.1865 −2.48686
\(775\) −3.70324 −0.133024
\(776\) −26.6858 −0.957965
\(777\) 4.95243 0.177667
\(778\) −49.0676 −1.75916
\(779\) 2.90972 0.104251
\(780\) −5.12822 −0.183620
\(781\) −15.3390 −0.548871
\(782\) 0 0
\(783\) 123.030 4.39672
\(784\) 22.1481 0.791005
\(785\) 1.16547 0.0415973
\(786\) −70.0563 −2.49883
\(787\) 45.9496 1.63793 0.818963 0.573846i \(-0.194549\pi\)
0.818963 + 0.573846i \(0.194549\pi\)
\(788\) 4.18246 0.148994
\(789\) 89.0460 3.17012
\(790\) −13.0163 −0.463100
\(791\) −11.5065 −0.409123
\(792\) −17.2823 −0.614100
\(793\) 19.1275 0.679238
\(794\) −29.6352 −1.05172
\(795\) −45.1765 −1.60225
\(796\) −8.17705 −0.289828
\(797\) 26.3653 0.933906 0.466953 0.884282i \(-0.345352\pi\)
0.466953 + 0.884282i \(0.345352\pi\)
\(798\) −31.0169 −1.09799
\(799\) 12.0442 0.426092
\(800\) −12.1738 −0.430408
\(801\) 2.34734 0.0829392
\(802\) 28.5109 1.00676
\(803\) −12.0890 −0.426611
\(804\) −38.9242 −1.37275
\(805\) 0 0
\(806\) 2.81751 0.0992424
\(807\) 60.3702 2.12513
\(808\) −4.41797 −0.155424
\(809\) −28.2478 −0.993141 −0.496571 0.867996i \(-0.665408\pi\)
−0.496571 + 0.867996i \(0.665408\pi\)
\(810\) −93.8697 −3.29824
\(811\) −29.3756 −1.03152 −0.515758 0.856734i \(-0.672490\pi\)
−0.515758 + 0.856734i \(0.672490\pi\)
\(812\) 8.19661 0.287644
\(813\) 45.4999 1.59575
\(814\) 1.52978 0.0536188
\(815\) 22.5887 0.791248
\(816\) −49.7170 −1.74044
\(817\) 16.6213 0.581504
\(818\) −51.3554 −1.79560
\(819\) −17.8015 −0.622033
\(820\) 0.977574 0.0341384
\(821\) 15.1991 0.530454 0.265227 0.964186i \(-0.414553\pi\)
0.265227 + 0.964186i \(0.414553\pi\)
\(822\) 8.24258 0.287493
\(823\) −13.5880 −0.473648 −0.236824 0.971553i \(-0.576106\pi\)
−0.236824 + 0.971553i \(0.576106\pi\)
\(824\) 1.68879 0.0588318
\(825\) 9.76199 0.339869
\(826\) 19.5030 0.678595
\(827\) 4.88706 0.169940 0.0849699 0.996384i \(-0.472921\pi\)
0.0849699 + 0.996384i \(0.472921\pi\)
\(828\) 0 0
\(829\) 41.5608 1.44347 0.721733 0.692171i \(-0.243346\pi\)
0.721733 + 0.692171i \(0.243346\pi\)
\(830\) 21.2842 0.738785
\(831\) 36.5362 1.26743
\(832\) −3.70271 −0.128368
\(833\) −13.1877 −0.456927
\(834\) 55.5008 1.92184
\(835\) −8.89233 −0.307732
\(836\) −2.71455 −0.0938847
\(837\) 24.3478 0.841582
\(838\) −16.0234 −0.553518
\(839\) 0.135827 0.00468926 0.00234463 0.999997i \(-0.499254\pi\)
0.00234463 + 0.999997i \(0.499254\pi\)
\(840\) 15.9384 0.549926
\(841\) 13.4566 0.464021
\(842\) −3.07121 −0.105841
\(843\) −20.7222 −0.713709
\(844\) 2.56540 0.0883048
\(845\) −16.4691 −0.566553
\(846\) −58.3251 −2.00526
\(847\) 1.59098 0.0546666
\(848\) 45.1522 1.55053
\(849\) −47.7030 −1.63716
\(850\) 14.1577 0.485606
\(851\) 0 0
\(852\) 41.2261 1.41238
\(853\) −44.1722 −1.51243 −0.756214 0.654324i \(-0.772953\pi\)
−0.756214 + 0.654324i \(0.772953\pi\)
\(854\) 38.8677 1.33003
\(855\) 42.8456 1.46529
\(856\) 37.8271 1.29291
\(857\) −48.6370 −1.66141 −0.830704 0.556714i \(-0.812062\pi\)
−0.830704 + 0.556714i \(0.812062\pi\)
\(858\) −7.42714 −0.253558
\(859\) −41.7562 −1.42470 −0.712352 0.701822i \(-0.752370\pi\)
−0.712352 + 0.701822i \(0.752370\pi\)
\(860\) 5.58423 0.190420
\(861\) 4.58345 0.156204
\(862\) −13.3677 −0.455306
\(863\) 22.3278 0.760048 0.380024 0.924977i \(-0.375916\pi\)
0.380024 + 0.924977i \(0.375916\pi\)
\(864\) 80.0392 2.72299
\(865\) −22.0721 −0.750475
\(866\) 37.7955 1.28434
\(867\) −28.1836 −0.957165
\(868\) 1.62212 0.0550584
\(869\) −5.34111 −0.181185
\(870\) −53.9770 −1.82999
\(871\) 18.9422 0.641833
\(872\) 39.4418 1.33567
\(873\) −113.002 −3.82454
\(874\) 0 0
\(875\) −18.2702 −0.617645
\(876\) 32.4912 1.09778
\(877\) 24.3070 0.820788 0.410394 0.911908i \(-0.365391\pi\)
0.410394 + 0.911908i \(0.365391\pi\)
\(878\) 5.38006 0.181568
\(879\) −58.1994 −1.96302
\(880\) 7.23019 0.243730
\(881\) −26.4410 −0.890819 −0.445410 0.895327i \(-0.646942\pi\)
−0.445410 + 0.895327i \(0.646942\pi\)
\(882\) 63.8628 2.15037
\(883\) 28.6462 0.964023 0.482011 0.876165i \(-0.339906\pi\)
0.482011 + 0.876165i \(0.339906\pi\)
\(884\) −3.05186 −0.102645
\(885\) −36.3884 −1.22318
\(886\) 9.85565 0.331107
\(887\) −16.2310 −0.544985 −0.272492 0.962158i \(-0.587848\pi\)
−0.272492 + 0.962158i \(0.587848\pi\)
\(888\) 6.28857 0.211031
\(889\) 9.62881 0.322940
\(890\) −0.668698 −0.0224148
\(891\) −38.5184 −1.29041
\(892\) 4.31054 0.144327
\(893\) 14.0119 0.468892
\(894\) 94.9479 3.17553
\(895\) 2.81915 0.0942339
\(896\) −21.0124 −0.701975
\(897\) 0 0
\(898\) 6.56075 0.218935
\(899\) 8.40223 0.280230
\(900\) −19.4250 −0.647499
\(901\) −26.8851 −0.895671
\(902\) 1.41581 0.0471413
\(903\) 26.1822 0.871289
\(904\) −14.6109 −0.485951
\(905\) −9.34220 −0.310545
\(906\) 2.01500 0.0669440
\(907\) 40.6192 1.34874 0.674369 0.738394i \(-0.264416\pi\)
0.674369 + 0.738394i \(0.264416\pi\)
\(908\) −4.21008 −0.139716
\(909\) −18.7080 −0.620507
\(910\) 5.07118 0.168108
\(911\) −53.3187 −1.76653 −0.883263 0.468878i \(-0.844659\pi\)
−0.883263 + 0.468878i \(0.844659\pi\)
\(912\) −57.8398 −1.91527
\(913\) 8.73373 0.289044
\(914\) 19.8122 0.655329
\(915\) −72.5189 −2.39740
\(916\) −13.6563 −0.451216
\(917\) 19.6281 0.648177
\(918\) −93.0831 −3.07220
\(919\) 8.18610 0.270035 0.135017 0.990843i \(-0.456891\pi\)
0.135017 + 0.990843i \(0.456891\pi\)
\(920\) 0 0
\(921\) −58.1320 −1.91552
\(922\) −2.99692 −0.0986982
\(923\) −20.0625 −0.660364
\(924\) −4.27602 −0.140671
\(925\) −2.62987 −0.0864697
\(926\) −30.6456 −1.00708
\(927\) 7.15123 0.234877
\(928\) 27.6209 0.906702
\(929\) 47.1259 1.54615 0.773075 0.634315i \(-0.218718\pi\)
0.773075 + 0.634315i \(0.218718\pi\)
\(930\) −10.6821 −0.350281
\(931\) −15.3423 −0.502824
\(932\) −4.05367 −0.132783
\(933\) 77.0733 2.52327
\(934\) 12.7033 0.415666
\(935\) −4.30508 −0.140791
\(936\) −22.6042 −0.738842
\(937\) 14.4769 0.472939 0.236470 0.971639i \(-0.424010\pi\)
0.236470 + 0.971639i \(0.424010\pi\)
\(938\) 38.4912 1.25678
\(939\) 46.5555 1.51928
\(940\) 4.70758 0.153544
\(941\) 28.7201 0.936247 0.468124 0.883663i \(-0.344930\pi\)
0.468124 + 0.883663i \(0.344930\pi\)
\(942\) −4.53660 −0.147810
\(943\) 0 0
\(944\) 36.3688 1.18371
\(945\) 43.8232 1.42557
\(946\) 8.08756 0.262949
\(947\) −11.7718 −0.382531 −0.191266 0.981538i \(-0.561259\pi\)
−0.191266 + 0.981538i \(0.561259\pi\)
\(948\) 14.3551 0.466234
\(949\) −15.8117 −0.513268
\(950\) 16.4708 0.534384
\(951\) −0.468789 −0.0152015
\(952\) 9.48509 0.307413
\(953\) 11.3022 0.366114 0.183057 0.983102i \(-0.441401\pi\)
0.183057 + 0.983102i \(0.441401\pi\)
\(954\) 130.194 4.21517
\(955\) −4.07649 −0.131912
\(956\) −16.1971 −0.523852
\(957\) −22.1489 −0.715971
\(958\) −2.24619 −0.0725711
\(959\) −2.30937 −0.0745735
\(960\) 14.0383 0.453083
\(961\) −29.3372 −0.946361
\(962\) 2.00086 0.0645105
\(963\) 160.180 5.16173
\(964\) 15.3040 0.492908
\(965\) 7.87275 0.253433
\(966\) 0 0
\(967\) 33.4043 1.07421 0.537105 0.843516i \(-0.319518\pi\)
0.537105 + 0.843516i \(0.319518\pi\)
\(968\) 2.02022 0.0649322
\(969\) 34.4397 1.10636
\(970\) 32.1914 1.03360
\(971\) −51.8713 −1.66463 −0.832314 0.554304i \(-0.812984\pi\)
−0.832314 + 0.554304i \(0.812984\pi\)
\(972\) 58.7374 1.88400
\(973\) −15.5500 −0.498510
\(974\) 5.81786 0.186416
\(975\) 12.7681 0.408907
\(976\) 72.4799 2.32002
\(977\) −31.1592 −0.996870 −0.498435 0.866927i \(-0.666092\pi\)
−0.498435 + 0.866927i \(0.666092\pi\)
\(978\) −87.9269 −2.81159
\(979\) −0.274393 −0.00876963
\(980\) −5.15454 −0.164656
\(981\) 167.017 5.33246
\(982\) 42.1480 1.34500
\(983\) 3.63587 0.115966 0.0579831 0.998318i \(-0.481533\pi\)
0.0579831 + 0.998318i \(0.481533\pi\)
\(984\) 5.82005 0.185536
\(985\) 7.71680 0.245878
\(986\) −32.1223 −1.02298
\(987\) 22.0719 0.702558
\(988\) −3.55047 −0.112956
\(989\) 0 0
\(990\) 20.8478 0.662587
\(991\) 26.7482 0.849684 0.424842 0.905267i \(-0.360330\pi\)
0.424842 + 0.905267i \(0.360330\pi\)
\(992\) 5.46623 0.173553
\(993\) −6.78933 −0.215453
\(994\) −40.7675 −1.29307
\(995\) −15.0870 −0.478289
\(996\) −23.4734 −0.743783
\(997\) 57.0396 1.80646 0.903232 0.429153i \(-0.141188\pi\)
0.903232 + 0.429153i \(0.141188\pi\)
\(998\) 26.3347 0.833611
\(999\) 17.2907 0.547053
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5819.2.a.t.1.13 60
23.7 odd 22 253.2.i.b.210.10 yes 120
23.10 odd 22 253.2.i.b.100.10 120
23.22 odd 2 5819.2.a.u.1.13 60
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
253.2.i.b.100.10 120 23.10 odd 22
253.2.i.b.210.10 yes 120 23.7 odd 22
5819.2.a.t.1.13 60 1.1 even 1 trivial
5819.2.a.u.1.13 60 23.22 odd 2