Properties

Label 5819.2.a.o.1.13
Level $5819$
Weight $2$
Character 5819.1
Self dual yes
Analytic conductor $46.465$
Analytic rank $0$
Dimension $18$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5819,2,Mod(1,5819)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5819, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5819.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5819 = 11 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5819.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,2,-2,18,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.4649489362\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 2 x^{17} - 25 x^{16} + 48 x^{15} + 251 x^{14} - 460 x^{13} - 1295 x^{12} + 2248 x^{11} + \cdots - 39 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.13
Root \(1.11676\) of defining polynomial
Character \(\chi\) \(=\) 5819.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.11676 q^{2} -0.0440645 q^{3} -0.752841 q^{4} -0.262759 q^{5} -0.0492096 q^{6} -1.32879 q^{7} -3.07427 q^{8} -2.99806 q^{9} -0.293440 q^{10} -1.00000 q^{11} +0.0331736 q^{12} -2.67442 q^{13} -1.48394 q^{14} +0.0115784 q^{15} -1.92755 q^{16} +0.0811822 q^{17} -3.34812 q^{18} -8.19886 q^{19} +0.197816 q^{20} +0.0585523 q^{21} -1.11676 q^{22} +0.135466 q^{24} -4.93096 q^{25} -2.98669 q^{26} +0.264301 q^{27} +1.00037 q^{28} +4.62889 q^{29} +0.0129303 q^{30} +4.03031 q^{31} +3.99593 q^{32} +0.0440645 q^{33} +0.0906612 q^{34} +0.349151 q^{35} +2.25706 q^{36} -3.78201 q^{37} -9.15618 q^{38} +0.117847 q^{39} +0.807793 q^{40} -2.12797 q^{41} +0.0653890 q^{42} +9.45988 q^{43} +0.752841 q^{44} +0.787768 q^{45} +10.9428 q^{47} +0.0849364 q^{48} -5.23433 q^{49} -5.50671 q^{50} -0.00357725 q^{51} +2.01341 q^{52} +5.72549 q^{53} +0.295162 q^{54} +0.262759 q^{55} +4.08505 q^{56} +0.361278 q^{57} +5.16937 q^{58} -9.25403 q^{59} -0.00871666 q^{60} -2.95777 q^{61} +4.50090 q^{62} +3.98378 q^{63} +8.31760 q^{64} +0.702728 q^{65} +0.0492096 q^{66} +4.10232 q^{67} -0.0611173 q^{68} +0.389919 q^{70} -13.9892 q^{71} +9.21684 q^{72} -10.2763 q^{73} -4.22361 q^{74} +0.217280 q^{75} +6.17244 q^{76} +1.32879 q^{77} +0.131607 q^{78} +9.53548 q^{79} +0.506481 q^{80} +8.98253 q^{81} -2.37644 q^{82} +14.3372 q^{83} -0.0440806 q^{84} -0.0213314 q^{85} +10.5644 q^{86} -0.203969 q^{87} +3.07427 q^{88} +5.34322 q^{89} +0.879750 q^{90} +3.55373 q^{91} -0.177594 q^{93} +12.2205 q^{94} +2.15433 q^{95} -0.176078 q^{96} +7.59324 q^{97} -5.84550 q^{98} +2.99806 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 2 q^{2} - 2 q^{3} + 18 q^{4} + 8 q^{5} - 6 q^{6} + 10 q^{7} + 6 q^{8} + 16 q^{9} + 12 q^{10} - 18 q^{11} + 10 q^{12} + 28 q^{14} + 8 q^{15} + 26 q^{16} - 20 q^{18} + 16 q^{19} + 40 q^{20} + 12 q^{21}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.11676 0.789670 0.394835 0.918752i \(-0.370802\pi\)
0.394835 + 0.918752i \(0.370802\pi\)
\(3\) −0.0440645 −0.0254406 −0.0127203 0.999919i \(-0.504049\pi\)
−0.0127203 + 0.999919i \(0.504049\pi\)
\(4\) −0.752841 −0.376421
\(5\) −0.262759 −0.117510 −0.0587548 0.998272i \(-0.518713\pi\)
−0.0587548 + 0.998272i \(0.518713\pi\)
\(6\) −0.0492096 −0.0200897
\(7\) −1.32879 −0.502234 −0.251117 0.967957i \(-0.580798\pi\)
−0.251117 + 0.967957i \(0.580798\pi\)
\(8\) −3.07427 −1.08692
\(9\) −2.99806 −0.999353
\(10\) −0.293440 −0.0927938
\(11\) −1.00000 −0.301511
\(12\) 0.0331736 0.00957638
\(13\) −2.67442 −0.741750 −0.370875 0.928683i \(-0.620942\pi\)
−0.370875 + 0.928683i \(0.620942\pi\)
\(14\) −1.48394 −0.396599
\(15\) 0.0115784 0.00298952
\(16\) −1.92755 −0.481887
\(17\) 0.0811822 0.0196896 0.00984479 0.999952i \(-0.496866\pi\)
0.00984479 + 0.999952i \(0.496866\pi\)
\(18\) −3.34812 −0.789159
\(19\) −8.19886 −1.88095 −0.940473 0.339867i \(-0.889618\pi\)
−0.940473 + 0.339867i \(0.889618\pi\)
\(20\) 0.197816 0.0442330
\(21\) 0.0585523 0.0127772
\(22\) −1.11676 −0.238095
\(23\) 0 0
\(24\) 0.135466 0.0276519
\(25\) −4.93096 −0.986192
\(26\) −2.98669 −0.585738
\(27\) 0.264301 0.0508648
\(28\) 1.00037 0.189051
\(29\) 4.62889 0.859562 0.429781 0.902933i \(-0.358591\pi\)
0.429781 + 0.902933i \(0.358591\pi\)
\(30\) 0.0129303 0.00236073
\(31\) 4.03031 0.723865 0.361933 0.932204i \(-0.382117\pi\)
0.361933 + 0.932204i \(0.382117\pi\)
\(32\) 3.99593 0.706387
\(33\) 0.0440645 0.00767064
\(34\) 0.0906612 0.0155483
\(35\) 0.349151 0.0590173
\(36\) 2.25706 0.376177
\(37\) −3.78201 −0.621759 −0.310879 0.950449i \(-0.600624\pi\)
−0.310879 + 0.950449i \(0.600624\pi\)
\(38\) −9.15618 −1.48533
\(39\) 0.117847 0.0188706
\(40\) 0.807793 0.127723
\(41\) −2.12797 −0.332334 −0.166167 0.986098i \(-0.553139\pi\)
−0.166167 + 0.986098i \(0.553139\pi\)
\(42\) 0.0653890 0.0100897
\(43\) 9.45988 1.44262 0.721309 0.692613i \(-0.243541\pi\)
0.721309 + 0.692613i \(0.243541\pi\)
\(44\) 0.752841 0.113495
\(45\) 0.787768 0.117434
\(46\) 0 0
\(47\) 10.9428 1.59617 0.798086 0.602543i \(-0.205846\pi\)
0.798086 + 0.602543i \(0.205846\pi\)
\(48\) 0.0849364 0.0122595
\(49\) −5.23433 −0.747761
\(50\) −5.50671 −0.778766
\(51\) −0.00357725 −0.000500915 0
\(52\) 2.01341 0.279210
\(53\) 5.72549 0.786456 0.393228 0.919441i \(-0.371358\pi\)
0.393228 + 0.919441i \(0.371358\pi\)
\(54\) 0.295162 0.0401664
\(55\) 0.262759 0.0354305
\(56\) 4.08505 0.545888
\(57\) 0.361278 0.0478525
\(58\) 5.16937 0.678771
\(59\) −9.25403 −1.20477 −0.602386 0.798205i \(-0.705783\pi\)
−0.602386 + 0.798205i \(0.705783\pi\)
\(60\) −0.00871666 −0.00112532
\(61\) −2.95777 −0.378703 −0.189352 0.981909i \(-0.560639\pi\)
−0.189352 + 0.981909i \(0.560639\pi\)
\(62\) 4.50090 0.571615
\(63\) 3.98378 0.501909
\(64\) 8.31760 1.03970
\(65\) 0.702728 0.0871627
\(66\) 0.0492096 0.00605728
\(67\) 4.10232 0.501178 0.250589 0.968094i \(-0.419376\pi\)
0.250589 + 0.968094i \(0.419376\pi\)
\(68\) −0.0611173 −0.00741156
\(69\) 0 0
\(70\) 0.389919 0.0466042
\(71\) −13.9892 −1.66022 −0.830108 0.557603i \(-0.811721\pi\)
−0.830108 + 0.557603i \(0.811721\pi\)
\(72\) 9.21684 1.08622
\(73\) −10.2763 −1.20275 −0.601377 0.798965i \(-0.705381\pi\)
−0.601377 + 0.798965i \(0.705381\pi\)
\(74\) −4.22361 −0.490985
\(75\) 0.217280 0.0250893
\(76\) 6.17244 0.708027
\(77\) 1.32879 0.151429
\(78\) 0.131607 0.0149016
\(79\) 9.53548 1.07283 0.536413 0.843956i \(-0.319779\pi\)
0.536413 + 0.843956i \(0.319779\pi\)
\(80\) 0.506481 0.0566263
\(81\) 8.98253 0.998059
\(82\) −2.37644 −0.262434
\(83\) 14.3372 1.57372 0.786858 0.617134i \(-0.211707\pi\)
0.786858 + 0.617134i \(0.211707\pi\)
\(84\) −0.0440806 −0.00480959
\(85\) −0.0213314 −0.00231371
\(86\) 10.5644 1.13919
\(87\) −0.203969 −0.0218678
\(88\) 3.07427 0.327718
\(89\) 5.34322 0.566380 0.283190 0.959064i \(-0.408607\pi\)
0.283190 + 0.959064i \(0.408607\pi\)
\(90\) 0.879750 0.0927338
\(91\) 3.55373 0.372532
\(92\) 0 0
\(93\) −0.177594 −0.0184156
\(94\) 12.2205 1.26045
\(95\) 2.15433 0.221029
\(96\) −0.176078 −0.0179709
\(97\) 7.59324 0.770976 0.385488 0.922713i \(-0.374033\pi\)
0.385488 + 0.922713i \(0.374033\pi\)
\(98\) −5.84550 −0.590485
\(99\) 2.99806 0.301316
\(100\) 3.71223 0.371223
\(101\) −1.72990 −0.172132 −0.0860659 0.996289i \(-0.527430\pi\)
−0.0860659 + 0.996289i \(0.527430\pi\)
\(102\) −0.00399494 −0.000395558 0
\(103\) 3.85283 0.379631 0.189815 0.981820i \(-0.439211\pi\)
0.189815 + 0.981820i \(0.439211\pi\)
\(104\) 8.22188 0.806222
\(105\) −0.0153852 −0.00150144
\(106\) 6.39401 0.621041
\(107\) 4.58455 0.443205 0.221603 0.975137i \(-0.428871\pi\)
0.221603 + 0.975137i \(0.428871\pi\)
\(108\) −0.198977 −0.0191466
\(109\) −10.7870 −1.03321 −0.516604 0.856224i \(-0.672804\pi\)
−0.516604 + 0.856224i \(0.672804\pi\)
\(110\) 0.293440 0.0279784
\(111\) 0.166652 0.0158179
\(112\) 2.56130 0.242020
\(113\) 16.0804 1.51271 0.756357 0.654160i \(-0.226978\pi\)
0.756357 + 0.654160i \(0.226978\pi\)
\(114\) 0.403462 0.0377877
\(115\) 0 0
\(116\) −3.48482 −0.323557
\(117\) 8.01806 0.741270
\(118\) −10.3346 −0.951373
\(119\) −0.107874 −0.00988878
\(120\) −0.0355950 −0.00324936
\(121\) 1.00000 0.0909091
\(122\) −3.30313 −0.299051
\(123\) 0.0937681 0.00845479
\(124\) −3.03418 −0.272478
\(125\) 2.60945 0.233396
\(126\) 4.44894 0.396343
\(127\) −14.5780 −1.29359 −0.646793 0.762666i \(-0.723890\pi\)
−0.646793 + 0.762666i \(0.723890\pi\)
\(128\) 1.29693 0.114633
\(129\) −0.416845 −0.0367011
\(130\) 0.784781 0.0688298
\(131\) 4.61363 0.403095 0.201547 0.979479i \(-0.435403\pi\)
0.201547 + 0.979479i \(0.435403\pi\)
\(132\) −0.0331736 −0.00288739
\(133\) 10.8945 0.944676
\(134\) 4.58132 0.395766
\(135\) −0.0694477 −0.00597710
\(136\) −0.249576 −0.0214010
\(137\) 0.124793 0.0106618 0.00533088 0.999986i \(-0.498303\pi\)
0.00533088 + 0.999986i \(0.498303\pi\)
\(138\) 0 0
\(139\) −6.83298 −0.579566 −0.289783 0.957092i \(-0.593583\pi\)
−0.289783 + 0.957092i \(0.593583\pi\)
\(140\) −0.262855 −0.0222153
\(141\) −0.482189 −0.0406077
\(142\) −15.6226 −1.31102
\(143\) 2.67442 0.223646
\(144\) 5.77890 0.481575
\(145\) −1.21628 −0.101007
\(146\) −11.4762 −0.949780
\(147\) 0.230648 0.0190235
\(148\) 2.84725 0.234043
\(149\) −12.3157 −1.00894 −0.504469 0.863430i \(-0.668312\pi\)
−0.504469 + 0.863430i \(0.668312\pi\)
\(150\) 0.242650 0.0198123
\(151\) −8.78885 −0.715226 −0.357613 0.933870i \(-0.616409\pi\)
−0.357613 + 0.933870i \(0.616409\pi\)
\(152\) 25.2055 2.04444
\(153\) −0.243389 −0.0196768
\(154\) 1.48394 0.119579
\(155\) −1.05900 −0.0850611
\(156\) −0.0887200 −0.00710328
\(157\) −23.5294 −1.87785 −0.938924 0.344124i \(-0.888176\pi\)
−0.938924 + 0.344124i \(0.888176\pi\)
\(158\) 10.6489 0.847179
\(159\) −0.252291 −0.0200080
\(160\) −1.04997 −0.0830072
\(161\) 0 0
\(162\) 10.0314 0.788137
\(163\) 16.1005 1.26109 0.630544 0.776154i \(-0.282832\pi\)
0.630544 + 0.776154i \(0.282832\pi\)
\(164\) 1.60203 0.125097
\(165\) −0.0115784 −0.000901374 0
\(166\) 16.0113 1.24272
\(167\) 12.0537 0.932747 0.466373 0.884588i \(-0.345560\pi\)
0.466373 + 0.884588i \(0.345560\pi\)
\(168\) −0.180006 −0.0138877
\(169\) −5.84749 −0.449807
\(170\) −0.0238221 −0.00182707
\(171\) 24.5807 1.87973
\(172\) −7.12179 −0.543031
\(173\) 23.0882 1.75536 0.877681 0.479246i \(-0.159090\pi\)
0.877681 + 0.479246i \(0.159090\pi\)
\(174\) −0.227786 −0.0172684
\(175\) 6.55219 0.495299
\(176\) 1.92755 0.145294
\(177\) 0.407774 0.0306502
\(178\) 5.96710 0.447253
\(179\) −17.4438 −1.30381 −0.651907 0.758299i \(-0.726031\pi\)
−0.651907 + 0.758299i \(0.726031\pi\)
\(180\) −0.593064 −0.0442044
\(181\) 4.99121 0.370994 0.185497 0.982645i \(-0.440611\pi\)
0.185497 + 0.982645i \(0.440611\pi\)
\(182\) 3.96867 0.294178
\(183\) 0.130333 0.00963446
\(184\) 0 0
\(185\) 0.993759 0.0730626
\(186\) −0.198330 −0.0145422
\(187\) −0.0811822 −0.00593663
\(188\) −8.23820 −0.600832
\(189\) −0.351200 −0.0255461
\(190\) 2.40587 0.174540
\(191\) 12.9393 0.936257 0.468128 0.883660i \(-0.344928\pi\)
0.468128 + 0.883660i \(0.344928\pi\)
\(192\) −0.366511 −0.0264506
\(193\) −16.1428 −1.16199 −0.580993 0.813908i \(-0.697336\pi\)
−0.580993 + 0.813908i \(0.697336\pi\)
\(194\) 8.47984 0.608817
\(195\) −0.0309654 −0.00221748
\(196\) 3.94062 0.281473
\(197\) −5.55486 −0.395767 −0.197884 0.980226i \(-0.563407\pi\)
−0.197884 + 0.980226i \(0.563407\pi\)
\(198\) 3.34812 0.237940
\(199\) −20.7314 −1.46961 −0.734806 0.678277i \(-0.762727\pi\)
−0.734806 + 0.678277i \(0.762727\pi\)
\(200\) 15.1591 1.07191
\(201\) −0.180767 −0.0127503
\(202\) −1.93189 −0.135927
\(203\) −6.15080 −0.431702
\(204\) 0.00269310 0.000188555 0
\(205\) 0.559145 0.0390524
\(206\) 4.30270 0.299783
\(207\) 0 0
\(208\) 5.15507 0.357440
\(209\) 8.19886 0.567127
\(210\) −0.0171816 −0.00118564
\(211\) −20.5192 −1.41260 −0.706300 0.707913i \(-0.749637\pi\)
−0.706300 + 0.707913i \(0.749637\pi\)
\(212\) −4.31038 −0.296038
\(213\) 0.616428 0.0422369
\(214\) 5.11986 0.349986
\(215\) −2.48567 −0.169521
\(216\) −0.812534 −0.0552859
\(217\) −5.35542 −0.363550
\(218\) −12.0465 −0.815895
\(219\) 0.452822 0.0305988
\(220\) −0.197816 −0.0133368
\(221\) −0.217115 −0.0146047
\(222\) 0.186111 0.0124910
\(223\) 0.230557 0.0154392 0.00771961 0.999970i \(-0.497543\pi\)
0.00771961 + 0.999970i \(0.497543\pi\)
\(224\) −5.30973 −0.354772
\(225\) 14.7833 0.985553
\(226\) 17.9579 1.19454
\(227\) 20.3403 1.35004 0.675018 0.737801i \(-0.264136\pi\)
0.675018 + 0.737801i \(0.264136\pi\)
\(228\) −0.271985 −0.0180127
\(229\) 1.27110 0.0839966 0.0419983 0.999118i \(-0.486628\pi\)
0.0419983 + 0.999118i \(0.486628\pi\)
\(230\) 0 0
\(231\) −0.0585523 −0.00385246
\(232\) −14.2304 −0.934274
\(233\) 12.2822 0.804633 0.402317 0.915501i \(-0.368205\pi\)
0.402317 + 0.915501i \(0.368205\pi\)
\(234\) 8.95427 0.585359
\(235\) −2.87533 −0.187566
\(236\) 6.96681 0.453501
\(237\) −0.420176 −0.0272934
\(238\) −0.120469 −0.00780887
\(239\) −12.9587 −0.838227 −0.419113 0.907934i \(-0.637659\pi\)
−0.419113 + 0.907934i \(0.637659\pi\)
\(240\) −0.0223178 −0.00144061
\(241\) 24.0336 1.54814 0.774069 0.633102i \(-0.218218\pi\)
0.774069 + 0.633102i \(0.218218\pi\)
\(242\) 1.11676 0.0717882
\(243\) −1.18871 −0.0762561
\(244\) 2.22673 0.142552
\(245\) 1.37537 0.0878690
\(246\) 0.104717 0.00667649
\(247\) 21.9272 1.39519
\(248\) −12.3903 −0.786782
\(249\) −0.631763 −0.0400363
\(250\) 2.91414 0.184306
\(251\) −16.9027 −1.06689 −0.533445 0.845835i \(-0.679103\pi\)
−0.533445 + 0.845835i \(0.679103\pi\)
\(252\) −2.99915 −0.188929
\(253\) 0 0
\(254\) −16.2801 −1.02151
\(255\) 0.000939956 0 5.88623e−5 0
\(256\) −15.1868 −0.949177
\(257\) −0.200323 −0.0124958 −0.00624789 0.999980i \(-0.501989\pi\)
−0.00624789 + 0.999980i \(0.501989\pi\)
\(258\) −0.465517 −0.0289818
\(259\) 5.02549 0.312269
\(260\) −0.529043 −0.0328098
\(261\) −13.8777 −0.859006
\(262\) 5.15233 0.318312
\(263\) 7.48713 0.461676 0.230838 0.972992i \(-0.425853\pi\)
0.230838 + 0.972992i \(0.425853\pi\)
\(264\) −0.135466 −0.00833737
\(265\) −1.50443 −0.0924161
\(266\) 12.1666 0.745983
\(267\) −0.235446 −0.0144091
\(268\) −3.08840 −0.188654
\(269\) 8.80913 0.537102 0.268551 0.963265i \(-0.413455\pi\)
0.268551 + 0.963265i \(0.413455\pi\)
\(270\) −0.0775566 −0.00471994
\(271\) 24.9118 1.51328 0.756641 0.653831i \(-0.226839\pi\)
0.756641 + 0.653831i \(0.226839\pi\)
\(272\) −0.156483 −0.00948815
\(273\) −0.156593 −0.00947746
\(274\) 0.139364 0.00841928
\(275\) 4.93096 0.297348
\(276\) 0 0
\(277\) 23.6530 1.42117 0.710586 0.703610i \(-0.248430\pi\)
0.710586 + 0.703610i \(0.248430\pi\)
\(278\) −7.63082 −0.457666
\(279\) −12.0831 −0.723397
\(280\) −1.07339 −0.0641470
\(281\) 19.4381 1.15958 0.579789 0.814766i \(-0.303135\pi\)
0.579789 + 0.814766i \(0.303135\pi\)
\(282\) −0.538491 −0.0320667
\(283\) 21.3780 1.27079 0.635396 0.772187i \(-0.280837\pi\)
0.635396 + 0.772187i \(0.280837\pi\)
\(284\) 10.5317 0.624939
\(285\) −0.0949293 −0.00562313
\(286\) 2.98669 0.176607
\(287\) 2.82762 0.166909
\(288\) −11.9800 −0.705930
\(289\) −16.9934 −0.999612
\(290\) −1.35830 −0.0797621
\(291\) −0.334592 −0.0196141
\(292\) 7.73645 0.452742
\(293\) 6.79202 0.396794 0.198397 0.980122i \(-0.436426\pi\)
0.198397 + 0.980122i \(0.436426\pi\)
\(294\) 0.257579 0.0150223
\(295\) 2.43158 0.141572
\(296\) 11.6269 0.675801
\(297\) −0.264301 −0.0153363
\(298\) −13.7537 −0.796729
\(299\) 0 0
\(300\) −0.163577 −0.00944415
\(301\) −12.5702 −0.724532
\(302\) −9.81506 −0.564793
\(303\) 0.0762273 0.00437915
\(304\) 15.8037 0.906404
\(305\) 0.777181 0.0445013
\(306\) −0.271808 −0.0155382
\(307\) −3.25128 −0.185560 −0.0927801 0.995687i \(-0.529575\pi\)
−0.0927801 + 0.995687i \(0.529575\pi\)
\(308\) −1.00037 −0.0570011
\(309\) −0.169773 −0.00965805
\(310\) −1.18265 −0.0671702
\(311\) 12.4062 0.703490 0.351745 0.936096i \(-0.385588\pi\)
0.351745 + 0.936096i \(0.385588\pi\)
\(312\) −0.362293 −0.0205108
\(313\) −10.7697 −0.608740 −0.304370 0.952554i \(-0.598446\pi\)
−0.304370 + 0.952554i \(0.598446\pi\)
\(314\) −26.2767 −1.48288
\(315\) −1.04678 −0.0589791
\(316\) −7.17870 −0.403834
\(317\) 20.1758 1.13319 0.566593 0.823998i \(-0.308261\pi\)
0.566593 + 0.823998i \(0.308261\pi\)
\(318\) −0.281749 −0.0157997
\(319\) −4.62889 −0.259168
\(320\) −2.18553 −0.122175
\(321\) −0.202016 −0.0112754
\(322\) 0 0
\(323\) −0.665601 −0.0370350
\(324\) −6.76242 −0.375690
\(325\) 13.1874 0.731508
\(326\) 17.9804 0.995844
\(327\) 0.475324 0.0262855
\(328\) 6.54197 0.361220
\(329\) −14.5407 −0.801652
\(330\) −0.0129303 −0.000711788 0
\(331\) −3.05803 −0.168085 −0.0840424 0.996462i \(-0.526783\pi\)
−0.0840424 + 0.996462i \(0.526783\pi\)
\(332\) −10.7937 −0.592379
\(333\) 11.3387 0.621357
\(334\) 13.4612 0.736563
\(335\) −1.07792 −0.0588932
\(336\) −0.112862 −0.00615715
\(337\) 2.81357 0.153265 0.0766325 0.997059i \(-0.475583\pi\)
0.0766325 + 0.997059i \(0.475583\pi\)
\(338\) −6.53026 −0.355199
\(339\) −0.708573 −0.0384844
\(340\) 0.0160591 0.000870929 0
\(341\) −4.03031 −0.218254
\(342\) 27.4508 1.48437
\(343\) 16.2568 0.877785
\(344\) −29.0822 −1.56801
\(345\) 0 0
\(346\) 25.7840 1.38616
\(347\) 4.12654 0.221524 0.110762 0.993847i \(-0.464671\pi\)
0.110762 + 0.993847i \(0.464671\pi\)
\(348\) 0.153557 0.00823150
\(349\) 11.4667 0.613798 0.306899 0.951742i \(-0.400709\pi\)
0.306899 + 0.951742i \(0.400709\pi\)
\(350\) 7.31724 0.391123
\(351\) −0.706852 −0.0377290
\(352\) −3.99593 −0.212984
\(353\) −0.262450 −0.0139688 −0.00698439 0.999976i \(-0.502223\pi\)
−0.00698439 + 0.999976i \(0.502223\pi\)
\(354\) 0.455387 0.0242035
\(355\) 3.67580 0.195091
\(356\) −4.02259 −0.213197
\(357\) 0.00475340 0.000251577 0
\(358\) −19.4806 −1.02958
\(359\) 1.39009 0.0733661 0.0366830 0.999327i \(-0.488321\pi\)
0.0366830 + 0.999327i \(0.488321\pi\)
\(360\) −2.42181 −0.127641
\(361\) 48.2213 2.53796
\(362\) 5.57400 0.292963
\(363\) −0.0440645 −0.00231279
\(364\) −2.67539 −0.140229
\(365\) 2.70020 0.141335
\(366\) 0.145551 0.00760805
\(367\) −12.3611 −0.645243 −0.322621 0.946528i \(-0.604564\pi\)
−0.322621 + 0.946528i \(0.604564\pi\)
\(368\) 0 0
\(369\) 6.37979 0.332119
\(370\) 1.10979 0.0576954
\(371\) −7.60795 −0.394985
\(372\) 0.133700 0.00693201
\(373\) −13.9136 −0.720421 −0.360211 0.932871i \(-0.617295\pi\)
−0.360211 + 0.932871i \(0.617295\pi\)
\(374\) −0.0906612 −0.00468798
\(375\) −0.114984 −0.00593776
\(376\) −33.6412 −1.73491
\(377\) −12.3796 −0.637580
\(378\) −0.392207 −0.0201730
\(379\) 16.3533 0.840014 0.420007 0.907521i \(-0.362028\pi\)
0.420007 + 0.907521i \(0.362028\pi\)
\(380\) −1.62187 −0.0832000
\(381\) 0.642371 0.0329097
\(382\) 14.4502 0.739334
\(383\) −13.0099 −0.664776 −0.332388 0.943143i \(-0.607854\pi\)
−0.332388 + 0.943143i \(0.607854\pi\)
\(384\) −0.0571485 −0.00291635
\(385\) −0.349151 −0.0177944
\(386\) −18.0277 −0.917587
\(387\) −28.3613 −1.44168
\(388\) −5.71650 −0.290211
\(389\) 34.2589 1.73700 0.868498 0.495692i \(-0.165086\pi\)
0.868498 + 0.495692i \(0.165086\pi\)
\(390\) −0.0345810 −0.00175108
\(391\) 0 0
\(392\) 16.0917 0.812755
\(393\) −0.203297 −0.0102550
\(394\) −6.20346 −0.312526
\(395\) −2.50554 −0.126067
\(396\) −2.25706 −0.113422
\(397\) −17.3976 −0.873160 −0.436580 0.899665i \(-0.643810\pi\)
−0.436580 + 0.899665i \(0.643810\pi\)
\(398\) −23.1521 −1.16051
\(399\) −0.480062 −0.0240332
\(400\) 9.50466 0.475233
\(401\) −24.3204 −1.21450 −0.607250 0.794511i \(-0.707727\pi\)
−0.607250 + 0.794511i \(0.707727\pi\)
\(402\) −0.201873 −0.0100685
\(403\) −10.7787 −0.536927
\(404\) 1.30234 0.0647940
\(405\) −2.36024 −0.117281
\(406\) −6.86899 −0.340902
\(407\) 3.78201 0.187467
\(408\) 0.0109974 0.000544454 0
\(409\) −27.3654 −1.35313 −0.676567 0.736381i \(-0.736533\pi\)
−0.676567 + 0.736381i \(0.736533\pi\)
\(410\) 0.624433 0.0308385
\(411\) −0.00549893 −0.000271242 0
\(412\) −2.90057 −0.142901
\(413\) 12.2966 0.605078
\(414\) 0 0
\(415\) −3.76724 −0.184927
\(416\) −10.6868 −0.523962
\(417\) 0.301092 0.0147445
\(418\) 9.15618 0.447843
\(419\) −23.7978 −1.16260 −0.581298 0.813690i \(-0.697455\pi\)
−0.581298 + 0.813690i \(0.697455\pi\)
\(420\) 0.0115826 0.000565172 0
\(421\) −2.32520 −0.113323 −0.0566615 0.998393i \(-0.518046\pi\)
−0.0566615 + 0.998393i \(0.518046\pi\)
\(422\) −22.9151 −1.11549
\(423\) −32.8072 −1.59514
\(424\) −17.6017 −0.854814
\(425\) −0.400306 −0.0194177
\(426\) 0.688404 0.0333533
\(427\) 3.93024 0.190198
\(428\) −3.45144 −0.166832
\(429\) −0.117847 −0.00568970
\(430\) −2.77591 −0.133866
\(431\) −13.3904 −0.644995 −0.322498 0.946570i \(-0.604522\pi\)
−0.322498 + 0.946570i \(0.604522\pi\)
\(432\) −0.509454 −0.0245111
\(433\) 17.8105 0.855919 0.427959 0.903798i \(-0.359233\pi\)
0.427959 + 0.903798i \(0.359233\pi\)
\(434\) −5.98074 −0.287084
\(435\) 0.0535949 0.00256968
\(436\) 8.12091 0.388921
\(437\) 0 0
\(438\) 0.505694 0.0241630
\(439\) −10.9988 −0.524942 −0.262471 0.964940i \(-0.584537\pi\)
−0.262471 + 0.964940i \(0.584537\pi\)
\(440\) −0.807793 −0.0385100
\(441\) 15.6928 0.747277
\(442\) −0.242466 −0.0115329
\(443\) 11.5122 0.546960 0.273480 0.961878i \(-0.411825\pi\)
0.273480 + 0.961878i \(0.411825\pi\)
\(444\) −0.125463 −0.00595420
\(445\) −1.40398 −0.0665550
\(446\) 0.257477 0.0121919
\(447\) 0.542683 0.0256680
\(448\) −11.0523 −0.522173
\(449\) 2.11085 0.0996170 0.0498085 0.998759i \(-0.484139\pi\)
0.0498085 + 0.998759i \(0.484139\pi\)
\(450\) 16.5094 0.778262
\(451\) 2.12797 0.100202
\(452\) −12.1060 −0.569416
\(453\) 0.387276 0.0181958
\(454\) 22.7153 1.06608
\(455\) −0.933776 −0.0437761
\(456\) −1.11067 −0.0520118
\(457\) 7.10870 0.332531 0.166265 0.986081i \(-0.446829\pi\)
0.166265 + 0.986081i \(0.446829\pi\)
\(458\) 1.41952 0.0663296
\(459\) 0.0214566 0.00100151
\(460\) 0 0
\(461\) −17.5100 −0.815522 −0.407761 0.913089i \(-0.633690\pi\)
−0.407761 + 0.913089i \(0.633690\pi\)
\(462\) −0.0653890 −0.00304217
\(463\) −2.11009 −0.0980640 −0.0490320 0.998797i \(-0.515614\pi\)
−0.0490320 + 0.998797i \(0.515614\pi\)
\(464\) −8.92240 −0.414212
\(465\) 0.0466644 0.00216401
\(466\) 13.7163 0.635395
\(467\) 14.5714 0.674286 0.337143 0.941453i \(-0.390539\pi\)
0.337143 + 0.941453i \(0.390539\pi\)
\(468\) −6.03633 −0.279029
\(469\) −5.45111 −0.251709
\(470\) −3.21106 −0.148115
\(471\) 1.03681 0.0477737
\(472\) 28.4494 1.30949
\(473\) −9.45988 −0.434966
\(474\) −0.469237 −0.0215528
\(475\) 40.4282 1.85497
\(476\) 0.0812118 0.00372234
\(477\) −17.1653 −0.785947
\(478\) −14.4718 −0.661923
\(479\) 1.82354 0.0833196 0.0416598 0.999132i \(-0.486735\pi\)
0.0416598 + 0.999132i \(0.486735\pi\)
\(480\) 0.0462663 0.00211176
\(481\) 10.1147 0.461190
\(482\) 26.8398 1.22252
\(483\) 0 0
\(484\) −0.752841 −0.0342201
\(485\) −1.99519 −0.0905971
\(486\) −1.32751 −0.0602172
\(487\) −20.8231 −0.943583 −0.471792 0.881710i \(-0.656393\pi\)
−0.471792 + 0.881710i \(0.656393\pi\)
\(488\) 9.09298 0.411620
\(489\) −0.709460 −0.0320829
\(490\) 1.53596 0.0693876
\(491\) −4.09067 −0.184609 −0.0923046 0.995731i \(-0.529423\pi\)
−0.0923046 + 0.995731i \(0.529423\pi\)
\(492\) −0.0705925 −0.00318256
\(493\) 0.375783 0.0169244
\(494\) 24.4874 1.10174
\(495\) −0.787768 −0.0354075
\(496\) −7.76862 −0.348821
\(497\) 18.5887 0.833817
\(498\) −0.705529 −0.0316155
\(499\) −26.8805 −1.20334 −0.601668 0.798746i \(-0.705497\pi\)
−0.601668 + 0.798746i \(0.705497\pi\)
\(500\) −1.96450 −0.0878552
\(501\) −0.531142 −0.0237297
\(502\) −18.8763 −0.842491
\(503\) −13.8646 −0.618190 −0.309095 0.951031i \(-0.600026\pi\)
−0.309095 + 0.951031i \(0.600026\pi\)
\(504\) −12.2472 −0.545534
\(505\) 0.454548 0.0202271
\(506\) 0 0
\(507\) 0.257667 0.0114434
\(508\) 10.9749 0.486932
\(509\) 9.52468 0.422174 0.211087 0.977467i \(-0.432300\pi\)
0.211087 + 0.977467i \(0.432300\pi\)
\(510\) 0.00104971 4.64819e−5 0
\(511\) 13.6551 0.604064
\(512\) −19.5539 −0.864171
\(513\) −2.16697 −0.0956740
\(514\) −0.223713 −0.00986755
\(515\) −1.01237 −0.0446103
\(516\) 0.313818 0.0138151
\(517\) −10.9428 −0.481264
\(518\) 5.61228 0.246589
\(519\) −1.01737 −0.0446575
\(520\) −2.16038 −0.0947388
\(521\) −1.16536 −0.0510553 −0.0255276 0.999674i \(-0.508127\pi\)
−0.0255276 + 0.999674i \(0.508127\pi\)
\(522\) −15.4981 −0.678332
\(523\) −37.2747 −1.62991 −0.814954 0.579526i \(-0.803238\pi\)
−0.814954 + 0.579526i \(0.803238\pi\)
\(524\) −3.47333 −0.151733
\(525\) −0.288719 −0.0126007
\(526\) 8.36135 0.364572
\(527\) 0.327189 0.0142526
\(528\) −0.0849364 −0.00369638
\(529\) 0 0
\(530\) −1.68009 −0.0729783
\(531\) 27.7441 1.20399
\(532\) −8.20185 −0.355595
\(533\) 5.69109 0.246509
\(534\) −0.262937 −0.0113784
\(535\) −1.20463 −0.0520809
\(536\) −12.6116 −0.544740
\(537\) 0.768653 0.0331698
\(538\) 9.83771 0.424134
\(539\) 5.23433 0.225458
\(540\) 0.0522831 0.00224990
\(541\) −21.1598 −0.909729 −0.454865 0.890561i \(-0.650312\pi\)
−0.454865 + 0.890561i \(0.650312\pi\)
\(542\) 27.8205 1.19499
\(543\) −0.219935 −0.00943832
\(544\) 0.324398 0.0139085
\(545\) 2.83439 0.121412
\(546\) −0.174878 −0.00748407
\(547\) 35.2148 1.50567 0.752837 0.658207i \(-0.228685\pi\)
0.752837 + 0.658207i \(0.228685\pi\)
\(548\) −0.0939491 −0.00401331
\(549\) 8.86756 0.378458
\(550\) 5.50671 0.234807
\(551\) −37.9516 −1.61679
\(552\) 0 0
\(553\) −12.6706 −0.538810
\(554\) 26.4148 1.12226
\(555\) −0.0437895 −0.00185876
\(556\) 5.14415 0.218161
\(557\) −32.3811 −1.37203 −0.686015 0.727587i \(-0.740642\pi\)
−0.686015 + 0.727587i \(0.740642\pi\)
\(558\) −13.4940 −0.571245
\(559\) −25.2997 −1.07006
\(560\) −0.673006 −0.0284397
\(561\) 0.00357725 0.000151032 0
\(562\) 21.7077 0.915685
\(563\) 15.1392 0.638042 0.319021 0.947748i \(-0.396646\pi\)
0.319021 + 0.947748i \(0.396646\pi\)
\(564\) 0.363012 0.0152856
\(565\) −4.22527 −0.177758
\(566\) 23.8742 1.00351
\(567\) −11.9359 −0.501259
\(568\) 43.0066 1.80452
\(569\) 32.0770 1.34474 0.672370 0.740216i \(-0.265277\pi\)
0.672370 + 0.740216i \(0.265277\pi\)
\(570\) −0.106013 −0.00444042
\(571\) 31.2100 1.30610 0.653050 0.757315i \(-0.273489\pi\)
0.653050 + 0.757315i \(0.273489\pi\)
\(572\) −2.01341 −0.0841850
\(573\) −0.570165 −0.0238190
\(574\) 3.15779 0.131803
\(575\) 0 0
\(576\) −24.9366 −1.03903
\(577\) 26.5671 1.10600 0.553001 0.833181i \(-0.313483\pi\)
0.553001 + 0.833181i \(0.313483\pi\)
\(578\) −18.9776 −0.789364
\(579\) 0.711326 0.0295617
\(580\) 0.915668 0.0380210
\(581\) −19.0511 −0.790374
\(582\) −0.373660 −0.0154887
\(583\) −5.72549 −0.237125
\(584\) 31.5922 1.30730
\(585\) −2.10682 −0.0871063
\(586\) 7.58508 0.313337
\(587\) −6.53031 −0.269535 −0.134767 0.990877i \(-0.543029\pi\)
−0.134767 + 0.990877i \(0.543029\pi\)
\(588\) −0.173641 −0.00716084
\(589\) −33.0439 −1.36155
\(590\) 2.71550 0.111795
\(591\) 0.244772 0.0100686
\(592\) 7.29001 0.299618
\(593\) 47.0459 1.93194 0.965971 0.258651i \(-0.0832781\pi\)
0.965971 + 0.258651i \(0.0832781\pi\)
\(594\) −0.295162 −0.0121106
\(595\) 0.0283449 0.00116203
\(596\) 9.27174 0.379785
\(597\) 0.913520 0.0373879
\(598\) 0 0
\(599\) −30.6852 −1.25376 −0.626882 0.779114i \(-0.715669\pi\)
−0.626882 + 0.779114i \(0.715669\pi\)
\(600\) −0.667978 −0.0272701
\(601\) −10.8112 −0.440996 −0.220498 0.975387i \(-0.570768\pi\)
−0.220498 + 0.975387i \(0.570768\pi\)
\(602\) −14.0379 −0.572142
\(603\) −12.2990 −0.500854
\(604\) 6.61661 0.269226
\(605\) −0.262759 −0.0106827
\(606\) 0.0851278 0.00345808
\(607\) −9.12543 −0.370390 −0.185195 0.982702i \(-0.559292\pi\)
−0.185195 + 0.982702i \(0.559292\pi\)
\(608\) −32.7620 −1.32868
\(609\) 0.271032 0.0109828
\(610\) 0.867927 0.0351413
\(611\) −29.2656 −1.18396
\(612\) 0.183233 0.00740676
\(613\) −5.02740 −0.203055 −0.101527 0.994833i \(-0.532373\pi\)
−0.101527 + 0.994833i \(0.532373\pi\)
\(614\) −3.63090 −0.146531
\(615\) −0.0246385 −0.000993518 0
\(616\) −4.08505 −0.164591
\(617\) 39.7035 1.59840 0.799201 0.601063i \(-0.205256\pi\)
0.799201 + 0.601063i \(0.205256\pi\)
\(618\) −0.189596 −0.00762668
\(619\) 11.9841 0.481683 0.240841 0.970564i \(-0.422577\pi\)
0.240841 + 0.970564i \(0.422577\pi\)
\(620\) 0.797260 0.0320187
\(621\) 0 0
\(622\) 13.8548 0.555525
\(623\) −7.09999 −0.284455
\(624\) −0.227155 −0.00909350
\(625\) 23.9691 0.958765
\(626\) −12.0272 −0.480704
\(627\) −0.361278 −0.0144281
\(628\) 17.7139 0.706861
\(629\) −0.307032 −0.0122422
\(630\) −1.16900 −0.0465741
\(631\) 32.1027 1.27799 0.638994 0.769211i \(-0.279351\pi\)
0.638994 + 0.769211i \(0.279351\pi\)
\(632\) −29.3146 −1.16607
\(633\) 0.904168 0.0359374
\(634\) 22.5316 0.894843
\(635\) 3.83050 0.152009
\(636\) 0.189935 0.00753140
\(637\) 13.9988 0.554652
\(638\) −5.16937 −0.204657
\(639\) 41.9405 1.65914
\(640\) −0.340780 −0.0134705
\(641\) −2.21045 −0.0873077 −0.0436538 0.999047i \(-0.513900\pi\)
−0.0436538 + 0.999047i \(0.513900\pi\)
\(642\) −0.225604 −0.00890387
\(643\) −38.2964 −1.51026 −0.755131 0.655574i \(-0.772427\pi\)
−0.755131 + 0.655574i \(0.772427\pi\)
\(644\) 0 0
\(645\) 0.109530 0.00431273
\(646\) −0.743318 −0.0292455
\(647\) 20.7722 0.816639 0.408320 0.912839i \(-0.366115\pi\)
0.408320 + 0.912839i \(0.366115\pi\)
\(648\) −27.6147 −1.08481
\(649\) 9.25403 0.363252
\(650\) 14.7272 0.577650
\(651\) 0.235984 0.00924894
\(652\) −12.1211 −0.474699
\(653\) −44.9713 −1.75986 −0.879932 0.475100i \(-0.842412\pi\)
−0.879932 + 0.475100i \(0.842412\pi\)
\(654\) 0.530825 0.0207569
\(655\) −1.21227 −0.0473675
\(656\) 4.10177 0.160147
\(657\) 30.8091 1.20198
\(658\) −16.2385 −0.633041
\(659\) 20.0386 0.780592 0.390296 0.920690i \(-0.372373\pi\)
0.390296 + 0.920690i \(0.372373\pi\)
\(660\) 0.00871666 0.000339296 0
\(661\) 9.50497 0.369701 0.184850 0.982767i \(-0.440820\pi\)
0.184850 + 0.982767i \(0.440820\pi\)
\(662\) −3.41510 −0.132732
\(663\) 0.00956706 0.000371554 0
\(664\) −44.0765 −1.71050
\(665\) −2.86264 −0.111008
\(666\) 12.6626 0.490667
\(667\) 0 0
\(668\) −9.07456 −0.351105
\(669\) −0.0101594 −0.000392784 0
\(670\) −1.20378 −0.0465062
\(671\) 2.95777 0.114183
\(672\) 0.233971 0.00902562
\(673\) 8.59001 0.331120 0.165560 0.986200i \(-0.447057\pi\)
0.165560 + 0.986200i \(0.447057\pi\)
\(674\) 3.14209 0.121029
\(675\) −1.30326 −0.0501625
\(676\) 4.40223 0.169317
\(677\) −13.3716 −0.513914 −0.256957 0.966423i \(-0.582720\pi\)
−0.256957 + 0.966423i \(0.582720\pi\)
\(678\) −0.791308 −0.0303900
\(679\) −10.0898 −0.387211
\(680\) 0.0655784 0.00251482
\(681\) −0.896287 −0.0343458
\(682\) −4.50090 −0.172348
\(683\) 24.8017 0.949011 0.474505 0.880253i \(-0.342627\pi\)
0.474505 + 0.880253i \(0.342627\pi\)
\(684\) −18.5053 −0.707569
\(685\) −0.0327905 −0.00125286
\(686\) 18.1550 0.693161
\(687\) −0.0560103 −0.00213693
\(688\) −18.2344 −0.695179
\(689\) −15.3123 −0.583354
\(690\) 0 0
\(691\) 38.8702 1.47869 0.739345 0.673326i \(-0.235135\pi\)
0.739345 + 0.673326i \(0.235135\pi\)
\(692\) −17.3817 −0.660754
\(693\) −3.98378 −0.151331
\(694\) 4.60837 0.174931
\(695\) 1.79543 0.0681046
\(696\) 0.627057 0.0237685
\(697\) −0.172754 −0.00654351
\(698\) 12.8056 0.484698
\(699\) −0.541209 −0.0204704
\(700\) −4.93276 −0.186441
\(701\) 39.5309 1.49306 0.746531 0.665351i \(-0.231718\pi\)
0.746531 + 0.665351i \(0.231718\pi\)
\(702\) −0.789386 −0.0297935
\(703\) 31.0082 1.16950
\(704\) −8.31760 −0.313481
\(705\) 0.126700 0.00477179
\(706\) −0.293094 −0.0110307
\(707\) 2.29867 0.0864505
\(708\) −0.306989 −0.0115374
\(709\) 39.8304 1.49586 0.747931 0.663776i \(-0.231047\pi\)
0.747931 + 0.663776i \(0.231047\pi\)
\(710\) 4.10500 0.154058
\(711\) −28.5879 −1.07213
\(712\) −16.4265 −0.615609
\(713\) 0 0
\(714\) 0.00530842 0.000198663 0
\(715\) −0.702728 −0.0262805
\(716\) 13.1324 0.490782
\(717\) 0.571017 0.0213250
\(718\) 1.55240 0.0579350
\(719\) −51.3075 −1.91345 −0.956723 0.291001i \(-0.906012\pi\)
−0.956723 + 0.291001i \(0.906012\pi\)
\(720\) −1.51846 −0.0565897
\(721\) −5.11959 −0.190664
\(722\) 53.8517 2.00415
\(723\) −1.05903 −0.0393856
\(724\) −3.75759 −0.139650
\(725\) −22.8248 −0.847693
\(726\) −0.0492096 −0.00182634
\(727\) −47.1718 −1.74950 −0.874752 0.484571i \(-0.838976\pi\)
−0.874752 + 0.484571i \(0.838976\pi\)
\(728\) −10.9251 −0.404912
\(729\) −26.8952 −0.996119
\(730\) 3.01549 0.111608
\(731\) 0.767974 0.0284045
\(732\) −0.0981197 −0.00362661
\(733\) −11.6137 −0.428961 −0.214481 0.976728i \(-0.568806\pi\)
−0.214481 + 0.976728i \(0.568806\pi\)
\(734\) −13.8044 −0.509529
\(735\) −0.0606049 −0.00223545
\(736\) 0 0
\(737\) −4.10232 −0.151111
\(738\) 7.12471 0.262264
\(739\) −22.3209 −0.821086 −0.410543 0.911841i \(-0.634661\pi\)
−0.410543 + 0.911841i \(0.634661\pi\)
\(740\) −0.748143 −0.0275023
\(741\) −0.966209 −0.0354946
\(742\) −8.49628 −0.311908
\(743\) −7.11611 −0.261065 −0.130532 0.991444i \(-0.541669\pi\)
−0.130532 + 0.991444i \(0.541669\pi\)
\(744\) 0.545971 0.0200163
\(745\) 3.23606 0.118560
\(746\) −15.5382 −0.568896
\(747\) −42.9839 −1.57270
\(748\) 0.0611173 0.00223467
\(749\) −6.09189 −0.222593
\(750\) −0.128410 −0.00468887
\(751\) 46.7731 1.70677 0.853387 0.521278i \(-0.174545\pi\)
0.853387 + 0.521278i \(0.174545\pi\)
\(752\) −21.0928 −0.769175
\(753\) 0.744809 0.0271424
\(754\) −13.8250 −0.503478
\(755\) 2.30935 0.0840459
\(756\) 0.264398 0.00961606
\(757\) −20.7933 −0.755746 −0.377873 0.925858i \(-0.623344\pi\)
−0.377873 + 0.925858i \(0.623344\pi\)
\(758\) 18.2628 0.663334
\(759\) 0 0
\(760\) −6.62298 −0.240241
\(761\) 30.1482 1.09287 0.546436 0.837501i \(-0.315984\pi\)
0.546436 + 0.837501i \(0.315984\pi\)
\(762\) 0.717376 0.0259878
\(763\) 14.3336 0.518913
\(764\) −9.74126 −0.352426
\(765\) 0.0639527 0.00231222
\(766\) −14.5290 −0.524954
\(767\) 24.7491 0.893639
\(768\) 0.669200 0.0241477
\(769\) −15.3741 −0.554406 −0.277203 0.960811i \(-0.589407\pi\)
−0.277203 + 0.960811i \(0.589407\pi\)
\(770\) −0.389919 −0.0140517
\(771\) 0.00882712 0.000317901 0
\(772\) 12.1530 0.437396
\(773\) 47.1711 1.69663 0.848313 0.529495i \(-0.177619\pi\)
0.848313 + 0.529495i \(0.177619\pi\)
\(774\) −31.6728 −1.13846
\(775\) −19.8733 −0.713870
\(776\) −23.3437 −0.837989
\(777\) −0.221446 −0.00794431
\(778\) 38.2591 1.37165
\(779\) 17.4470 0.625102
\(780\) 0.0233120 0.000834703 0
\(781\) 13.9892 0.500574
\(782\) 0 0
\(783\) 1.22342 0.0437215
\(784\) 10.0894 0.360336
\(785\) 6.18256 0.220665
\(786\) −0.227035 −0.00809806
\(787\) −0.0705773 −0.00251581 −0.00125790 0.999999i \(-0.500400\pi\)
−0.00125790 + 0.999999i \(0.500400\pi\)
\(788\) 4.18193 0.148975
\(789\) −0.329917 −0.0117453
\(790\) −2.79809 −0.0995516
\(791\) −21.3674 −0.759736
\(792\) −9.21684 −0.327506
\(793\) 7.91031 0.280903
\(794\) −19.4290 −0.689509
\(795\) 0.0662917 0.00235113
\(796\) 15.6075 0.553192
\(797\) −23.8335 −0.844224 −0.422112 0.906544i \(-0.638711\pi\)
−0.422112 + 0.906544i \(0.638711\pi\)
\(798\) −0.536115 −0.0189783
\(799\) 0.888361 0.0314280
\(800\) −19.7037 −0.696633
\(801\) −16.0193 −0.566013
\(802\) −27.1601 −0.959055
\(803\) 10.2763 0.362644
\(804\) 0.136089 0.00479947
\(805\) 0 0
\(806\) −12.0373 −0.423995
\(807\) −0.388170 −0.0136642
\(808\) 5.31819 0.187093
\(809\) 34.3206 1.20665 0.603325 0.797496i \(-0.293842\pi\)
0.603325 + 0.797496i \(0.293842\pi\)
\(810\) −2.63583 −0.0926137
\(811\) 24.4113 0.857196 0.428598 0.903495i \(-0.359008\pi\)
0.428598 + 0.903495i \(0.359008\pi\)
\(812\) 4.63058 0.162501
\(813\) −1.09772 −0.0384989
\(814\) 4.22361 0.148037
\(815\) −4.23055 −0.148190
\(816\) 0.00689532 0.000241385 0
\(817\) −77.5602 −2.71349
\(818\) −30.5607 −1.06853
\(819\) −10.6543 −0.372291
\(820\) −0.420948 −0.0147001
\(821\) 9.48170 0.330914 0.165457 0.986217i \(-0.447090\pi\)
0.165457 + 0.986217i \(0.447090\pi\)
\(822\) −0.00614100 −0.000214192 0
\(823\) 21.3644 0.744715 0.372358 0.928089i \(-0.378549\pi\)
0.372358 + 0.928089i \(0.378549\pi\)
\(824\) −11.8446 −0.412628
\(825\) −0.217280 −0.00756472
\(826\) 13.7324 0.477812
\(827\) 37.0040 1.28675 0.643377 0.765549i \(-0.277533\pi\)
0.643377 + 0.765549i \(0.277533\pi\)
\(828\) 0 0
\(829\) −28.0334 −0.973639 −0.486820 0.873502i \(-0.661843\pi\)
−0.486820 + 0.873502i \(0.661843\pi\)
\(830\) −4.20711 −0.146031
\(831\) −1.04226 −0.0361555
\(832\) −22.2447 −0.771197
\(833\) −0.424934 −0.0147231
\(834\) 0.336248 0.0116433
\(835\) −3.16723 −0.109607
\(836\) −6.17244 −0.213478
\(837\) 1.06522 0.0368193
\(838\) −26.5765 −0.918068
\(839\) −31.1731 −1.07622 −0.538108 0.842876i \(-0.680861\pi\)
−0.538108 + 0.842876i \(0.680861\pi\)
\(840\) 0.0472982 0.00163194
\(841\) −7.57342 −0.261152
\(842\) −2.59669 −0.0894879
\(843\) −0.856529 −0.0295004
\(844\) 15.4477 0.531732
\(845\) 1.53648 0.0528566
\(846\) −36.6378 −1.25963
\(847\) −1.32879 −0.0456577
\(848\) −11.0361 −0.378983
\(849\) −0.942012 −0.0323298
\(850\) −0.447047 −0.0153336
\(851\) 0 0
\(852\) −0.464072 −0.0158989
\(853\) −0.982475 −0.0336393 −0.0168197 0.999859i \(-0.505354\pi\)
−0.0168197 + 0.999859i \(0.505354\pi\)
\(854\) 4.38915 0.150194
\(855\) −6.45880 −0.220886
\(856\) −14.0941 −0.481728
\(857\) −50.9881 −1.74172 −0.870861 0.491530i \(-0.836438\pi\)
−0.870861 + 0.491530i \(0.836438\pi\)
\(858\) −0.131607 −0.00449299
\(859\) 30.3592 1.03584 0.517922 0.855428i \(-0.326706\pi\)
0.517922 + 0.855428i \(0.326706\pi\)
\(860\) 1.87132 0.0638113
\(861\) −0.124598 −0.00424628
\(862\) −14.9540 −0.509334
\(863\) 12.5141 0.425984 0.212992 0.977054i \(-0.431679\pi\)
0.212992 + 0.977054i \(0.431679\pi\)
\(864\) 1.05613 0.0359302
\(865\) −6.06664 −0.206272
\(866\) 19.8901 0.675894
\(867\) 0.748806 0.0254308
\(868\) 4.03178 0.136848
\(869\) −9.53548 −0.323469
\(870\) 0.0598528 0.00202920
\(871\) −10.9713 −0.371749
\(872\) 33.1622 1.12301
\(873\) −22.7650 −0.770477
\(874\) 0 0
\(875\) −3.46741 −0.117220
\(876\) −0.340903 −0.0115180
\(877\) 13.4628 0.454607 0.227303 0.973824i \(-0.427009\pi\)
0.227303 + 0.973824i \(0.427009\pi\)
\(878\) −12.2830 −0.414531
\(879\) −0.299287 −0.0100947
\(880\) −0.506481 −0.0170735
\(881\) −0.512545 −0.0172681 −0.00863404 0.999963i \(-0.502748\pi\)
−0.00863404 + 0.999963i \(0.502748\pi\)
\(882\) 17.5251 0.590102
\(883\) −4.92816 −0.165846 −0.0829230 0.996556i \(-0.526426\pi\)
−0.0829230 + 0.996556i \(0.526426\pi\)
\(884\) 0.163453 0.00549752
\(885\) −0.107146 −0.00360169
\(886\) 12.8564 0.431919
\(887\) 15.3274 0.514644 0.257322 0.966326i \(-0.417160\pi\)
0.257322 + 0.966326i \(0.417160\pi\)
\(888\) −0.512335 −0.0171928
\(889\) 19.3710 0.649683
\(890\) −1.56791 −0.0525565
\(891\) −8.98253 −0.300926
\(892\) −0.173573 −0.00581164
\(893\) −89.7185 −3.00232
\(894\) 0.606049 0.0202693
\(895\) 4.58353 0.153210
\(896\) −1.72334 −0.0575728
\(897\) 0 0
\(898\) 2.35731 0.0786646
\(899\) 18.6558 0.622207
\(900\) −11.1295 −0.370983
\(901\) 0.464807 0.0154850
\(902\) 2.37644 0.0791269
\(903\) 0.553898 0.0184326
\(904\) −49.4354 −1.64420
\(905\) −1.31149 −0.0435953
\(906\) 0.432495 0.0143687
\(907\) 3.98154 0.132205 0.0661025 0.997813i \(-0.478944\pi\)
0.0661025 + 0.997813i \(0.478944\pi\)
\(908\) −15.3130 −0.508181
\(909\) 5.18635 0.172020
\(910\) −1.04281 −0.0345687
\(911\) −38.0364 −1.26020 −0.630102 0.776512i \(-0.716987\pi\)
−0.630102 + 0.776512i \(0.716987\pi\)
\(912\) −0.696382 −0.0230595
\(913\) −14.3372 −0.474493
\(914\) 7.93873 0.262590
\(915\) −0.0342461 −0.00113214
\(916\) −0.956936 −0.0316181
\(917\) −6.13053 −0.202448
\(918\) 0.0239619 0.000790860 0
\(919\) 17.7269 0.584756 0.292378 0.956303i \(-0.405553\pi\)
0.292378 + 0.956303i \(0.405553\pi\)
\(920\) 0 0
\(921\) 0.143266 0.00472077
\(922\) −19.5545 −0.643994
\(923\) 37.4130 1.23146
\(924\) 0.0440806 0.00145014
\(925\) 18.6489 0.613173
\(926\) −2.35647 −0.0774383
\(927\) −11.5510 −0.379385
\(928\) 18.4967 0.607184
\(929\) 27.1909 0.892104 0.446052 0.895007i \(-0.352830\pi\)
0.446052 + 0.895007i \(0.352830\pi\)
\(930\) 0.0521130 0.00170885
\(931\) 42.9155 1.40650
\(932\) −9.24654 −0.302880
\(933\) −0.546672 −0.0178972
\(934\) 16.2729 0.532464
\(935\) 0.0213314 0.000697611 0
\(936\) −24.6497 −0.805700
\(937\) 24.1656 0.789454 0.394727 0.918798i \(-0.370839\pi\)
0.394727 + 0.918798i \(0.370839\pi\)
\(938\) −6.08760 −0.198767
\(939\) 0.474562 0.0154867
\(940\) 2.16466 0.0706035
\(941\) 22.9768 0.749022 0.374511 0.927222i \(-0.377811\pi\)
0.374511 + 0.927222i \(0.377811\pi\)
\(942\) 1.15787 0.0377255
\(943\) 0 0
\(944\) 17.8376 0.580564
\(945\) 0.0922811 0.00300191
\(946\) −10.5644 −0.343480
\(947\) 54.3648 1.76662 0.883310 0.468789i \(-0.155310\pi\)
0.883310 + 0.468789i \(0.155310\pi\)
\(948\) 0.316326 0.0102738
\(949\) 27.4832 0.892143
\(950\) 45.1487 1.46482
\(951\) −0.889036 −0.0288290
\(952\) 0.331633 0.0107483
\(953\) −1.66758 −0.0540182 −0.0270091 0.999635i \(-0.508598\pi\)
−0.0270091 + 0.999635i \(0.508598\pi\)
\(954\) −19.1696 −0.620639
\(955\) −3.39993 −0.110019
\(956\) 9.75582 0.315526
\(957\) 0.203969 0.00659340
\(958\) 2.03646 0.0657950
\(959\) −0.165823 −0.00535470
\(960\) 0.0963041 0.00310820
\(961\) −14.7566 −0.476019
\(962\) 11.2957 0.364188
\(963\) −13.7448 −0.442918
\(964\) −18.0934 −0.582751
\(965\) 4.24168 0.136545
\(966\) 0 0
\(967\) 38.2229 1.22916 0.614582 0.788853i \(-0.289325\pi\)
0.614582 + 0.788853i \(0.289325\pi\)
\(968\) −3.07427 −0.0988108
\(969\) 0.0293294 0.000942195 0
\(970\) −2.22816 −0.0715419
\(971\) 25.7891 0.827612 0.413806 0.910365i \(-0.364199\pi\)
0.413806 + 0.910365i \(0.364199\pi\)
\(972\) 0.894913 0.0287044
\(973\) 9.07958 0.291078
\(974\) −23.2544 −0.745120
\(975\) −0.581098 −0.0186100
\(976\) 5.70124 0.182492
\(977\) 38.1754 1.22134 0.610670 0.791885i \(-0.290900\pi\)
0.610670 + 0.791885i \(0.290900\pi\)
\(978\) −0.792298 −0.0253349
\(979\) −5.34322 −0.170770
\(980\) −1.03543 −0.0330757
\(981\) 32.3401 1.03254
\(982\) −4.56830 −0.145780
\(983\) −10.1268 −0.322994 −0.161497 0.986873i \(-0.551632\pi\)
−0.161497 + 0.986873i \(0.551632\pi\)
\(984\) −0.288269 −0.00918966
\(985\) 1.45959 0.0465064
\(986\) 0.419660 0.0133647
\(987\) 0.640727 0.0203946
\(988\) −16.5077 −0.525179
\(989\) 0 0
\(990\) −0.879750 −0.0279603
\(991\) −17.3994 −0.552710 −0.276355 0.961056i \(-0.589126\pi\)
−0.276355 + 0.961056i \(0.589126\pi\)
\(992\) 16.1048 0.511329
\(993\) 0.134751 0.00427618
\(994\) 20.7592 0.658440
\(995\) 5.44738 0.172694
\(996\) 0.475617 0.0150705
\(997\) 33.5571 1.06277 0.531383 0.847132i \(-0.321673\pi\)
0.531383 + 0.847132i \(0.321673\pi\)
\(998\) −30.0191 −0.950239
\(999\) −0.999591 −0.0316257
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5819.2.a.o.1.13 yes 18
23.22 odd 2 5819.2.a.n.1.13 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5819.2.a.n.1.13 18 23.22 odd 2
5819.2.a.o.1.13 yes 18 1.1 even 1 trivial