Properties

Label 5819.2.a.n.1.13
Level $5819$
Weight $2$
Character 5819.1
Self dual yes
Analytic conductor $46.465$
Analytic rank $1$
Dimension $18$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5819,2,Mod(1,5819)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5819, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5819.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5819 = 11 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5819.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,2,-2,18,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.4649489362\)
Analytic rank: \(1\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 2 x^{17} - 25 x^{16} + 48 x^{15} + 251 x^{14} - 460 x^{13} - 1295 x^{12} + 2248 x^{11} + \cdots - 39 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.13
Root \(1.11676\) of defining polynomial
Character \(\chi\) \(=\) 5819.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.11676 q^{2} -0.0440645 q^{3} -0.752841 q^{4} +0.262759 q^{5} -0.0492096 q^{6} +1.32879 q^{7} -3.07427 q^{8} -2.99806 q^{9} +0.293440 q^{10} +1.00000 q^{11} +0.0331736 q^{12} -2.67442 q^{13} +1.48394 q^{14} -0.0115784 q^{15} -1.92755 q^{16} -0.0811822 q^{17} -3.34812 q^{18} +8.19886 q^{19} -0.197816 q^{20} -0.0585523 q^{21} +1.11676 q^{22} +0.135466 q^{24} -4.93096 q^{25} -2.98669 q^{26} +0.264301 q^{27} -1.00037 q^{28} +4.62889 q^{29} -0.0129303 q^{30} +4.03031 q^{31} +3.99593 q^{32} -0.0440645 q^{33} -0.0906612 q^{34} +0.349151 q^{35} +2.25706 q^{36} +3.78201 q^{37} +9.15618 q^{38} +0.117847 q^{39} -0.807793 q^{40} -2.12797 q^{41} -0.0653890 q^{42} -9.45988 q^{43} -0.752841 q^{44} -0.787768 q^{45} +10.9428 q^{47} +0.0849364 q^{48} -5.23433 q^{49} -5.50671 q^{50} +0.00357725 q^{51} +2.01341 q^{52} -5.72549 q^{53} +0.295162 q^{54} +0.262759 q^{55} -4.08505 q^{56} -0.361278 q^{57} +5.16937 q^{58} -9.25403 q^{59} +0.00871666 q^{60} +2.95777 q^{61} +4.50090 q^{62} -3.98378 q^{63} +8.31760 q^{64} -0.702728 q^{65} -0.0492096 q^{66} -4.10232 q^{67} +0.0611173 q^{68} +0.389919 q^{70} -13.9892 q^{71} +9.21684 q^{72} -10.2763 q^{73} +4.22361 q^{74} +0.217280 q^{75} -6.17244 q^{76} +1.32879 q^{77} +0.131607 q^{78} -9.53548 q^{79} -0.506481 q^{80} +8.98253 q^{81} -2.37644 q^{82} -14.3372 q^{83} +0.0440806 q^{84} -0.0213314 q^{85} -10.5644 q^{86} -0.203969 q^{87} -3.07427 q^{88} -5.34322 q^{89} -0.879750 q^{90} -3.55373 q^{91} -0.177594 q^{93} +12.2205 q^{94} +2.15433 q^{95} -0.176078 q^{96} -7.59324 q^{97} -5.84550 q^{98} -2.99806 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 2 q^{2} - 2 q^{3} + 18 q^{4} - 8 q^{5} - 6 q^{6} - 10 q^{7} + 6 q^{8} + 16 q^{9} - 12 q^{10} + 18 q^{11} + 10 q^{12} - 28 q^{14} - 8 q^{15} + 26 q^{16} - 20 q^{18} - 16 q^{19} - 40 q^{20} - 12 q^{21}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.11676 0.789670 0.394835 0.918752i \(-0.370802\pi\)
0.394835 + 0.918752i \(0.370802\pi\)
\(3\) −0.0440645 −0.0254406 −0.0127203 0.999919i \(-0.504049\pi\)
−0.0127203 + 0.999919i \(0.504049\pi\)
\(4\) −0.752841 −0.376421
\(5\) 0.262759 0.117510 0.0587548 0.998272i \(-0.481287\pi\)
0.0587548 + 0.998272i \(0.481287\pi\)
\(6\) −0.0492096 −0.0200897
\(7\) 1.32879 0.502234 0.251117 0.967957i \(-0.419202\pi\)
0.251117 + 0.967957i \(0.419202\pi\)
\(8\) −3.07427 −1.08692
\(9\) −2.99806 −0.999353
\(10\) 0.293440 0.0927938
\(11\) 1.00000 0.301511
\(12\) 0.0331736 0.00957638
\(13\) −2.67442 −0.741750 −0.370875 0.928683i \(-0.620942\pi\)
−0.370875 + 0.928683i \(0.620942\pi\)
\(14\) 1.48394 0.396599
\(15\) −0.0115784 −0.00298952
\(16\) −1.92755 −0.481887
\(17\) −0.0811822 −0.0196896 −0.00984479 0.999952i \(-0.503134\pi\)
−0.00984479 + 0.999952i \(0.503134\pi\)
\(18\) −3.34812 −0.789159
\(19\) 8.19886 1.88095 0.940473 0.339867i \(-0.110382\pi\)
0.940473 + 0.339867i \(0.110382\pi\)
\(20\) −0.197816 −0.0442330
\(21\) −0.0585523 −0.0127772
\(22\) 1.11676 0.238095
\(23\) 0 0
\(24\) 0.135466 0.0276519
\(25\) −4.93096 −0.986192
\(26\) −2.98669 −0.585738
\(27\) 0.264301 0.0508648
\(28\) −1.00037 −0.189051
\(29\) 4.62889 0.859562 0.429781 0.902933i \(-0.358591\pi\)
0.429781 + 0.902933i \(0.358591\pi\)
\(30\) −0.0129303 −0.00236073
\(31\) 4.03031 0.723865 0.361933 0.932204i \(-0.382117\pi\)
0.361933 + 0.932204i \(0.382117\pi\)
\(32\) 3.99593 0.706387
\(33\) −0.0440645 −0.00767064
\(34\) −0.0906612 −0.0155483
\(35\) 0.349151 0.0590173
\(36\) 2.25706 0.376177
\(37\) 3.78201 0.621759 0.310879 0.950449i \(-0.399376\pi\)
0.310879 + 0.950449i \(0.399376\pi\)
\(38\) 9.15618 1.48533
\(39\) 0.117847 0.0188706
\(40\) −0.807793 −0.127723
\(41\) −2.12797 −0.332334 −0.166167 0.986098i \(-0.553139\pi\)
−0.166167 + 0.986098i \(0.553139\pi\)
\(42\) −0.0653890 −0.0100897
\(43\) −9.45988 −1.44262 −0.721309 0.692613i \(-0.756459\pi\)
−0.721309 + 0.692613i \(0.756459\pi\)
\(44\) −0.752841 −0.113495
\(45\) −0.787768 −0.117434
\(46\) 0 0
\(47\) 10.9428 1.59617 0.798086 0.602543i \(-0.205846\pi\)
0.798086 + 0.602543i \(0.205846\pi\)
\(48\) 0.0849364 0.0122595
\(49\) −5.23433 −0.747761
\(50\) −5.50671 −0.778766
\(51\) 0.00357725 0.000500915 0
\(52\) 2.01341 0.279210
\(53\) −5.72549 −0.786456 −0.393228 0.919441i \(-0.628642\pi\)
−0.393228 + 0.919441i \(0.628642\pi\)
\(54\) 0.295162 0.0401664
\(55\) 0.262759 0.0354305
\(56\) −4.08505 −0.545888
\(57\) −0.361278 −0.0478525
\(58\) 5.16937 0.678771
\(59\) −9.25403 −1.20477 −0.602386 0.798205i \(-0.705783\pi\)
−0.602386 + 0.798205i \(0.705783\pi\)
\(60\) 0.00871666 0.00112532
\(61\) 2.95777 0.378703 0.189352 0.981909i \(-0.439361\pi\)
0.189352 + 0.981909i \(0.439361\pi\)
\(62\) 4.50090 0.571615
\(63\) −3.98378 −0.501909
\(64\) 8.31760 1.03970
\(65\) −0.702728 −0.0871627
\(66\) −0.0492096 −0.00605728
\(67\) −4.10232 −0.501178 −0.250589 0.968094i \(-0.580624\pi\)
−0.250589 + 0.968094i \(0.580624\pi\)
\(68\) 0.0611173 0.00741156
\(69\) 0 0
\(70\) 0.389919 0.0466042
\(71\) −13.9892 −1.66022 −0.830108 0.557603i \(-0.811721\pi\)
−0.830108 + 0.557603i \(0.811721\pi\)
\(72\) 9.21684 1.08622
\(73\) −10.2763 −1.20275 −0.601377 0.798965i \(-0.705381\pi\)
−0.601377 + 0.798965i \(0.705381\pi\)
\(74\) 4.22361 0.490985
\(75\) 0.217280 0.0250893
\(76\) −6.17244 −0.708027
\(77\) 1.32879 0.151429
\(78\) 0.131607 0.0149016
\(79\) −9.53548 −1.07283 −0.536413 0.843956i \(-0.680221\pi\)
−0.536413 + 0.843956i \(0.680221\pi\)
\(80\) −0.506481 −0.0566263
\(81\) 8.98253 0.998059
\(82\) −2.37644 −0.262434
\(83\) −14.3372 −1.57372 −0.786858 0.617134i \(-0.788293\pi\)
−0.786858 + 0.617134i \(0.788293\pi\)
\(84\) 0.0440806 0.00480959
\(85\) −0.0213314 −0.00231371
\(86\) −10.5644 −1.13919
\(87\) −0.203969 −0.0218678
\(88\) −3.07427 −0.327718
\(89\) −5.34322 −0.566380 −0.283190 0.959064i \(-0.591393\pi\)
−0.283190 + 0.959064i \(0.591393\pi\)
\(90\) −0.879750 −0.0927338
\(91\) −3.55373 −0.372532
\(92\) 0 0
\(93\) −0.177594 −0.0184156
\(94\) 12.2205 1.26045
\(95\) 2.15433 0.221029
\(96\) −0.176078 −0.0179709
\(97\) −7.59324 −0.770976 −0.385488 0.922713i \(-0.625967\pi\)
−0.385488 + 0.922713i \(0.625967\pi\)
\(98\) −5.84550 −0.590485
\(99\) −2.99806 −0.301316
\(100\) 3.71223 0.371223
\(101\) −1.72990 −0.172132 −0.0860659 0.996289i \(-0.527430\pi\)
−0.0860659 + 0.996289i \(0.527430\pi\)
\(102\) 0.00399494 0.000395558 0
\(103\) −3.85283 −0.379631 −0.189815 0.981820i \(-0.560789\pi\)
−0.189815 + 0.981820i \(0.560789\pi\)
\(104\) 8.22188 0.806222
\(105\) −0.0153852 −0.00150144
\(106\) −6.39401 −0.621041
\(107\) −4.58455 −0.443205 −0.221603 0.975137i \(-0.571129\pi\)
−0.221603 + 0.975137i \(0.571129\pi\)
\(108\) −0.198977 −0.0191466
\(109\) 10.7870 1.03321 0.516604 0.856224i \(-0.327196\pi\)
0.516604 + 0.856224i \(0.327196\pi\)
\(110\) 0.293440 0.0279784
\(111\) −0.166652 −0.0158179
\(112\) −2.56130 −0.242020
\(113\) −16.0804 −1.51271 −0.756357 0.654160i \(-0.773022\pi\)
−0.756357 + 0.654160i \(0.773022\pi\)
\(114\) −0.403462 −0.0377877
\(115\) 0 0
\(116\) −3.48482 −0.323557
\(117\) 8.01806 0.741270
\(118\) −10.3346 −0.951373
\(119\) −0.107874 −0.00988878
\(120\) 0.0355950 0.00324936
\(121\) 1.00000 0.0909091
\(122\) 3.30313 0.299051
\(123\) 0.0937681 0.00845479
\(124\) −3.03418 −0.272478
\(125\) −2.60945 −0.233396
\(126\) −4.44894 −0.396343
\(127\) −14.5780 −1.29359 −0.646793 0.762666i \(-0.723890\pi\)
−0.646793 + 0.762666i \(0.723890\pi\)
\(128\) 1.29693 0.114633
\(129\) 0.416845 0.0367011
\(130\) −0.784781 −0.0688298
\(131\) 4.61363 0.403095 0.201547 0.979479i \(-0.435403\pi\)
0.201547 + 0.979479i \(0.435403\pi\)
\(132\) 0.0331736 0.00288739
\(133\) 10.8945 0.944676
\(134\) −4.58132 −0.395766
\(135\) 0.0694477 0.00597710
\(136\) 0.249576 0.0214010
\(137\) −0.124793 −0.0106618 −0.00533088 0.999986i \(-0.501697\pi\)
−0.00533088 + 0.999986i \(0.501697\pi\)
\(138\) 0 0
\(139\) −6.83298 −0.579566 −0.289783 0.957092i \(-0.593583\pi\)
−0.289783 + 0.957092i \(0.593583\pi\)
\(140\) −0.262855 −0.0222153
\(141\) −0.482189 −0.0406077
\(142\) −15.6226 −1.31102
\(143\) −2.67442 −0.223646
\(144\) 5.77890 0.481575
\(145\) 1.21628 0.101007
\(146\) −11.4762 −0.949780
\(147\) 0.230648 0.0190235
\(148\) −2.84725 −0.234043
\(149\) 12.3157 1.00894 0.504469 0.863430i \(-0.331688\pi\)
0.504469 + 0.863430i \(0.331688\pi\)
\(150\) 0.242650 0.0198123
\(151\) −8.78885 −0.715226 −0.357613 0.933870i \(-0.616409\pi\)
−0.357613 + 0.933870i \(0.616409\pi\)
\(152\) −25.2055 −2.04444
\(153\) 0.243389 0.0196768
\(154\) 1.48394 0.119579
\(155\) 1.05900 0.0850611
\(156\) −0.0887200 −0.00710328
\(157\) 23.5294 1.87785 0.938924 0.344124i \(-0.111824\pi\)
0.938924 + 0.344124i \(0.111824\pi\)
\(158\) −10.6489 −0.847179
\(159\) 0.252291 0.0200080
\(160\) 1.04997 0.0830072
\(161\) 0 0
\(162\) 10.0314 0.788137
\(163\) 16.1005 1.26109 0.630544 0.776154i \(-0.282832\pi\)
0.630544 + 0.776154i \(0.282832\pi\)
\(164\) 1.60203 0.125097
\(165\) −0.0115784 −0.000901374 0
\(166\) −16.0113 −1.24272
\(167\) 12.0537 0.932747 0.466373 0.884588i \(-0.345560\pi\)
0.466373 + 0.884588i \(0.345560\pi\)
\(168\) 0.180006 0.0138877
\(169\) −5.84749 −0.449807
\(170\) −0.0238221 −0.00182707
\(171\) −24.5807 −1.87973
\(172\) 7.12179 0.543031
\(173\) 23.0882 1.75536 0.877681 0.479246i \(-0.159090\pi\)
0.877681 + 0.479246i \(0.159090\pi\)
\(174\) −0.227786 −0.0172684
\(175\) −6.55219 −0.495299
\(176\) −1.92755 −0.145294
\(177\) 0.407774 0.0306502
\(178\) −5.96710 −0.447253
\(179\) −17.4438 −1.30381 −0.651907 0.758299i \(-0.726031\pi\)
−0.651907 + 0.758299i \(0.726031\pi\)
\(180\) 0.593064 0.0442044
\(181\) −4.99121 −0.370994 −0.185497 0.982645i \(-0.559389\pi\)
−0.185497 + 0.982645i \(0.559389\pi\)
\(182\) −3.96867 −0.294178
\(183\) −0.130333 −0.00963446
\(184\) 0 0
\(185\) 0.993759 0.0730626
\(186\) −0.198330 −0.0145422
\(187\) −0.0811822 −0.00593663
\(188\) −8.23820 −0.600832
\(189\) 0.351200 0.0255461
\(190\) 2.40587 0.174540
\(191\) −12.9393 −0.936257 −0.468128 0.883660i \(-0.655072\pi\)
−0.468128 + 0.883660i \(0.655072\pi\)
\(192\) −0.366511 −0.0264506
\(193\) −16.1428 −1.16199 −0.580993 0.813908i \(-0.697336\pi\)
−0.580993 + 0.813908i \(0.697336\pi\)
\(194\) −8.47984 −0.608817
\(195\) 0.0309654 0.00221748
\(196\) 3.94062 0.281473
\(197\) −5.55486 −0.395767 −0.197884 0.980226i \(-0.563407\pi\)
−0.197884 + 0.980226i \(0.563407\pi\)
\(198\) −3.34812 −0.237940
\(199\) 20.7314 1.46961 0.734806 0.678277i \(-0.237273\pi\)
0.734806 + 0.678277i \(0.237273\pi\)
\(200\) 15.1591 1.07191
\(201\) 0.180767 0.0127503
\(202\) −1.93189 −0.135927
\(203\) 6.15080 0.431702
\(204\) −0.00269310 −0.000188555 0
\(205\) −0.559145 −0.0390524
\(206\) −4.30270 −0.299783
\(207\) 0 0
\(208\) 5.15507 0.357440
\(209\) 8.19886 0.567127
\(210\) −0.0171816 −0.00118564
\(211\) −20.5192 −1.41260 −0.706300 0.707913i \(-0.749637\pi\)
−0.706300 + 0.707913i \(0.749637\pi\)
\(212\) 4.31038 0.296038
\(213\) 0.616428 0.0422369
\(214\) −5.11986 −0.349986
\(215\) −2.48567 −0.169521
\(216\) −0.812534 −0.0552859
\(217\) 5.35542 0.363550
\(218\) 12.0465 0.815895
\(219\) 0.452822 0.0305988
\(220\) −0.197816 −0.0133368
\(221\) 0.217115 0.0146047
\(222\) −0.186111 −0.0124910
\(223\) 0.230557 0.0154392 0.00771961 0.999970i \(-0.497543\pi\)
0.00771961 + 0.999970i \(0.497543\pi\)
\(224\) 5.30973 0.354772
\(225\) 14.7833 0.985553
\(226\) −17.9579 −1.19454
\(227\) −20.3403 −1.35004 −0.675018 0.737801i \(-0.735864\pi\)
−0.675018 + 0.737801i \(0.735864\pi\)
\(228\) 0.271985 0.0180127
\(229\) −1.27110 −0.0839966 −0.0419983 0.999118i \(-0.513372\pi\)
−0.0419983 + 0.999118i \(0.513372\pi\)
\(230\) 0 0
\(231\) −0.0585523 −0.00385246
\(232\) −14.2304 −0.934274
\(233\) 12.2822 0.804633 0.402317 0.915501i \(-0.368205\pi\)
0.402317 + 0.915501i \(0.368205\pi\)
\(234\) 8.95427 0.585359
\(235\) 2.87533 0.187566
\(236\) 6.96681 0.453501
\(237\) 0.420176 0.0272934
\(238\) −0.120469 −0.00780887
\(239\) −12.9587 −0.838227 −0.419113 0.907934i \(-0.637659\pi\)
−0.419113 + 0.907934i \(0.637659\pi\)
\(240\) 0.0223178 0.00144061
\(241\) −24.0336 −1.54814 −0.774069 0.633102i \(-0.781782\pi\)
−0.774069 + 0.633102i \(0.781782\pi\)
\(242\) 1.11676 0.0717882
\(243\) −1.18871 −0.0762561
\(244\) −2.22673 −0.142552
\(245\) −1.37537 −0.0878690
\(246\) 0.104717 0.00667649
\(247\) −21.9272 −1.39519
\(248\) −12.3903 −0.786782
\(249\) 0.631763 0.0400363
\(250\) −2.91414 −0.184306
\(251\) 16.9027 1.06689 0.533445 0.845835i \(-0.320897\pi\)
0.533445 + 0.845835i \(0.320897\pi\)
\(252\) 2.99915 0.188929
\(253\) 0 0
\(254\) −16.2801 −1.02151
\(255\) 0.000939956 0 5.88623e−5 0
\(256\) −15.1868 −0.949177
\(257\) −0.200323 −0.0124958 −0.00624789 0.999980i \(-0.501989\pi\)
−0.00624789 + 0.999980i \(0.501989\pi\)
\(258\) 0.465517 0.0289818
\(259\) 5.02549 0.312269
\(260\) 0.529043 0.0328098
\(261\) −13.8777 −0.859006
\(262\) 5.15233 0.318312
\(263\) −7.48713 −0.461676 −0.230838 0.972992i \(-0.574147\pi\)
−0.230838 + 0.972992i \(0.574147\pi\)
\(264\) 0.135466 0.00833737
\(265\) −1.50443 −0.0924161
\(266\) 12.1666 0.745983
\(267\) 0.235446 0.0144091
\(268\) 3.08840 0.188654
\(269\) 8.80913 0.537102 0.268551 0.963265i \(-0.413455\pi\)
0.268551 + 0.963265i \(0.413455\pi\)
\(270\) 0.0775566 0.00471994
\(271\) 24.9118 1.51328 0.756641 0.653831i \(-0.226839\pi\)
0.756641 + 0.653831i \(0.226839\pi\)
\(272\) 0.156483 0.00948815
\(273\) 0.156593 0.00947746
\(274\) −0.139364 −0.00841928
\(275\) −4.93096 −0.297348
\(276\) 0 0
\(277\) 23.6530 1.42117 0.710586 0.703610i \(-0.248430\pi\)
0.710586 + 0.703610i \(0.248430\pi\)
\(278\) −7.63082 −0.457666
\(279\) −12.0831 −0.723397
\(280\) −1.07339 −0.0641470
\(281\) −19.4381 −1.15958 −0.579789 0.814766i \(-0.696865\pi\)
−0.579789 + 0.814766i \(0.696865\pi\)
\(282\) −0.538491 −0.0320667
\(283\) −21.3780 −1.27079 −0.635396 0.772187i \(-0.719163\pi\)
−0.635396 + 0.772187i \(0.719163\pi\)
\(284\) 10.5317 0.624939
\(285\) −0.0949293 −0.00562313
\(286\) −2.98669 −0.176607
\(287\) −2.82762 −0.166909
\(288\) −11.9800 −0.705930
\(289\) −16.9934 −0.999612
\(290\) 1.35830 0.0797621
\(291\) 0.334592 0.0196141
\(292\) 7.73645 0.452742
\(293\) −6.79202 −0.396794 −0.198397 0.980122i \(-0.563574\pi\)
−0.198397 + 0.980122i \(0.563574\pi\)
\(294\) 0.257579 0.0150223
\(295\) −2.43158 −0.141572
\(296\) −11.6269 −0.675801
\(297\) 0.264301 0.0153363
\(298\) 13.7537 0.796729
\(299\) 0 0
\(300\) −0.163577 −0.00944415
\(301\) −12.5702 −0.724532
\(302\) −9.81506 −0.564793
\(303\) 0.0762273 0.00437915
\(304\) −15.8037 −0.906404
\(305\) 0.777181 0.0445013
\(306\) 0.271808 0.0155382
\(307\) −3.25128 −0.185560 −0.0927801 0.995687i \(-0.529575\pi\)
−0.0927801 + 0.995687i \(0.529575\pi\)
\(308\) −1.00037 −0.0570011
\(309\) 0.169773 0.00965805
\(310\) 1.18265 0.0671702
\(311\) 12.4062 0.703490 0.351745 0.936096i \(-0.385588\pi\)
0.351745 + 0.936096i \(0.385588\pi\)
\(312\) −0.362293 −0.0205108
\(313\) 10.7697 0.608740 0.304370 0.952554i \(-0.401554\pi\)
0.304370 + 0.952554i \(0.401554\pi\)
\(314\) 26.2767 1.48288
\(315\) −1.04678 −0.0589791
\(316\) 7.17870 0.403834
\(317\) 20.1758 1.13319 0.566593 0.823998i \(-0.308261\pi\)
0.566593 + 0.823998i \(0.308261\pi\)
\(318\) 0.281749 0.0157997
\(319\) 4.62889 0.259168
\(320\) 2.18553 0.122175
\(321\) 0.202016 0.0112754
\(322\) 0 0
\(323\) −0.665601 −0.0370350
\(324\) −6.76242 −0.375690
\(325\) 13.1874 0.731508
\(326\) 17.9804 0.995844
\(327\) −0.475324 −0.0262855
\(328\) 6.54197 0.361220
\(329\) 14.5407 0.801652
\(330\) −0.0129303 −0.000711788 0
\(331\) −3.05803 −0.168085 −0.0840424 0.996462i \(-0.526783\pi\)
−0.0840424 + 0.996462i \(0.526783\pi\)
\(332\) 10.7937 0.592379
\(333\) −11.3387 −0.621357
\(334\) 13.4612 0.736563
\(335\) −1.07792 −0.0588932
\(336\) 0.112862 0.00615715
\(337\) −2.81357 −0.153265 −0.0766325 0.997059i \(-0.524417\pi\)
−0.0766325 + 0.997059i \(0.524417\pi\)
\(338\) −6.53026 −0.355199
\(339\) 0.708573 0.0384844
\(340\) 0.0160591 0.000870929 0
\(341\) 4.03031 0.218254
\(342\) −27.4508 −1.48437
\(343\) −16.2568 −0.877785
\(344\) 29.0822 1.56801
\(345\) 0 0
\(346\) 25.7840 1.38616
\(347\) 4.12654 0.221524 0.110762 0.993847i \(-0.464671\pi\)
0.110762 + 0.993847i \(0.464671\pi\)
\(348\) 0.153557 0.00823150
\(349\) 11.4667 0.613798 0.306899 0.951742i \(-0.400709\pi\)
0.306899 + 0.951742i \(0.400709\pi\)
\(350\) −7.31724 −0.391123
\(351\) −0.706852 −0.0377290
\(352\) 3.99593 0.212984
\(353\) −0.262450 −0.0139688 −0.00698439 0.999976i \(-0.502223\pi\)
−0.00698439 + 0.999976i \(0.502223\pi\)
\(354\) 0.455387 0.0242035
\(355\) −3.67580 −0.195091
\(356\) 4.02259 0.213197
\(357\) 0.00475340 0.000251577 0
\(358\) −19.4806 −1.02958
\(359\) −1.39009 −0.0733661 −0.0366830 0.999327i \(-0.511679\pi\)
−0.0366830 + 0.999327i \(0.511679\pi\)
\(360\) 2.42181 0.127641
\(361\) 48.2213 2.53796
\(362\) −5.57400 −0.292963
\(363\) −0.0440645 −0.00231279
\(364\) 2.67539 0.140229
\(365\) −2.70020 −0.141335
\(366\) −0.145551 −0.00760805
\(367\) 12.3611 0.645243 0.322621 0.946528i \(-0.395436\pi\)
0.322621 + 0.946528i \(0.395436\pi\)
\(368\) 0 0
\(369\) 6.37979 0.332119
\(370\) 1.10979 0.0576954
\(371\) −7.60795 −0.394985
\(372\) 0.133700 0.00693201
\(373\) 13.9136 0.720421 0.360211 0.932871i \(-0.382705\pi\)
0.360211 + 0.932871i \(0.382705\pi\)
\(374\) −0.0906612 −0.00468798
\(375\) 0.114984 0.00593776
\(376\) −33.6412 −1.73491
\(377\) −12.3796 −0.637580
\(378\) 0.392207 0.0201730
\(379\) −16.3533 −0.840014 −0.420007 0.907521i \(-0.637972\pi\)
−0.420007 + 0.907521i \(0.637972\pi\)
\(380\) −1.62187 −0.0832000
\(381\) 0.642371 0.0329097
\(382\) −14.4502 −0.739334
\(383\) 13.0099 0.664776 0.332388 0.943143i \(-0.392146\pi\)
0.332388 + 0.943143i \(0.392146\pi\)
\(384\) −0.0571485 −0.00291635
\(385\) 0.349151 0.0177944
\(386\) −18.0277 −0.917587
\(387\) 28.3613 1.44168
\(388\) 5.71650 0.290211
\(389\) −34.2589 −1.73700 −0.868498 0.495692i \(-0.834914\pi\)
−0.868498 + 0.495692i \(0.834914\pi\)
\(390\) 0.0345810 0.00175108
\(391\) 0 0
\(392\) 16.0917 0.812755
\(393\) −0.203297 −0.0102550
\(394\) −6.20346 −0.312526
\(395\) −2.50554 −0.126067
\(396\) 2.25706 0.113422
\(397\) −17.3976 −0.873160 −0.436580 0.899665i \(-0.643810\pi\)
−0.436580 + 0.899665i \(0.643810\pi\)
\(398\) 23.1521 1.16051
\(399\) −0.480062 −0.0240332
\(400\) 9.50466 0.475233
\(401\) 24.3204 1.21450 0.607250 0.794511i \(-0.292273\pi\)
0.607250 + 0.794511i \(0.292273\pi\)
\(402\) 0.201873 0.0100685
\(403\) −10.7787 −0.536927
\(404\) 1.30234 0.0647940
\(405\) 2.36024 0.117281
\(406\) 6.86899 0.340902
\(407\) 3.78201 0.187467
\(408\) −0.0109974 −0.000544454 0
\(409\) −27.3654 −1.35313 −0.676567 0.736381i \(-0.736533\pi\)
−0.676567 + 0.736381i \(0.736533\pi\)
\(410\) −0.624433 −0.0308385
\(411\) 0.00549893 0.000271242 0
\(412\) 2.90057 0.142901
\(413\) −12.2966 −0.605078
\(414\) 0 0
\(415\) −3.76724 −0.184927
\(416\) −10.6868 −0.523962
\(417\) 0.301092 0.0147445
\(418\) 9.15618 0.447843
\(419\) 23.7978 1.16260 0.581298 0.813690i \(-0.302545\pi\)
0.581298 + 0.813690i \(0.302545\pi\)
\(420\) 0.0115826 0.000565172 0
\(421\) 2.32520 0.113323 0.0566615 0.998393i \(-0.481954\pi\)
0.0566615 + 0.998393i \(0.481954\pi\)
\(422\) −22.9151 −1.11549
\(423\) −32.8072 −1.59514
\(424\) 17.6017 0.854814
\(425\) 0.400306 0.0194177
\(426\) 0.688404 0.0333533
\(427\) 3.93024 0.190198
\(428\) 3.45144 0.166832
\(429\) 0.117847 0.00568970
\(430\) −2.77591 −0.133866
\(431\) 13.3904 0.644995 0.322498 0.946570i \(-0.395478\pi\)
0.322498 + 0.946570i \(0.395478\pi\)
\(432\) −0.509454 −0.0245111
\(433\) −17.8105 −0.855919 −0.427959 0.903798i \(-0.640767\pi\)
−0.427959 + 0.903798i \(0.640767\pi\)
\(434\) 5.98074 0.287084
\(435\) −0.0535949 −0.00256968
\(436\) −8.12091 −0.388921
\(437\) 0 0
\(438\) 0.505694 0.0241630
\(439\) −10.9988 −0.524942 −0.262471 0.964940i \(-0.584537\pi\)
−0.262471 + 0.964940i \(0.584537\pi\)
\(440\) −0.807793 −0.0385100
\(441\) 15.6928 0.747277
\(442\) 0.242466 0.0115329
\(443\) 11.5122 0.546960 0.273480 0.961878i \(-0.411825\pi\)
0.273480 + 0.961878i \(0.411825\pi\)
\(444\) 0.125463 0.00595420
\(445\) −1.40398 −0.0665550
\(446\) 0.257477 0.0121919
\(447\) −0.542683 −0.0256680
\(448\) 11.0523 0.522173
\(449\) 2.11085 0.0996170 0.0498085 0.998759i \(-0.484139\pi\)
0.0498085 + 0.998759i \(0.484139\pi\)
\(450\) 16.5094 0.778262
\(451\) −2.12797 −0.100202
\(452\) 12.1060 0.569416
\(453\) 0.387276 0.0181958
\(454\) −22.7153 −1.06608
\(455\) −0.933776 −0.0437761
\(456\) 1.11067 0.0520118
\(457\) −7.10870 −0.332531 −0.166265 0.986081i \(-0.553171\pi\)
−0.166265 + 0.986081i \(0.553171\pi\)
\(458\) −1.41952 −0.0663296
\(459\) −0.0214566 −0.00100151
\(460\) 0 0
\(461\) −17.5100 −0.815522 −0.407761 0.913089i \(-0.633690\pi\)
−0.407761 + 0.913089i \(0.633690\pi\)
\(462\) −0.0653890 −0.00304217
\(463\) −2.11009 −0.0980640 −0.0490320 0.998797i \(-0.515614\pi\)
−0.0490320 + 0.998797i \(0.515614\pi\)
\(464\) −8.92240 −0.414212
\(465\) −0.0466644 −0.00216401
\(466\) 13.7163 0.635395
\(467\) −14.5714 −0.674286 −0.337143 0.941453i \(-0.609461\pi\)
−0.337143 + 0.941453i \(0.609461\pi\)
\(468\) −6.03633 −0.279029
\(469\) −5.45111 −0.251709
\(470\) 3.21106 0.148115
\(471\) −1.03681 −0.0477737
\(472\) 28.4494 1.30949
\(473\) −9.45988 −0.434966
\(474\) 0.469237 0.0215528
\(475\) −40.4282 −1.85497
\(476\) 0.0812118 0.00372234
\(477\) 17.1653 0.785947
\(478\) −14.4718 −0.661923
\(479\) −1.82354 −0.0833196 −0.0416598 0.999132i \(-0.513265\pi\)
−0.0416598 + 0.999132i \(0.513265\pi\)
\(480\) −0.0462663 −0.00211176
\(481\) −10.1147 −0.461190
\(482\) −26.8398 −1.22252
\(483\) 0 0
\(484\) −0.752841 −0.0342201
\(485\) −1.99519 −0.0905971
\(486\) −1.32751 −0.0602172
\(487\) −20.8231 −0.943583 −0.471792 0.881710i \(-0.656393\pi\)
−0.471792 + 0.881710i \(0.656393\pi\)
\(488\) −9.09298 −0.411620
\(489\) −0.709460 −0.0320829
\(490\) −1.53596 −0.0693876
\(491\) −4.09067 −0.184609 −0.0923046 0.995731i \(-0.529423\pi\)
−0.0923046 + 0.995731i \(0.529423\pi\)
\(492\) −0.0705925 −0.00318256
\(493\) −0.375783 −0.0169244
\(494\) −24.4874 −1.10174
\(495\) −0.787768 −0.0354075
\(496\) −7.76862 −0.348821
\(497\) −18.5887 −0.833817
\(498\) 0.705529 0.0316155
\(499\) −26.8805 −1.20334 −0.601668 0.798746i \(-0.705497\pi\)
−0.601668 + 0.798746i \(0.705497\pi\)
\(500\) 1.96450 0.0878552
\(501\) −0.531142 −0.0237297
\(502\) 18.8763 0.842491
\(503\) 13.8646 0.618190 0.309095 0.951031i \(-0.399974\pi\)
0.309095 + 0.951031i \(0.399974\pi\)
\(504\) 12.2472 0.545534
\(505\) −0.454548 −0.0202271
\(506\) 0 0
\(507\) 0.257667 0.0114434
\(508\) 10.9749 0.486932
\(509\) 9.52468 0.422174 0.211087 0.977467i \(-0.432300\pi\)
0.211087 + 0.977467i \(0.432300\pi\)
\(510\) 0.00104971 4.64819e−5 0
\(511\) −13.6551 −0.604064
\(512\) −19.5539 −0.864171
\(513\) 2.16697 0.0956740
\(514\) −0.223713 −0.00986755
\(515\) −1.01237 −0.0446103
\(516\) −0.313818 −0.0138151
\(517\) 10.9428 0.481264
\(518\) 5.61228 0.246589
\(519\) −1.01737 −0.0446575
\(520\) 2.16038 0.0947388
\(521\) 1.16536 0.0510553 0.0255276 0.999674i \(-0.491873\pi\)
0.0255276 + 0.999674i \(0.491873\pi\)
\(522\) −15.4981 −0.678332
\(523\) 37.2747 1.62991 0.814954 0.579526i \(-0.196762\pi\)
0.814954 + 0.579526i \(0.196762\pi\)
\(524\) −3.47333 −0.151733
\(525\) 0.288719 0.0126007
\(526\) −8.36135 −0.364572
\(527\) −0.327189 −0.0142526
\(528\) 0.0849364 0.00369638
\(529\) 0 0
\(530\) −1.68009 −0.0729783
\(531\) 27.7441 1.20399
\(532\) −8.20185 −0.355595
\(533\) 5.69109 0.246509
\(534\) 0.262937 0.0113784
\(535\) −1.20463 −0.0520809
\(536\) 12.6116 0.544740
\(537\) 0.768653 0.0331698
\(538\) 9.83771 0.424134
\(539\) −5.23433 −0.225458
\(540\) −0.0522831 −0.00224990
\(541\) −21.1598 −0.909729 −0.454865 0.890561i \(-0.650312\pi\)
−0.454865 + 0.890561i \(0.650312\pi\)
\(542\) 27.8205 1.19499
\(543\) 0.219935 0.00943832
\(544\) −0.324398 −0.0139085
\(545\) 2.83439 0.121412
\(546\) 0.174878 0.00748407
\(547\) 35.2148 1.50567 0.752837 0.658207i \(-0.228685\pi\)
0.752837 + 0.658207i \(0.228685\pi\)
\(548\) 0.0939491 0.00401331
\(549\) −8.86756 −0.378458
\(550\) −5.50671 −0.234807
\(551\) 37.9516 1.61679
\(552\) 0 0
\(553\) −12.6706 −0.538810
\(554\) 26.4148 1.12226
\(555\) −0.0437895 −0.00185876
\(556\) 5.14415 0.218161
\(557\) 32.3811 1.37203 0.686015 0.727587i \(-0.259358\pi\)
0.686015 + 0.727587i \(0.259358\pi\)
\(558\) −13.4940 −0.571245
\(559\) 25.2997 1.07006
\(560\) −0.673006 −0.0284397
\(561\) 0.00357725 0.000151032 0
\(562\) −21.7077 −0.915685
\(563\) −15.1392 −0.638042 −0.319021 0.947748i \(-0.603354\pi\)
−0.319021 + 0.947748i \(0.603354\pi\)
\(564\) 0.363012 0.0152856
\(565\) −4.22527 −0.177758
\(566\) −23.8742 −1.00351
\(567\) 11.9359 0.501259
\(568\) 43.0066 1.80452
\(569\) −32.0770 −1.34474 −0.672370 0.740216i \(-0.734723\pi\)
−0.672370 + 0.740216i \(0.734723\pi\)
\(570\) −0.106013 −0.00444042
\(571\) −31.2100 −1.30610 −0.653050 0.757315i \(-0.726511\pi\)
−0.653050 + 0.757315i \(0.726511\pi\)
\(572\) 2.01341 0.0841850
\(573\) 0.570165 0.0238190
\(574\) −3.15779 −0.131803
\(575\) 0 0
\(576\) −24.9366 −1.03903
\(577\) 26.5671 1.10600 0.553001 0.833181i \(-0.313483\pi\)
0.553001 + 0.833181i \(0.313483\pi\)
\(578\) −18.9776 −0.789364
\(579\) 0.711326 0.0295617
\(580\) −0.915668 −0.0380210
\(581\) −19.0511 −0.790374
\(582\) 0.373660 0.0154887
\(583\) −5.72549 −0.237125
\(584\) 31.5922 1.30730
\(585\) 2.10682 0.0871063
\(586\) −7.58508 −0.313337
\(587\) −6.53031 −0.269535 −0.134767 0.990877i \(-0.543029\pi\)
−0.134767 + 0.990877i \(0.543029\pi\)
\(588\) −0.173641 −0.00716084
\(589\) 33.0439 1.36155
\(590\) −2.71550 −0.111795
\(591\) 0.244772 0.0100686
\(592\) −7.29001 −0.299618
\(593\) 47.0459 1.93194 0.965971 0.258651i \(-0.0832781\pi\)
0.965971 + 0.258651i \(0.0832781\pi\)
\(594\) 0.295162 0.0121106
\(595\) −0.0283449 −0.00116203
\(596\) −9.27174 −0.379785
\(597\) −0.913520 −0.0373879
\(598\) 0 0
\(599\) −30.6852 −1.25376 −0.626882 0.779114i \(-0.715669\pi\)
−0.626882 + 0.779114i \(0.715669\pi\)
\(600\) −0.667978 −0.0272701
\(601\) −10.8112 −0.440996 −0.220498 0.975387i \(-0.570768\pi\)
−0.220498 + 0.975387i \(0.570768\pi\)
\(602\) −14.0379 −0.572142
\(603\) 12.2990 0.500854
\(604\) 6.61661 0.269226
\(605\) 0.262759 0.0106827
\(606\) 0.0851278 0.00345808
\(607\) −9.12543 −0.370390 −0.185195 0.982702i \(-0.559292\pi\)
−0.185195 + 0.982702i \(0.559292\pi\)
\(608\) 32.7620 1.32868
\(609\) −0.271032 −0.0109828
\(610\) 0.867927 0.0351413
\(611\) −29.2656 −1.18396
\(612\) −0.183233 −0.00740676
\(613\) 5.02740 0.203055 0.101527 0.994833i \(-0.467627\pi\)
0.101527 + 0.994833i \(0.467627\pi\)
\(614\) −3.63090 −0.146531
\(615\) 0.0246385 0.000993518 0
\(616\) −4.08505 −0.164591
\(617\) −39.7035 −1.59840 −0.799201 0.601063i \(-0.794744\pi\)
−0.799201 + 0.601063i \(0.794744\pi\)
\(618\) 0.189596 0.00762668
\(619\) −11.9841 −0.481683 −0.240841 0.970564i \(-0.577423\pi\)
−0.240841 + 0.970564i \(0.577423\pi\)
\(620\) −0.797260 −0.0320187
\(621\) 0 0
\(622\) 13.8548 0.555525
\(623\) −7.09999 −0.284455
\(624\) −0.227155 −0.00909350
\(625\) 23.9691 0.958765
\(626\) 12.0272 0.480704
\(627\) −0.361278 −0.0144281
\(628\) −17.7139 −0.706861
\(629\) −0.307032 −0.0122422
\(630\) −1.16900 −0.0465741
\(631\) −32.1027 −1.27799 −0.638994 0.769211i \(-0.720649\pi\)
−0.638994 + 0.769211i \(0.720649\pi\)
\(632\) 29.3146 1.16607
\(633\) 0.904168 0.0359374
\(634\) 22.5316 0.894843
\(635\) −3.83050 −0.152009
\(636\) −0.189935 −0.00753140
\(637\) 13.9988 0.554652
\(638\) 5.16937 0.204657
\(639\) 41.9405 1.65914
\(640\) 0.340780 0.0134705
\(641\) 2.21045 0.0873077 0.0436538 0.999047i \(-0.486100\pi\)
0.0436538 + 0.999047i \(0.486100\pi\)
\(642\) 0.225604 0.00890387
\(643\) 38.2964 1.51026 0.755131 0.655574i \(-0.227573\pi\)
0.755131 + 0.655574i \(0.227573\pi\)
\(644\) 0 0
\(645\) 0.109530 0.00431273
\(646\) −0.743318 −0.0292455
\(647\) 20.7722 0.816639 0.408320 0.912839i \(-0.366115\pi\)
0.408320 + 0.912839i \(0.366115\pi\)
\(648\) −27.6147 −1.08481
\(649\) −9.25403 −0.363252
\(650\) 14.7272 0.577650
\(651\) −0.235984 −0.00924894
\(652\) −12.1211 −0.474699
\(653\) −44.9713 −1.75986 −0.879932 0.475100i \(-0.842412\pi\)
−0.879932 + 0.475100i \(0.842412\pi\)
\(654\) −0.530825 −0.0207569
\(655\) 1.21227 0.0473675
\(656\) 4.10177 0.160147
\(657\) 30.8091 1.20198
\(658\) 16.2385 0.633041
\(659\) −20.0386 −0.780592 −0.390296 0.920690i \(-0.627627\pi\)
−0.390296 + 0.920690i \(0.627627\pi\)
\(660\) 0.00871666 0.000339296 0
\(661\) −9.50497 −0.369701 −0.184850 0.982767i \(-0.559180\pi\)
−0.184850 + 0.982767i \(0.559180\pi\)
\(662\) −3.41510 −0.132732
\(663\) −0.00956706 −0.000371554 0
\(664\) 44.0765 1.71050
\(665\) 2.86264 0.111008
\(666\) −12.6626 −0.490667
\(667\) 0 0
\(668\) −9.07456 −0.351105
\(669\) −0.0101594 −0.000392784 0
\(670\) −1.20378 −0.0465062
\(671\) 2.95777 0.114183
\(672\) −0.233971 −0.00902562
\(673\) 8.59001 0.331120 0.165560 0.986200i \(-0.447057\pi\)
0.165560 + 0.986200i \(0.447057\pi\)
\(674\) −3.14209 −0.121029
\(675\) −1.30326 −0.0501625
\(676\) 4.40223 0.169317
\(677\) 13.3716 0.513914 0.256957 0.966423i \(-0.417280\pi\)
0.256957 + 0.966423i \(0.417280\pi\)
\(678\) 0.791308 0.0303900
\(679\) −10.0898 −0.387211
\(680\) 0.0655784 0.00251482
\(681\) 0.896287 0.0343458
\(682\) 4.50090 0.172348
\(683\) 24.8017 0.949011 0.474505 0.880253i \(-0.342627\pi\)
0.474505 + 0.880253i \(0.342627\pi\)
\(684\) 18.5053 0.707569
\(685\) −0.0327905 −0.00125286
\(686\) −18.1550 −0.693161
\(687\) 0.0560103 0.00213693
\(688\) 18.2344 0.695179
\(689\) 15.3123 0.583354
\(690\) 0 0
\(691\) 38.8702 1.47869 0.739345 0.673326i \(-0.235135\pi\)
0.739345 + 0.673326i \(0.235135\pi\)
\(692\) −17.3817 −0.660754
\(693\) −3.98378 −0.151331
\(694\) 4.60837 0.174931
\(695\) −1.79543 −0.0681046
\(696\) 0.627057 0.0237685
\(697\) 0.172754 0.00654351
\(698\) 12.8056 0.484698
\(699\) −0.541209 −0.0204704
\(700\) 4.93276 0.186441
\(701\) −39.5309 −1.49306 −0.746531 0.665351i \(-0.768282\pi\)
−0.746531 + 0.665351i \(0.768282\pi\)
\(702\) −0.789386 −0.0297935
\(703\) 31.0082 1.16950
\(704\) 8.31760 0.313481
\(705\) −0.126700 −0.00477179
\(706\) −0.293094 −0.0110307
\(707\) −2.29867 −0.0864505
\(708\) −0.306989 −0.0115374
\(709\) −39.8304 −1.49586 −0.747931 0.663776i \(-0.768953\pi\)
−0.747931 + 0.663776i \(0.768953\pi\)
\(710\) −4.10500 −0.154058
\(711\) 28.5879 1.07213
\(712\) 16.4265 0.615609
\(713\) 0 0
\(714\) 0.00530842 0.000198663 0
\(715\) −0.702728 −0.0262805
\(716\) 13.1324 0.490782
\(717\) 0.571017 0.0213250
\(718\) −1.55240 −0.0579350
\(719\) −51.3075 −1.91345 −0.956723 0.291001i \(-0.906012\pi\)
−0.956723 + 0.291001i \(0.906012\pi\)
\(720\) 1.51846 0.0565897
\(721\) −5.11959 −0.190664
\(722\) 53.8517 2.00415
\(723\) 1.05903 0.0393856
\(724\) 3.75759 0.139650
\(725\) −22.8248 −0.847693
\(726\) −0.0492096 −0.00182634
\(727\) 47.1718 1.74950 0.874752 0.484571i \(-0.161024\pi\)
0.874752 + 0.484571i \(0.161024\pi\)
\(728\) 10.9251 0.404912
\(729\) −26.8952 −0.996119
\(730\) −3.01549 −0.111608
\(731\) 0.767974 0.0284045
\(732\) 0.0981197 0.00362661
\(733\) 11.6137 0.428961 0.214481 0.976728i \(-0.431194\pi\)
0.214481 + 0.976728i \(0.431194\pi\)
\(734\) 13.8044 0.509529
\(735\) 0.0606049 0.00223545
\(736\) 0 0
\(737\) −4.10232 −0.151111
\(738\) 7.12471 0.262264
\(739\) −22.3209 −0.821086 −0.410543 0.911841i \(-0.634661\pi\)
−0.410543 + 0.911841i \(0.634661\pi\)
\(740\) −0.748143 −0.0275023
\(741\) 0.966209 0.0354946
\(742\) −8.49628 −0.311908
\(743\) 7.11611 0.261065 0.130532 0.991444i \(-0.458331\pi\)
0.130532 + 0.991444i \(0.458331\pi\)
\(744\) 0.545971 0.0200163
\(745\) 3.23606 0.118560
\(746\) 15.5382 0.568896
\(747\) 42.9839 1.57270
\(748\) 0.0611173 0.00223467
\(749\) −6.09189 −0.222593
\(750\) 0.128410 0.00468887
\(751\) −46.7731 −1.70677 −0.853387 0.521278i \(-0.825455\pi\)
−0.853387 + 0.521278i \(0.825455\pi\)
\(752\) −21.0928 −0.769175
\(753\) −0.744809 −0.0271424
\(754\) −13.8250 −0.503478
\(755\) −2.30935 −0.0840459
\(756\) −0.264398 −0.00961606
\(757\) 20.7933 0.755746 0.377873 0.925858i \(-0.376656\pi\)
0.377873 + 0.925858i \(0.376656\pi\)
\(758\) −18.2628 −0.663334
\(759\) 0 0
\(760\) −6.62298 −0.240241
\(761\) 30.1482 1.09287 0.546436 0.837501i \(-0.315984\pi\)
0.546436 + 0.837501i \(0.315984\pi\)
\(762\) 0.717376 0.0259878
\(763\) 14.3336 0.518913
\(764\) 9.74126 0.352426
\(765\) 0.0639527 0.00231222
\(766\) 14.5290 0.524954
\(767\) 24.7491 0.893639
\(768\) 0.669200 0.0241477
\(769\) 15.3741 0.554406 0.277203 0.960811i \(-0.410593\pi\)
0.277203 + 0.960811i \(0.410593\pi\)
\(770\) 0.389919 0.0140517
\(771\) 0.00882712 0.000317901 0
\(772\) 12.1530 0.437396
\(773\) −47.1711 −1.69663 −0.848313 0.529495i \(-0.822381\pi\)
−0.848313 + 0.529495i \(0.822381\pi\)
\(774\) 31.6728 1.13846
\(775\) −19.8733 −0.713870
\(776\) 23.3437 0.837989
\(777\) −0.221446 −0.00794431
\(778\) −38.2591 −1.37165
\(779\) −17.4470 −0.625102
\(780\) −0.0233120 −0.000834703 0
\(781\) −13.9892 −0.500574
\(782\) 0 0
\(783\) 1.22342 0.0437215
\(784\) 10.0894 0.360336
\(785\) 6.18256 0.220665
\(786\) −0.227035 −0.00809806
\(787\) 0.0705773 0.00251581 0.00125790 0.999999i \(-0.499600\pi\)
0.00125790 + 0.999999i \(0.499600\pi\)
\(788\) 4.18193 0.148975
\(789\) 0.329917 0.0117453
\(790\) −2.79809 −0.0995516
\(791\) −21.3674 −0.759736
\(792\) 9.21684 0.327506
\(793\) −7.91031 −0.280903
\(794\) −19.4290 −0.689509
\(795\) 0.0662917 0.00235113
\(796\) −15.6075 −0.553192
\(797\) 23.8335 0.844224 0.422112 0.906544i \(-0.361289\pi\)
0.422112 + 0.906544i \(0.361289\pi\)
\(798\) −0.536115 −0.0189783
\(799\) −0.888361 −0.0314280
\(800\) −19.7037 −0.696633
\(801\) 16.0193 0.566013
\(802\) 27.1601 0.959055
\(803\) −10.2763 −0.362644
\(804\) −0.136089 −0.00479947
\(805\) 0 0
\(806\) −12.0373 −0.423995
\(807\) −0.388170 −0.0136642
\(808\) 5.31819 0.187093
\(809\) 34.3206 1.20665 0.603325 0.797496i \(-0.293842\pi\)
0.603325 + 0.797496i \(0.293842\pi\)
\(810\) 2.63583 0.0926137
\(811\) 24.4113 0.857196 0.428598 0.903495i \(-0.359008\pi\)
0.428598 + 0.903495i \(0.359008\pi\)
\(812\) −4.63058 −0.162501
\(813\) −1.09772 −0.0384989
\(814\) 4.22361 0.148037
\(815\) 4.23055 0.148190
\(816\) −0.00689532 −0.000241385 0
\(817\) −77.5602 −2.71349
\(818\) −30.5607 −1.06853
\(819\) 10.6543 0.372291
\(820\) 0.420948 0.0147001
\(821\) 9.48170 0.330914 0.165457 0.986217i \(-0.447090\pi\)
0.165457 + 0.986217i \(0.447090\pi\)
\(822\) 0.00614100 0.000214192 0
\(823\) 21.3644 0.744715 0.372358 0.928089i \(-0.378549\pi\)
0.372358 + 0.928089i \(0.378549\pi\)
\(824\) 11.8446 0.412628
\(825\) 0.217280 0.00756472
\(826\) −13.7324 −0.477812
\(827\) −37.0040 −1.28675 −0.643377 0.765549i \(-0.722467\pi\)
−0.643377 + 0.765549i \(0.722467\pi\)
\(828\) 0 0
\(829\) −28.0334 −0.973639 −0.486820 0.873502i \(-0.661843\pi\)
−0.486820 + 0.873502i \(0.661843\pi\)
\(830\) −4.20711 −0.146031
\(831\) −1.04226 −0.0361555
\(832\) −22.2447 −0.771197
\(833\) 0.424934 0.0147231
\(834\) 0.336248 0.0116433
\(835\) 3.16723 0.109607
\(836\) −6.17244 −0.213478
\(837\) 1.06522 0.0368193
\(838\) 26.5765 0.918068
\(839\) 31.1731 1.07622 0.538108 0.842876i \(-0.319139\pi\)
0.538108 + 0.842876i \(0.319139\pi\)
\(840\) 0.0472982 0.00163194
\(841\) −7.57342 −0.261152
\(842\) 2.59669 0.0894879
\(843\) 0.856529 0.0295004
\(844\) 15.4477 0.531732
\(845\) −1.53648 −0.0528566
\(846\) −36.6378 −1.25963
\(847\) 1.32879 0.0456577
\(848\) 11.0361 0.378983
\(849\) 0.942012 0.0323298
\(850\) 0.447047 0.0153336
\(851\) 0 0
\(852\) −0.464072 −0.0158989
\(853\) −0.982475 −0.0336393 −0.0168197 0.999859i \(-0.505354\pi\)
−0.0168197 + 0.999859i \(0.505354\pi\)
\(854\) 4.38915 0.150194
\(855\) −6.45880 −0.220886
\(856\) 14.0941 0.481728
\(857\) −50.9881 −1.74172 −0.870861 0.491530i \(-0.836438\pi\)
−0.870861 + 0.491530i \(0.836438\pi\)
\(858\) 0.131607 0.00449299
\(859\) 30.3592 1.03584 0.517922 0.855428i \(-0.326706\pi\)
0.517922 + 0.855428i \(0.326706\pi\)
\(860\) 1.87132 0.0638113
\(861\) 0.124598 0.00424628
\(862\) 14.9540 0.509334
\(863\) 12.5141 0.425984 0.212992 0.977054i \(-0.431679\pi\)
0.212992 + 0.977054i \(0.431679\pi\)
\(864\) 1.05613 0.0359302
\(865\) 6.06664 0.206272
\(866\) −19.8901 −0.675894
\(867\) 0.748806 0.0254308
\(868\) −4.03178 −0.136848
\(869\) −9.53548 −0.323469
\(870\) −0.0598528 −0.00202920
\(871\) 10.9713 0.371749
\(872\) −33.1622 −1.12301
\(873\) 22.7650 0.770477
\(874\) 0 0
\(875\) −3.46741 −0.117220
\(876\) −0.340903 −0.0115180
\(877\) 13.4628 0.454607 0.227303 0.973824i \(-0.427009\pi\)
0.227303 + 0.973824i \(0.427009\pi\)
\(878\) −12.2830 −0.414531
\(879\) 0.299287 0.0100947
\(880\) −0.506481 −0.0170735
\(881\) 0.512545 0.0172681 0.00863404 0.999963i \(-0.497252\pi\)
0.00863404 + 0.999963i \(0.497252\pi\)
\(882\) 17.5251 0.590102
\(883\) −4.92816 −0.165846 −0.0829230 0.996556i \(-0.526426\pi\)
−0.0829230 + 0.996556i \(0.526426\pi\)
\(884\) −0.163453 −0.00549752
\(885\) 0.107146 0.00360169
\(886\) 12.8564 0.431919
\(887\) 15.3274 0.514644 0.257322 0.966326i \(-0.417160\pi\)
0.257322 + 0.966326i \(0.417160\pi\)
\(888\) 0.512335 0.0171928
\(889\) −19.3710 −0.649683
\(890\) −1.56791 −0.0525565
\(891\) 8.98253 0.300926
\(892\) −0.173573 −0.00581164
\(893\) 89.7185 3.00232
\(894\) −0.606049 −0.0202693
\(895\) −4.58353 −0.153210
\(896\) 1.72334 0.0575728
\(897\) 0 0
\(898\) 2.35731 0.0786646
\(899\) 18.6558 0.622207
\(900\) −11.1295 −0.370983
\(901\) 0.464807 0.0154850
\(902\) −2.37644 −0.0791269
\(903\) 0.553898 0.0184326
\(904\) 49.4354 1.64420
\(905\) −1.31149 −0.0435953
\(906\) 0.432495 0.0143687
\(907\) −3.98154 −0.132205 −0.0661025 0.997813i \(-0.521056\pi\)
−0.0661025 + 0.997813i \(0.521056\pi\)
\(908\) 15.3130 0.508181
\(909\) 5.18635 0.172020
\(910\) −1.04281 −0.0345687
\(911\) 38.0364 1.26020 0.630102 0.776512i \(-0.283013\pi\)
0.630102 + 0.776512i \(0.283013\pi\)
\(912\) 0.696382 0.0230595
\(913\) −14.3372 −0.474493
\(914\) −7.93873 −0.262590
\(915\) −0.0342461 −0.00113214
\(916\) 0.956936 0.0316181
\(917\) 6.13053 0.202448
\(918\) −0.0239619 −0.000790860 0
\(919\) −17.7269 −0.584756 −0.292378 0.956303i \(-0.594447\pi\)
−0.292378 + 0.956303i \(0.594447\pi\)
\(920\) 0 0
\(921\) 0.143266 0.00472077
\(922\) −19.5545 −0.643994
\(923\) 37.4130 1.23146
\(924\) 0.0440806 0.00145014
\(925\) −18.6489 −0.613173
\(926\) −2.35647 −0.0774383
\(927\) 11.5510 0.379385
\(928\) 18.4967 0.607184
\(929\) 27.1909 0.892104 0.446052 0.895007i \(-0.352830\pi\)
0.446052 + 0.895007i \(0.352830\pi\)
\(930\) −0.0521130 −0.00170885
\(931\) −42.9155 −1.40650
\(932\) −9.24654 −0.302880
\(933\) −0.546672 −0.0178972
\(934\) −16.2729 −0.532464
\(935\) −0.0213314 −0.000697611 0
\(936\) −24.6497 −0.805700
\(937\) −24.1656 −0.789454 −0.394727 0.918798i \(-0.629161\pi\)
−0.394727 + 0.918798i \(0.629161\pi\)
\(938\) −6.08760 −0.198767
\(939\) −0.474562 −0.0154867
\(940\) −2.16466 −0.0706035
\(941\) −22.9768 −0.749022 −0.374511 0.927222i \(-0.622189\pi\)
−0.374511 + 0.927222i \(0.622189\pi\)
\(942\) −1.15787 −0.0377255
\(943\) 0 0
\(944\) 17.8376 0.580564
\(945\) 0.0922811 0.00300191
\(946\) −10.5644 −0.343480
\(947\) 54.3648 1.76662 0.883310 0.468789i \(-0.155310\pi\)
0.883310 + 0.468789i \(0.155310\pi\)
\(948\) −0.316326 −0.0102738
\(949\) 27.4832 0.892143
\(950\) −45.1487 −1.46482
\(951\) −0.889036 −0.0288290
\(952\) 0.331633 0.0107483
\(953\) 1.66758 0.0540182 0.0270091 0.999635i \(-0.491402\pi\)
0.0270091 + 0.999635i \(0.491402\pi\)
\(954\) 19.1696 0.620639
\(955\) −3.39993 −0.110019
\(956\) 9.75582 0.315526
\(957\) −0.203969 −0.00659340
\(958\) −2.03646 −0.0657950
\(959\) −0.165823 −0.00535470
\(960\) −0.0963041 −0.00310820
\(961\) −14.7566 −0.476019
\(962\) −11.2957 −0.364188
\(963\) 13.7448 0.442918
\(964\) 18.0934 0.582751
\(965\) −4.24168 −0.136545
\(966\) 0 0
\(967\) 38.2229 1.22916 0.614582 0.788853i \(-0.289325\pi\)
0.614582 + 0.788853i \(0.289325\pi\)
\(968\) −3.07427 −0.0988108
\(969\) 0.0293294 0.000942195 0
\(970\) −2.22816 −0.0715419
\(971\) −25.7891 −0.827612 −0.413806 0.910365i \(-0.635801\pi\)
−0.413806 + 0.910365i \(0.635801\pi\)
\(972\) 0.894913 0.0287044
\(973\) −9.07958 −0.291078
\(974\) −23.2544 −0.745120
\(975\) −0.581098 −0.0186100
\(976\) −5.70124 −0.182492
\(977\) −38.1754 −1.22134 −0.610670 0.791885i \(-0.709100\pi\)
−0.610670 + 0.791885i \(0.709100\pi\)
\(978\) −0.792298 −0.0253349
\(979\) −5.34322 −0.170770
\(980\) 1.03543 0.0330757
\(981\) −32.3401 −1.03254
\(982\) −4.56830 −0.145780
\(983\) 10.1268 0.322994 0.161497 0.986873i \(-0.448368\pi\)
0.161497 + 0.986873i \(0.448368\pi\)
\(984\) −0.288269 −0.00918966
\(985\) −1.45959 −0.0465064
\(986\) −0.419660 −0.0133647
\(987\) −0.640727 −0.0203946
\(988\) 16.5077 0.525179
\(989\) 0 0
\(990\) −0.879750 −0.0279603
\(991\) −17.3994 −0.552710 −0.276355 0.961056i \(-0.589126\pi\)
−0.276355 + 0.961056i \(0.589126\pi\)
\(992\) 16.1048 0.511329
\(993\) 0.134751 0.00427618
\(994\) −20.7592 −0.658440
\(995\) 5.44738 0.172694
\(996\) −0.475617 −0.0150705
\(997\) 33.5571 1.06277 0.531383 0.847132i \(-0.321673\pi\)
0.531383 + 0.847132i \(0.321673\pi\)
\(998\) −30.0191 −0.950239
\(999\) 0.999591 0.0316257
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5819.2.a.n.1.13 18
23.22 odd 2 5819.2.a.o.1.13 yes 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5819.2.a.n.1.13 18 1.1 even 1 trivial
5819.2.a.o.1.13 yes 18 23.22 odd 2