Properties

Label 5766.2.a.bl.1.3
Level $5766$
Weight $2$
Character 5766.1
Self dual yes
Analytic conductor $46.042$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5766,2,Mod(1,5766)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5766, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5766.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5766 = 2 \cdot 3 \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5766.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-8,-8,8,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.0417418055\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{32})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 8x^{6} + 20x^{4} - 16x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.96157\) of defining polynomial
Character \(\chi\) \(=\) 5766.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} +0.452643 q^{5} +1.00000 q^{6} +1.03903 q^{7} -1.00000 q^{8} +1.00000 q^{9} -0.452643 q^{10} -6.03872 q^{11} -1.00000 q^{12} -2.71729 q^{13} -1.03903 q^{14} -0.452643 q^{15} +1.00000 q^{16} +5.60344 q^{17} -1.00000 q^{18} +1.75909 q^{19} +0.452643 q^{20} -1.03903 q^{21} +6.03872 q^{22} -1.94752 q^{23} +1.00000 q^{24} -4.79511 q^{25} +2.71729 q^{26} -1.00000 q^{27} +1.03903 q^{28} +4.61302 q^{29} +0.452643 q^{30} -1.00000 q^{32} +6.03872 q^{33} -5.60344 q^{34} +0.470308 q^{35} +1.00000 q^{36} +0.312686 q^{37} -1.75909 q^{38} +2.71729 q^{39} -0.452643 q^{40} +9.39898 q^{41} +1.03903 q^{42} +2.06748 q^{43} -6.03872 q^{44} +0.452643 q^{45} +1.94752 q^{46} +7.97717 q^{47} -1.00000 q^{48} -5.92042 q^{49} +4.79511 q^{50} -5.60344 q^{51} -2.71729 q^{52} -8.45244 q^{53} +1.00000 q^{54} -2.73339 q^{55} -1.03903 q^{56} -1.75909 q^{57} -4.61302 q^{58} +14.1890 q^{59} -0.452643 q^{60} -12.0823 q^{61} +1.03903 q^{63} +1.00000 q^{64} -1.22996 q^{65} -6.03872 q^{66} +7.69779 q^{67} +5.60344 q^{68} +1.94752 q^{69} -0.470308 q^{70} +0.831569 q^{71} -1.00000 q^{72} +3.68047 q^{73} -0.312686 q^{74} +4.79511 q^{75} +1.75909 q^{76} -6.27440 q^{77} -2.71729 q^{78} -2.36477 q^{79} +0.452643 q^{80} +1.00000 q^{81} -9.39898 q^{82} +4.74440 q^{83} -1.03903 q^{84} +2.53636 q^{85} -2.06748 q^{86} -4.61302 q^{87} +6.03872 q^{88} -3.88188 q^{89} -0.452643 q^{90} -2.82334 q^{91} -1.94752 q^{92} -7.97717 q^{94} +0.796238 q^{95} +1.00000 q^{96} -17.2595 q^{97} +5.92042 q^{98} -6.03872 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{2} - 8 q^{3} + 8 q^{4} + 8 q^{5} + 8 q^{6} - 8 q^{8} + 8 q^{9} - 8 q^{10} - 8 q^{11} - 8 q^{12} - 8 q^{13} - 8 q^{15} + 8 q^{16} + 8 q^{17} - 8 q^{18} - 8 q^{19} + 8 q^{20} + 8 q^{22} + 8 q^{24}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) 0.452643 0.202428 0.101214 0.994865i \(-0.467727\pi\)
0.101214 + 0.994865i \(0.467727\pi\)
\(6\) 1.00000 0.408248
\(7\) 1.03903 0.392715 0.196358 0.980532i \(-0.437089\pi\)
0.196358 + 0.980532i \(0.437089\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) −0.452643 −0.143138
\(11\) −6.03872 −1.82074 −0.910372 0.413791i \(-0.864204\pi\)
−0.910372 + 0.413791i \(0.864204\pi\)
\(12\) −1.00000 −0.288675
\(13\) −2.71729 −0.753640 −0.376820 0.926287i \(-0.622982\pi\)
−0.376820 + 0.926287i \(0.622982\pi\)
\(14\) −1.03903 −0.277692
\(15\) −0.452643 −0.116872
\(16\) 1.00000 0.250000
\(17\) 5.60344 1.35903 0.679517 0.733659i \(-0.262189\pi\)
0.679517 + 0.733659i \(0.262189\pi\)
\(18\) −1.00000 −0.235702
\(19\) 1.75909 0.403562 0.201781 0.979431i \(-0.435327\pi\)
0.201781 + 0.979431i \(0.435327\pi\)
\(20\) 0.452643 0.101214
\(21\) −1.03903 −0.226734
\(22\) 6.03872 1.28746
\(23\) −1.94752 −0.406085 −0.203043 0.979170i \(-0.565083\pi\)
−0.203043 + 0.979170i \(0.565083\pi\)
\(24\) 1.00000 0.204124
\(25\) −4.79511 −0.959023
\(26\) 2.71729 0.532904
\(27\) −1.00000 −0.192450
\(28\) 1.03903 0.196358
\(29\) 4.61302 0.856616 0.428308 0.903633i \(-0.359110\pi\)
0.428308 + 0.903633i \(0.359110\pi\)
\(30\) 0.452643 0.0826409
\(31\) 0 0
\(32\) −1.00000 −0.176777
\(33\) 6.03872 1.05121
\(34\) −5.60344 −0.960983
\(35\) 0.470308 0.0794966
\(36\) 1.00000 0.166667
\(37\) 0.312686 0.0514053 0.0257026 0.999670i \(-0.491818\pi\)
0.0257026 + 0.999670i \(0.491818\pi\)
\(38\) −1.75909 −0.285361
\(39\) 2.71729 0.435114
\(40\) −0.452643 −0.0715691
\(41\) 9.39898 1.46787 0.733937 0.679217i \(-0.237681\pi\)
0.733937 + 0.679217i \(0.237681\pi\)
\(42\) 1.03903 0.160325
\(43\) 2.06748 0.315287 0.157644 0.987496i \(-0.449610\pi\)
0.157644 + 0.987496i \(0.449610\pi\)
\(44\) −6.03872 −0.910372
\(45\) 0.452643 0.0674760
\(46\) 1.94752 0.287146
\(47\) 7.97717 1.16359 0.581795 0.813335i \(-0.302350\pi\)
0.581795 + 0.813335i \(0.302350\pi\)
\(48\) −1.00000 −0.144338
\(49\) −5.92042 −0.845775
\(50\) 4.79511 0.678132
\(51\) −5.60344 −0.784639
\(52\) −2.71729 −0.376820
\(53\) −8.45244 −1.16103 −0.580516 0.814249i \(-0.697149\pi\)
−0.580516 + 0.814249i \(0.697149\pi\)
\(54\) 1.00000 0.136083
\(55\) −2.73339 −0.368570
\(56\) −1.03903 −0.138846
\(57\) −1.75909 −0.232997
\(58\) −4.61302 −0.605719
\(59\) 14.1890 1.84725 0.923623 0.383303i \(-0.125213\pi\)
0.923623 + 0.383303i \(0.125213\pi\)
\(60\) −0.452643 −0.0584360
\(61\) −12.0823 −1.54698 −0.773492 0.633806i \(-0.781492\pi\)
−0.773492 + 0.633806i \(0.781492\pi\)
\(62\) 0 0
\(63\) 1.03903 0.130905
\(64\) 1.00000 0.125000
\(65\) −1.22996 −0.152558
\(66\) −6.03872 −0.743315
\(67\) 7.69779 0.940435 0.470217 0.882551i \(-0.344175\pi\)
0.470217 + 0.882551i \(0.344175\pi\)
\(68\) 5.60344 0.679517
\(69\) 1.94752 0.234453
\(70\) −0.470308 −0.0562126
\(71\) 0.831569 0.0986890 0.0493445 0.998782i \(-0.484287\pi\)
0.0493445 + 0.998782i \(0.484287\pi\)
\(72\) −1.00000 −0.117851
\(73\) 3.68047 0.430766 0.215383 0.976530i \(-0.430900\pi\)
0.215383 + 0.976530i \(0.430900\pi\)
\(74\) −0.312686 −0.0363490
\(75\) 4.79511 0.553692
\(76\) 1.75909 0.201781
\(77\) −6.27440 −0.715034
\(78\) −2.71729 −0.307672
\(79\) −2.36477 −0.266057 −0.133028 0.991112i \(-0.542470\pi\)
−0.133028 + 0.991112i \(0.542470\pi\)
\(80\) 0.452643 0.0506070
\(81\) 1.00000 0.111111
\(82\) −9.39898 −1.03794
\(83\) 4.74440 0.520766 0.260383 0.965505i \(-0.416151\pi\)
0.260383 + 0.965505i \(0.416151\pi\)
\(84\) −1.03903 −0.113367
\(85\) 2.53636 0.275107
\(86\) −2.06748 −0.222942
\(87\) −4.61302 −0.494568
\(88\) 6.03872 0.643730
\(89\) −3.88188 −0.411478 −0.205739 0.978607i \(-0.565960\pi\)
−0.205739 + 0.978607i \(0.565960\pi\)
\(90\) −0.452643 −0.0477128
\(91\) −2.82334 −0.295966
\(92\) −1.94752 −0.203043
\(93\) 0 0
\(94\) −7.97717 −0.822783
\(95\) 0.796238 0.0816923
\(96\) 1.00000 0.102062
\(97\) −17.2595 −1.75243 −0.876216 0.481918i \(-0.839940\pi\)
−0.876216 + 0.481918i \(0.839940\pi\)
\(98\) 5.92042 0.598053
\(99\) −6.03872 −0.606915
\(100\) −4.79511 −0.479511
\(101\) −8.59736 −0.855469 −0.427735 0.903904i \(-0.640688\pi\)
−0.427735 + 0.903904i \(0.640688\pi\)
\(102\) 5.60344 0.554824
\(103\) −5.92017 −0.583332 −0.291666 0.956520i \(-0.594210\pi\)
−0.291666 + 0.956520i \(0.594210\pi\)
\(104\) 2.71729 0.266452
\(105\) −0.470308 −0.0458974
\(106\) 8.45244 0.820974
\(107\) 3.71557 0.359198 0.179599 0.983740i \(-0.442520\pi\)
0.179599 + 0.983740i \(0.442520\pi\)
\(108\) −1.00000 −0.0962250
\(109\) −15.9836 −1.53095 −0.765476 0.643464i \(-0.777496\pi\)
−0.765476 + 0.643464i \(0.777496\pi\)
\(110\) 2.73339 0.260618
\(111\) −0.312686 −0.0296789
\(112\) 1.03903 0.0981789
\(113\) −1.31804 −0.123991 −0.0619954 0.998076i \(-0.519746\pi\)
−0.0619954 + 0.998076i \(0.519746\pi\)
\(114\) 1.75909 0.164753
\(115\) −0.881529 −0.0822030
\(116\) 4.61302 0.428308
\(117\) −2.71729 −0.251213
\(118\) −14.1890 −1.30620
\(119\) 5.82213 0.533714
\(120\) 0.452643 0.0413205
\(121\) 25.4662 2.31511
\(122\) 12.0823 1.09388
\(123\) −9.39898 −0.847478
\(124\) 0 0
\(125\) −4.43369 −0.396561
\(126\) −1.03903 −0.0925639
\(127\) −20.3343 −1.80438 −0.902190 0.431339i \(-0.858041\pi\)
−0.902190 + 0.431339i \(0.858041\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −2.06748 −0.182031
\(130\) 1.22996 0.107875
\(131\) −4.67203 −0.408197 −0.204098 0.978950i \(-0.565426\pi\)
−0.204098 + 0.978950i \(0.565426\pi\)
\(132\) 6.03872 0.525603
\(133\) 1.82774 0.158485
\(134\) −7.69779 −0.664988
\(135\) −0.452643 −0.0389573
\(136\) −5.60344 −0.480491
\(137\) −3.39948 −0.290437 −0.145218 0.989400i \(-0.546389\pi\)
−0.145218 + 0.989400i \(0.546389\pi\)
\(138\) −1.94752 −0.165784
\(139\) −10.5941 −0.898579 −0.449289 0.893386i \(-0.648323\pi\)
−0.449289 + 0.893386i \(0.648323\pi\)
\(140\) 0.470308 0.0397483
\(141\) −7.97717 −0.671799
\(142\) −0.831569 −0.0697837
\(143\) 16.4089 1.37218
\(144\) 1.00000 0.0833333
\(145\) 2.08805 0.173403
\(146\) −3.68047 −0.304598
\(147\) 5.92042 0.488308
\(148\) 0.312686 0.0257026
\(149\) −13.0325 −1.06766 −0.533831 0.845591i \(-0.679248\pi\)
−0.533831 + 0.845591i \(0.679248\pi\)
\(150\) −4.79511 −0.391519
\(151\) 12.0972 0.984460 0.492230 0.870465i \(-0.336182\pi\)
0.492230 + 0.870465i \(0.336182\pi\)
\(152\) −1.75909 −0.142681
\(153\) 5.60344 0.453012
\(154\) 6.27440 0.505605
\(155\) 0 0
\(156\) 2.71729 0.217557
\(157\) −11.6754 −0.931795 −0.465898 0.884839i \(-0.654268\pi\)
−0.465898 + 0.884839i \(0.654268\pi\)
\(158\) 2.36477 0.188131
\(159\) 8.45244 0.670322
\(160\) −0.452643 −0.0357846
\(161\) −2.02352 −0.159476
\(162\) −1.00000 −0.0785674
\(163\) 9.38366 0.734985 0.367492 0.930027i \(-0.380216\pi\)
0.367492 + 0.930027i \(0.380216\pi\)
\(164\) 9.39898 0.733937
\(165\) 2.73339 0.212794
\(166\) −4.74440 −0.368237
\(167\) 13.0025 1.00617 0.503084 0.864238i \(-0.332199\pi\)
0.503084 + 0.864238i \(0.332199\pi\)
\(168\) 1.03903 0.0801627
\(169\) −5.61635 −0.432027
\(170\) −2.53636 −0.194530
\(171\) 1.75909 0.134521
\(172\) 2.06748 0.157644
\(173\) −18.8230 −1.43109 −0.715543 0.698569i \(-0.753821\pi\)
−0.715543 + 0.698569i \(0.753821\pi\)
\(174\) 4.61302 0.349712
\(175\) −4.98225 −0.376623
\(176\) −6.03872 −0.455186
\(177\) −14.1890 −1.06651
\(178\) 3.88188 0.290959
\(179\) 10.1841 0.761195 0.380598 0.924741i \(-0.375718\pi\)
0.380598 + 0.924741i \(0.375718\pi\)
\(180\) 0.452643 0.0337380
\(181\) 26.1278 1.94206 0.971032 0.238951i \(-0.0768035\pi\)
0.971032 + 0.238951i \(0.0768035\pi\)
\(182\) 2.82334 0.209280
\(183\) 12.0823 0.893152
\(184\) 1.94752 0.143573
\(185\) 0.141535 0.0104059
\(186\) 0 0
\(187\) −33.8377 −2.47445
\(188\) 7.97717 0.581795
\(189\) −1.03903 −0.0755781
\(190\) −0.796238 −0.0577651
\(191\) 23.3508 1.68961 0.844804 0.535077i \(-0.179717\pi\)
0.844804 + 0.535077i \(0.179717\pi\)
\(192\) −1.00000 −0.0721688
\(193\) −2.68719 −0.193428 −0.0967142 0.995312i \(-0.530833\pi\)
−0.0967142 + 0.995312i \(0.530833\pi\)
\(194\) 17.2595 1.23916
\(195\) 1.22996 0.0880793
\(196\) −5.92042 −0.422887
\(197\) −23.0333 −1.64106 −0.820529 0.571605i \(-0.806321\pi\)
−0.820529 + 0.571605i \(0.806321\pi\)
\(198\) 6.03872 0.429153
\(199\) −21.1321 −1.49801 −0.749007 0.662562i \(-0.769469\pi\)
−0.749007 + 0.662562i \(0.769469\pi\)
\(200\) 4.79511 0.339066
\(201\) −7.69779 −0.542960
\(202\) 8.59736 0.604908
\(203\) 4.79305 0.336406
\(204\) −5.60344 −0.392320
\(205\) 4.25438 0.297139
\(206\) 5.92017 0.412478
\(207\) −1.94752 −0.135362
\(208\) −2.71729 −0.188410
\(209\) −10.6226 −0.734783
\(210\) 0.470308 0.0324544
\(211\) 26.6522 1.83482 0.917408 0.397949i \(-0.130278\pi\)
0.917408 + 0.397949i \(0.130278\pi\)
\(212\) −8.45244 −0.580516
\(213\) −0.831569 −0.0569781
\(214\) −3.71557 −0.253991
\(215\) 0.935828 0.0638230
\(216\) 1.00000 0.0680414
\(217\) 0 0
\(218\) 15.9836 1.08255
\(219\) −3.68047 −0.248703
\(220\) −2.73339 −0.184285
\(221\) −15.2262 −1.02422
\(222\) 0.312686 0.0209861
\(223\) 12.0253 0.805277 0.402638 0.915359i \(-0.368093\pi\)
0.402638 + 0.915359i \(0.368093\pi\)
\(224\) −1.03903 −0.0694229
\(225\) −4.79511 −0.319674
\(226\) 1.31804 0.0876748
\(227\) 0.964464 0.0640137 0.0320069 0.999488i \(-0.489810\pi\)
0.0320069 + 0.999488i \(0.489810\pi\)
\(228\) −1.75909 −0.116498
\(229\) 2.43645 0.161005 0.0805027 0.996754i \(-0.474347\pi\)
0.0805027 + 0.996754i \(0.474347\pi\)
\(230\) 0.881529 0.0581263
\(231\) 6.27440 0.412825
\(232\) −4.61302 −0.302860
\(233\) 10.9965 0.720402 0.360201 0.932875i \(-0.382708\pi\)
0.360201 + 0.932875i \(0.382708\pi\)
\(234\) 2.71729 0.177635
\(235\) 3.61081 0.235543
\(236\) 14.1890 0.923623
\(237\) 2.36477 0.153608
\(238\) −5.82213 −0.377393
\(239\) 6.76301 0.437463 0.218731 0.975785i \(-0.429808\pi\)
0.218731 + 0.975785i \(0.429808\pi\)
\(240\) −0.452643 −0.0292180
\(241\) 1.16965 0.0753440 0.0376720 0.999290i \(-0.488006\pi\)
0.0376720 + 0.999290i \(0.488006\pi\)
\(242\) −25.4662 −1.63703
\(243\) −1.00000 −0.0641500
\(244\) −12.0823 −0.773492
\(245\) −2.67984 −0.171209
\(246\) 9.39898 0.599257
\(247\) −4.77994 −0.304140
\(248\) 0 0
\(249\) −4.74440 −0.300664
\(250\) 4.43369 0.280411
\(251\) −21.7743 −1.37438 −0.687189 0.726478i \(-0.741156\pi\)
−0.687189 + 0.726478i \(0.741156\pi\)
\(252\) 1.03903 0.0654526
\(253\) 11.7605 0.739377
\(254\) 20.3343 1.27589
\(255\) −2.53636 −0.158833
\(256\) 1.00000 0.0625000
\(257\) −15.9408 −0.994363 −0.497181 0.867647i \(-0.665632\pi\)
−0.497181 + 0.867647i \(0.665632\pi\)
\(258\) 2.06748 0.128715
\(259\) 0.324890 0.0201877
\(260\) −1.22996 −0.0762789
\(261\) 4.61302 0.285539
\(262\) 4.67203 0.288639
\(263\) −14.7564 −0.909920 −0.454960 0.890512i \(-0.650346\pi\)
−0.454960 + 0.890512i \(0.650346\pi\)
\(264\) −6.03872 −0.371658
\(265\) −3.82594 −0.235026
\(266\) −1.82774 −0.112066
\(267\) 3.88188 0.237567
\(268\) 7.69779 0.470217
\(269\) −29.1813 −1.77922 −0.889608 0.456724i \(-0.849023\pi\)
−0.889608 + 0.456724i \(0.849023\pi\)
\(270\) 0.452643 0.0275470
\(271\) −31.5650 −1.91744 −0.958718 0.284360i \(-0.908219\pi\)
−0.958718 + 0.284360i \(0.908219\pi\)
\(272\) 5.60344 0.339759
\(273\) 2.82334 0.170876
\(274\) 3.39948 0.205370
\(275\) 28.9564 1.74613
\(276\) 1.94752 0.117227
\(277\) 10.6731 0.641283 0.320641 0.947201i \(-0.396102\pi\)
0.320641 + 0.947201i \(0.396102\pi\)
\(278\) 10.5941 0.635391
\(279\) 0 0
\(280\) −0.470308 −0.0281063
\(281\) 25.3949 1.51493 0.757467 0.652874i \(-0.226437\pi\)
0.757467 + 0.652874i \(0.226437\pi\)
\(282\) 7.97717 0.475034
\(283\) 1.64065 0.0975264 0.0487632 0.998810i \(-0.484472\pi\)
0.0487632 + 0.998810i \(0.484472\pi\)
\(284\) 0.831569 0.0493445
\(285\) −0.796238 −0.0471650
\(286\) −16.4089 −0.970281
\(287\) 9.76580 0.576457
\(288\) −1.00000 −0.0589256
\(289\) 14.3986 0.846976
\(290\) −2.08805 −0.122615
\(291\) 17.2595 1.01177
\(292\) 3.68047 0.215383
\(293\) 9.53171 0.556848 0.278424 0.960458i \(-0.410188\pi\)
0.278424 + 0.960458i \(0.410188\pi\)
\(294\) −5.92042 −0.345286
\(295\) 6.42253 0.373934
\(296\) −0.312686 −0.0181745
\(297\) 6.03872 0.350402
\(298\) 13.0325 0.754951
\(299\) 5.29196 0.306042
\(300\) 4.79511 0.276846
\(301\) 2.14816 0.123818
\(302\) −12.0972 −0.696118
\(303\) 8.59736 0.493905
\(304\) 1.75909 0.100890
\(305\) −5.46898 −0.313153
\(306\) −5.60344 −0.320328
\(307\) 2.88410 0.164604 0.0823020 0.996607i \(-0.473773\pi\)
0.0823020 + 0.996607i \(0.473773\pi\)
\(308\) −6.27440 −0.357517
\(309\) 5.92017 0.336787
\(310\) 0 0
\(311\) 15.9285 0.903222 0.451611 0.892215i \(-0.350849\pi\)
0.451611 + 0.892215i \(0.350849\pi\)
\(312\) −2.71729 −0.153836
\(313\) −21.7160 −1.22746 −0.613731 0.789515i \(-0.710332\pi\)
−0.613731 + 0.789515i \(0.710332\pi\)
\(314\) 11.6754 0.658879
\(315\) 0.470308 0.0264989
\(316\) −2.36477 −0.133028
\(317\) 22.2506 1.24972 0.624860 0.780737i \(-0.285156\pi\)
0.624860 + 0.780737i \(0.285156\pi\)
\(318\) −8.45244 −0.473990
\(319\) −27.8568 −1.55968
\(320\) 0.452643 0.0253035
\(321\) −3.71557 −0.207383
\(322\) 2.02352 0.112766
\(323\) 9.85694 0.548455
\(324\) 1.00000 0.0555556
\(325\) 13.0297 0.722758
\(326\) −9.38366 −0.519713
\(327\) 15.9836 0.883896
\(328\) −9.39898 −0.518972
\(329\) 8.28850 0.456960
\(330\) −2.73339 −0.150468
\(331\) −3.01065 −0.165480 −0.0827401 0.996571i \(-0.526367\pi\)
−0.0827401 + 0.996571i \(0.526367\pi\)
\(332\) 4.74440 0.260383
\(333\) 0.312686 0.0171351
\(334\) −13.0025 −0.711468
\(335\) 3.48435 0.190370
\(336\) −1.03903 −0.0566836
\(337\) 29.5566 1.61005 0.805026 0.593239i \(-0.202151\pi\)
0.805026 + 0.593239i \(0.202151\pi\)
\(338\) 5.61635 0.305489
\(339\) 1.31804 0.0715862
\(340\) 2.53636 0.137553
\(341\) 0 0
\(342\) −1.75909 −0.0951204
\(343\) −13.4247 −0.724864
\(344\) −2.06748 −0.111471
\(345\) 0.881529 0.0474599
\(346\) 18.8230 1.01193
\(347\) −9.66889 −0.519053 −0.259527 0.965736i \(-0.583567\pi\)
−0.259527 + 0.965736i \(0.583567\pi\)
\(348\) −4.61302 −0.247284
\(349\) −27.2280 −1.45748 −0.728742 0.684789i \(-0.759894\pi\)
−0.728742 + 0.684789i \(0.759894\pi\)
\(350\) 4.98225 0.266313
\(351\) 2.71729 0.145038
\(352\) 6.03872 0.321865
\(353\) 12.7070 0.676328 0.338164 0.941087i \(-0.390194\pi\)
0.338164 + 0.941087i \(0.390194\pi\)
\(354\) 14.1890 0.754135
\(355\) 0.376404 0.0199774
\(356\) −3.88188 −0.205739
\(357\) −5.82213 −0.308140
\(358\) −10.1841 −0.538246
\(359\) −30.7945 −1.62527 −0.812637 0.582771i \(-0.801969\pi\)
−0.812637 + 0.582771i \(0.801969\pi\)
\(360\) −0.452643 −0.0238564
\(361\) −15.9056 −0.837138
\(362\) −26.1278 −1.37325
\(363\) −25.4662 −1.33663
\(364\) −2.82334 −0.147983
\(365\) 1.66594 0.0871991
\(366\) −12.0823 −0.631554
\(367\) 5.45656 0.284830 0.142415 0.989807i \(-0.454513\pi\)
0.142415 + 0.989807i \(0.454513\pi\)
\(368\) −1.94752 −0.101521
\(369\) 9.39898 0.489292
\(370\) −0.141535 −0.00735807
\(371\) −8.78232 −0.455955
\(372\) 0 0
\(373\) −36.4919 −1.88948 −0.944739 0.327825i \(-0.893684\pi\)
−0.944739 + 0.327825i \(0.893684\pi\)
\(374\) 33.8377 1.74970
\(375\) 4.43369 0.228955
\(376\) −7.97717 −0.411391
\(377\) −12.5349 −0.645580
\(378\) 1.03903 0.0534418
\(379\) −34.3740 −1.76567 −0.882837 0.469679i \(-0.844370\pi\)
−0.882837 + 0.469679i \(0.844370\pi\)
\(380\) 0.796238 0.0408461
\(381\) 20.3343 1.04176
\(382\) −23.3508 −1.19473
\(383\) −32.8342 −1.67775 −0.838874 0.544326i \(-0.816785\pi\)
−0.838874 + 0.544326i \(0.816785\pi\)
\(384\) 1.00000 0.0510310
\(385\) −2.84006 −0.144743
\(386\) 2.68719 0.136775
\(387\) 2.06748 0.105096
\(388\) −17.2595 −0.876216
\(389\) −20.1379 −1.02103 −0.510515 0.859869i \(-0.670545\pi\)
−0.510515 + 0.859869i \(0.670545\pi\)
\(390\) −1.22996 −0.0622815
\(391\) −10.9128 −0.551884
\(392\) 5.92042 0.299026
\(393\) 4.67203 0.235673
\(394\) 23.0333 1.16040
\(395\) −1.07039 −0.0538574
\(396\) −6.03872 −0.303457
\(397\) −16.7439 −0.840351 −0.420175 0.907443i \(-0.638031\pi\)
−0.420175 + 0.907443i \(0.638031\pi\)
\(398\) 21.1321 1.05926
\(399\) −1.82774 −0.0915013
\(400\) −4.79511 −0.239756
\(401\) −8.96258 −0.447570 −0.223785 0.974639i \(-0.571841\pi\)
−0.223785 + 0.974639i \(0.571841\pi\)
\(402\) 7.69779 0.383931
\(403\) 0 0
\(404\) −8.59736 −0.427735
\(405\) 0.452643 0.0224920
\(406\) −4.79305 −0.237875
\(407\) −1.88823 −0.0935959
\(408\) 5.60344 0.277412
\(409\) −11.0924 −0.548485 −0.274243 0.961661i \(-0.588427\pi\)
−0.274243 + 0.961661i \(0.588427\pi\)
\(410\) −4.25438 −0.210109
\(411\) 3.39948 0.167684
\(412\) −5.92017 −0.291666
\(413\) 14.7427 0.725442
\(414\) 1.94752 0.0957152
\(415\) 2.14752 0.105418
\(416\) 2.71729 0.133226
\(417\) 10.5941 0.518795
\(418\) 10.6226 0.519570
\(419\) −30.1990 −1.47532 −0.737660 0.675173i \(-0.764069\pi\)
−0.737660 + 0.675173i \(0.764069\pi\)
\(420\) −0.470308 −0.0229487
\(421\) 24.9352 1.21527 0.607634 0.794217i \(-0.292119\pi\)
0.607634 + 0.794217i \(0.292119\pi\)
\(422\) −26.6522 −1.29741
\(423\) 7.97717 0.387864
\(424\) 8.45244 0.410487
\(425\) −26.8692 −1.30335
\(426\) 0.831569 0.0402896
\(427\) −12.5539 −0.607525
\(428\) 3.71557 0.179599
\(429\) −16.4089 −0.792231
\(430\) −0.935828 −0.0451296
\(431\) −16.1355 −0.777221 −0.388611 0.921402i \(-0.627045\pi\)
−0.388611 + 0.921402i \(0.627045\pi\)
\(432\) −1.00000 −0.0481125
\(433\) −1.99194 −0.0957264 −0.0478632 0.998854i \(-0.515241\pi\)
−0.0478632 + 0.998854i \(0.515241\pi\)
\(434\) 0 0
\(435\) −2.08805 −0.100114
\(436\) −15.9836 −0.765476
\(437\) −3.42585 −0.163880
\(438\) 3.68047 0.175859
\(439\) −10.4789 −0.500130 −0.250065 0.968229i \(-0.580452\pi\)
−0.250065 + 0.968229i \(0.580452\pi\)
\(440\) 2.73339 0.130309
\(441\) −5.92042 −0.281925
\(442\) 15.2262 0.724235
\(443\) 9.00174 0.427686 0.213843 0.976868i \(-0.431402\pi\)
0.213843 + 0.976868i \(0.431402\pi\)
\(444\) −0.312686 −0.0148394
\(445\) −1.75710 −0.0832947
\(446\) −12.0253 −0.569417
\(447\) 13.0325 0.616415
\(448\) 1.03903 0.0490894
\(449\) −27.8763 −1.31556 −0.657781 0.753209i \(-0.728505\pi\)
−0.657781 + 0.753209i \(0.728505\pi\)
\(450\) 4.79511 0.226044
\(451\) −56.7579 −2.67262
\(452\) −1.31804 −0.0619954
\(453\) −12.0972 −0.568378
\(454\) −0.964464 −0.0452646
\(455\) −1.27796 −0.0599118
\(456\) 1.75909 0.0823767
\(457\) 7.57262 0.354232 0.177116 0.984190i \(-0.443323\pi\)
0.177116 + 0.984190i \(0.443323\pi\)
\(458\) −2.43645 −0.113848
\(459\) −5.60344 −0.261546
\(460\) −0.881529 −0.0411015
\(461\) −10.0697 −0.468991 −0.234496 0.972117i \(-0.575344\pi\)
−0.234496 + 0.972117i \(0.575344\pi\)
\(462\) −6.27440 −0.291911
\(463\) 31.0939 1.44506 0.722529 0.691340i \(-0.242980\pi\)
0.722529 + 0.691340i \(0.242980\pi\)
\(464\) 4.61302 0.214154
\(465\) 0 0
\(466\) −10.9965 −0.509401
\(467\) −19.2620 −0.891341 −0.445670 0.895197i \(-0.647035\pi\)
−0.445670 + 0.895197i \(0.647035\pi\)
\(468\) −2.71729 −0.125607
\(469\) 7.99822 0.369323
\(470\) −3.61081 −0.166554
\(471\) 11.6754 0.537972
\(472\) −14.1890 −0.653100
\(473\) −12.4849 −0.574057
\(474\) −2.36477 −0.108617
\(475\) −8.43501 −0.387025
\(476\) 5.82213 0.266857
\(477\) −8.45244 −0.387011
\(478\) −6.76301 −0.309333
\(479\) 3.98157 0.181923 0.0909613 0.995854i \(-0.471006\pi\)
0.0909613 + 0.995854i \(0.471006\pi\)
\(480\) 0.452643 0.0206602
\(481\) −0.849658 −0.0387411
\(482\) −1.16965 −0.0532762
\(483\) 2.02352 0.0920734
\(484\) 25.4662 1.15755
\(485\) −7.81237 −0.354742
\(486\) 1.00000 0.0453609
\(487\) −17.4003 −0.788481 −0.394241 0.919007i \(-0.628992\pi\)
−0.394241 + 0.919007i \(0.628992\pi\)
\(488\) 12.0823 0.546942
\(489\) −9.38366 −0.424344
\(490\) 2.67984 0.121063
\(491\) −27.6396 −1.24736 −0.623678 0.781681i \(-0.714363\pi\)
−0.623678 + 0.781681i \(0.714363\pi\)
\(492\) −9.39898 −0.423739
\(493\) 25.8488 1.16417
\(494\) 4.77994 0.215060
\(495\) −2.73339 −0.122857
\(496\) 0 0
\(497\) 0.864022 0.0387567
\(498\) 4.74440 0.212602
\(499\) −9.21673 −0.412597 −0.206299 0.978489i \(-0.566142\pi\)
−0.206299 + 0.978489i \(0.566142\pi\)
\(500\) −4.43369 −0.198281
\(501\) −13.0025 −0.580911
\(502\) 21.7743 0.971832
\(503\) 31.6456 1.41101 0.705503 0.708707i \(-0.250721\pi\)
0.705503 + 0.708707i \(0.250721\pi\)
\(504\) −1.03903 −0.0462820
\(505\) −3.89153 −0.173171
\(506\) −11.7605 −0.522818
\(507\) 5.61635 0.249431
\(508\) −20.3343 −0.902190
\(509\) −9.65782 −0.428075 −0.214038 0.976825i \(-0.568662\pi\)
−0.214038 + 0.976825i \(0.568662\pi\)
\(510\) 2.53636 0.112312
\(511\) 3.82410 0.169168
\(512\) −1.00000 −0.0441942
\(513\) −1.75909 −0.0776655
\(514\) 15.9408 0.703121
\(515\) −2.67972 −0.118083
\(516\) −2.06748 −0.0910155
\(517\) −48.1720 −2.11860
\(518\) −0.324890 −0.0142748
\(519\) 18.8230 0.826238
\(520\) 1.22996 0.0539373
\(521\) 15.2543 0.668304 0.334152 0.942519i \(-0.391550\pi\)
0.334152 + 0.942519i \(0.391550\pi\)
\(522\) −4.61302 −0.201906
\(523\) −40.4061 −1.76683 −0.883417 0.468587i \(-0.844763\pi\)
−0.883417 + 0.468587i \(0.844763\pi\)
\(524\) −4.67203 −0.204098
\(525\) 4.98225 0.217443
\(526\) 14.7564 0.643411
\(527\) 0 0
\(528\) 6.03872 0.262802
\(529\) −19.2072 −0.835095
\(530\) 3.82594 0.166188
\(531\) 14.1890 0.615748
\(532\) 1.82774 0.0792425
\(533\) −25.5397 −1.10625
\(534\) −3.88188 −0.167985
\(535\) 1.68183 0.0727117
\(536\) −7.69779 −0.332494
\(537\) −10.1841 −0.439476
\(538\) 29.1813 1.25810
\(539\) 35.7518 1.53994
\(540\) −0.452643 −0.0194787
\(541\) −23.7449 −1.02087 −0.510437 0.859915i \(-0.670516\pi\)
−0.510437 + 0.859915i \(0.670516\pi\)
\(542\) 31.5650 1.35583
\(543\) −26.1278 −1.12125
\(544\) −5.60344 −0.240246
\(545\) −7.23487 −0.309908
\(546\) −2.82334 −0.120828
\(547\) −27.3114 −1.16775 −0.583876 0.811843i \(-0.698464\pi\)
−0.583876 + 0.811843i \(0.698464\pi\)
\(548\) −3.39948 −0.145218
\(549\) −12.0823 −0.515661
\(550\) −28.9564 −1.23470
\(551\) 8.11470 0.345698
\(552\) −1.94752 −0.0828918
\(553\) −2.45706 −0.104485
\(554\) −10.6731 −0.453456
\(555\) −0.141535 −0.00600784
\(556\) −10.5941 −0.449289
\(557\) 22.8327 0.967451 0.483725 0.875220i \(-0.339283\pi\)
0.483725 + 0.875220i \(0.339283\pi\)
\(558\) 0 0
\(559\) −5.61792 −0.237613
\(560\) 0.470308 0.0198742
\(561\) 33.8377 1.42863
\(562\) −25.3949 −1.07122
\(563\) −27.9550 −1.17816 −0.589081 0.808074i \(-0.700510\pi\)
−0.589081 + 0.808074i \(0.700510\pi\)
\(564\) −7.97717 −0.335900
\(565\) −0.596602 −0.0250992
\(566\) −1.64065 −0.0689616
\(567\) 1.03903 0.0436350
\(568\) −0.831569 −0.0348918
\(569\) −26.7165 −1.12001 −0.560006 0.828488i \(-0.689201\pi\)
−0.560006 + 0.828488i \(0.689201\pi\)
\(570\) 0.796238 0.0333507
\(571\) 24.1160 1.00922 0.504612 0.863346i \(-0.331636\pi\)
0.504612 + 0.863346i \(0.331636\pi\)
\(572\) 16.4089 0.686092
\(573\) −23.3508 −0.975495
\(574\) −9.76580 −0.407617
\(575\) 9.33856 0.389445
\(576\) 1.00000 0.0416667
\(577\) −4.18019 −0.174023 −0.0870117 0.996207i \(-0.527732\pi\)
−0.0870117 + 0.996207i \(0.527732\pi\)
\(578\) −14.3986 −0.598903
\(579\) 2.68719 0.111676
\(580\) 2.08805 0.0867016
\(581\) 4.92956 0.204513
\(582\) −17.2595 −0.715428
\(583\) 51.0420 2.11394
\(584\) −3.68047 −0.152299
\(585\) −1.22996 −0.0508526
\(586\) −9.53171 −0.393751
\(587\) 34.9184 1.44124 0.720619 0.693331i \(-0.243858\pi\)
0.720619 + 0.693331i \(0.243858\pi\)
\(588\) 5.92042 0.244154
\(589\) 0 0
\(590\) −6.42253 −0.264412
\(591\) 23.0333 0.947465
\(592\) 0.312686 0.0128513
\(593\) 3.22818 0.132566 0.0662828 0.997801i \(-0.478886\pi\)
0.0662828 + 0.997801i \(0.478886\pi\)
\(594\) −6.03872 −0.247772
\(595\) 2.63535 0.108039
\(596\) −13.0325 −0.533831
\(597\) 21.1321 0.864878
\(598\) −5.29196 −0.216404
\(599\) 29.8275 1.21872 0.609359 0.792894i \(-0.291427\pi\)
0.609359 + 0.792894i \(0.291427\pi\)
\(600\) −4.79511 −0.195760
\(601\) 0.0511050 0.00208462 0.00104231 0.999999i \(-0.499668\pi\)
0.00104231 + 0.999999i \(0.499668\pi\)
\(602\) −2.14816 −0.0875526
\(603\) 7.69779 0.313478
\(604\) 12.0972 0.492230
\(605\) 11.5271 0.468643
\(606\) −8.59736 −0.349244
\(607\) 13.6006 0.552029 0.276015 0.961153i \(-0.410986\pi\)
0.276015 + 0.961153i \(0.410986\pi\)
\(608\) −1.75909 −0.0713403
\(609\) −4.79305 −0.194224
\(610\) 5.46898 0.221433
\(611\) −21.6763 −0.876928
\(612\) 5.60344 0.226506
\(613\) 18.4853 0.746616 0.373308 0.927708i \(-0.378224\pi\)
0.373308 + 0.927708i \(0.378224\pi\)
\(614\) −2.88410 −0.116393
\(615\) −4.25438 −0.171553
\(616\) 6.27440 0.252803
\(617\) 4.86131 0.195709 0.0978545 0.995201i \(-0.468802\pi\)
0.0978545 + 0.995201i \(0.468802\pi\)
\(618\) −5.92017 −0.238144
\(619\) −5.09128 −0.204636 −0.102318 0.994752i \(-0.532626\pi\)
−0.102318 + 0.994752i \(0.532626\pi\)
\(620\) 0 0
\(621\) 1.94752 0.0781511
\(622\) −15.9285 −0.638674
\(623\) −4.03338 −0.161594
\(624\) 2.71729 0.108779
\(625\) 21.9687 0.878748
\(626\) 21.7160 0.867946
\(627\) 10.6226 0.424227
\(628\) −11.6754 −0.465898
\(629\) 1.75212 0.0698616
\(630\) −0.470308 −0.0187375
\(631\) −28.7446 −1.14430 −0.572152 0.820148i \(-0.693891\pi\)
−0.572152 + 0.820148i \(0.693891\pi\)
\(632\) 2.36477 0.0940653
\(633\) −26.6522 −1.05933
\(634\) −22.2506 −0.883685
\(635\) −9.20419 −0.365257
\(636\) 8.45244 0.335161
\(637\) 16.0875 0.637409
\(638\) 27.8568 1.10286
\(639\) 0.831569 0.0328963
\(640\) −0.452643 −0.0178923
\(641\) 25.3997 1.00323 0.501613 0.865092i \(-0.332740\pi\)
0.501613 + 0.865092i \(0.332740\pi\)
\(642\) 3.71557 0.146642
\(643\) 10.9276 0.430944 0.215472 0.976510i \(-0.430871\pi\)
0.215472 + 0.976510i \(0.430871\pi\)
\(644\) −2.02352 −0.0797379
\(645\) −0.935828 −0.0368482
\(646\) −9.85694 −0.387816
\(647\) 24.7688 0.973761 0.486881 0.873469i \(-0.338135\pi\)
0.486881 + 0.873469i \(0.338135\pi\)
\(648\) −1.00000 −0.0392837
\(649\) −85.6832 −3.36336
\(650\) −13.0297 −0.511067
\(651\) 0 0
\(652\) 9.38366 0.367492
\(653\) −33.1745 −1.29822 −0.649110 0.760695i \(-0.724859\pi\)
−0.649110 + 0.760695i \(0.724859\pi\)
\(654\) −15.9836 −0.625009
\(655\) −2.11476 −0.0826305
\(656\) 9.39898 0.366969
\(657\) 3.68047 0.143589
\(658\) −8.28850 −0.323119
\(659\) −40.2751 −1.56889 −0.784447 0.620196i \(-0.787053\pi\)
−0.784447 + 0.620196i \(0.787053\pi\)
\(660\) 2.73339 0.106397
\(661\) −10.3006 −0.400649 −0.200324 0.979730i \(-0.564200\pi\)
−0.200324 + 0.979730i \(0.564200\pi\)
\(662\) 3.01065 0.117012
\(663\) 15.2262 0.591335
\(664\) −4.74440 −0.184119
\(665\) 0.827313 0.0320818
\(666\) −0.312686 −0.0121163
\(667\) −8.98393 −0.347859
\(668\) 13.0025 0.503084
\(669\) −12.0253 −0.464927
\(670\) −3.48435 −0.134612
\(671\) 72.9619 2.81666
\(672\) 1.03903 0.0400813
\(673\) 41.6602 1.60588 0.802941 0.596058i \(-0.203267\pi\)
0.802941 + 0.596058i \(0.203267\pi\)
\(674\) −29.5566 −1.13848
\(675\) 4.79511 0.184564
\(676\) −5.61635 −0.216014
\(677\) −38.9841 −1.49828 −0.749140 0.662412i \(-0.769533\pi\)
−0.749140 + 0.662412i \(0.769533\pi\)
\(678\) −1.31804 −0.0506191
\(679\) −17.9330 −0.688207
\(680\) −2.53636 −0.0972650
\(681\) −0.964464 −0.0369584
\(682\) 0 0
\(683\) 17.6986 0.677220 0.338610 0.940927i \(-0.390043\pi\)
0.338610 + 0.940927i \(0.390043\pi\)
\(684\) 1.75909 0.0672603
\(685\) −1.53875 −0.0587926
\(686\) 13.4247 0.512556
\(687\) −2.43645 −0.0929565
\(688\) 2.06748 0.0788218
\(689\) 22.9677 0.875000
\(690\) −0.881529 −0.0335592
\(691\) −19.9387 −0.758506 −0.379253 0.925293i \(-0.623819\pi\)
−0.379253 + 0.925293i \(0.623819\pi\)
\(692\) −18.8230 −0.715543
\(693\) −6.27440 −0.238345
\(694\) 9.66889 0.367026
\(695\) −4.79534 −0.181898
\(696\) 4.61302 0.174856
\(697\) 52.6667 1.99489
\(698\) 27.2280 1.03060
\(699\) −10.9965 −0.415924
\(700\) −4.98225 −0.188312
\(701\) 27.1258 1.02453 0.512263 0.858829i \(-0.328807\pi\)
0.512263 + 0.858829i \(0.328807\pi\)
\(702\) −2.71729 −0.102557
\(703\) 0.550042 0.0207452
\(704\) −6.03872 −0.227593
\(705\) −3.61081 −0.135991
\(706\) −12.7070 −0.478236
\(707\) −8.93289 −0.335956
\(708\) −14.1890 −0.533254
\(709\) −6.69909 −0.251590 −0.125795 0.992056i \(-0.540148\pi\)
−0.125795 + 0.992056i \(0.540148\pi\)
\(710\) −0.376404 −0.0141262
\(711\) −2.36477 −0.0886856
\(712\) 3.88188 0.145480
\(713\) 0 0
\(714\) 5.82213 0.217888
\(715\) 7.42739 0.277769
\(716\) 10.1841 0.380598
\(717\) −6.76301 −0.252569
\(718\) 30.7945 1.14924
\(719\) 18.4695 0.688796 0.344398 0.938824i \(-0.388083\pi\)
0.344398 + 0.938824i \(0.388083\pi\)
\(720\) 0.452643 0.0168690
\(721\) −6.15122 −0.229083
\(722\) 15.9056 0.591946
\(723\) −1.16965 −0.0434999
\(724\) 26.1278 0.971032
\(725\) −22.1200 −0.821515
\(726\) 25.4662 0.945139
\(727\) 4.00269 0.148452 0.0742258 0.997241i \(-0.476351\pi\)
0.0742258 + 0.997241i \(0.476351\pi\)
\(728\) 2.82334 0.104640
\(729\) 1.00000 0.0370370
\(730\) −1.66594 −0.0616591
\(731\) 11.5850 0.428486
\(732\) 12.0823 0.446576
\(733\) 4.51552 0.166784 0.0833922 0.996517i \(-0.473425\pi\)
0.0833922 + 0.996517i \(0.473425\pi\)
\(734\) −5.45656 −0.201405
\(735\) 2.67984 0.0988473
\(736\) 1.94752 0.0717864
\(737\) −46.4848 −1.71229
\(738\) −9.39898 −0.345981
\(739\) 31.9421 1.17501 0.587504 0.809221i \(-0.300111\pi\)
0.587504 + 0.809221i \(0.300111\pi\)
\(740\) 0.141535 0.00520294
\(741\) 4.77994 0.175595
\(742\) 8.78232 0.322409
\(743\) 10.4260 0.382493 0.191247 0.981542i \(-0.438747\pi\)
0.191247 + 0.981542i \(0.438747\pi\)
\(744\) 0 0
\(745\) −5.89906 −0.216125
\(746\) 36.4919 1.33606
\(747\) 4.74440 0.173589
\(748\) −33.8377 −1.23723
\(749\) 3.86058 0.141062
\(750\) −4.43369 −0.161895
\(751\) 32.7809 1.19619 0.598096 0.801425i \(-0.295924\pi\)
0.598096 + 0.801425i \(0.295924\pi\)
\(752\) 7.97717 0.290898
\(753\) 21.7743 0.793498
\(754\) 12.5349 0.456494
\(755\) 5.47573 0.199282
\(756\) −1.03903 −0.0377891
\(757\) −49.1534 −1.78651 −0.893256 0.449548i \(-0.851585\pi\)
−0.893256 + 0.449548i \(0.851585\pi\)
\(758\) 34.3740 1.24852
\(759\) −11.7605 −0.426879
\(760\) −0.796238 −0.0288826
\(761\) 28.6442 1.03835 0.519175 0.854668i \(-0.326239\pi\)
0.519175 + 0.854668i \(0.326239\pi\)
\(762\) −20.3343 −0.736635
\(763\) −16.6074 −0.601229
\(764\) 23.3508 0.844804
\(765\) 2.53636 0.0917023
\(766\) 32.8342 1.18635
\(767\) −38.5555 −1.39216
\(768\) −1.00000 −0.0360844
\(769\) 33.9265 1.22342 0.611710 0.791082i \(-0.290482\pi\)
0.611710 + 0.791082i \(0.290482\pi\)
\(770\) 2.84006 0.102349
\(771\) 15.9408 0.574095
\(772\) −2.68719 −0.0967142
\(773\) 0.419818 0.0150998 0.00754990 0.999971i \(-0.497597\pi\)
0.00754990 + 0.999971i \(0.497597\pi\)
\(774\) −2.06748 −0.0743139
\(775\) 0 0
\(776\) 17.2595 0.619578
\(777\) −0.324890 −0.0116553
\(778\) 20.1379 0.721978
\(779\) 16.5336 0.592378
\(780\) 1.22996 0.0440397
\(781\) −5.02161 −0.179687
\(782\) 10.9128 0.390241
\(783\) −4.61302 −0.164856
\(784\) −5.92042 −0.211444
\(785\) −5.28477 −0.188622
\(786\) −4.67203 −0.166646
\(787\) −51.4576 −1.83427 −0.917133 0.398581i \(-0.869503\pi\)
−0.917133 + 0.398581i \(0.869503\pi\)
\(788\) −23.0333 −0.820529
\(789\) 14.7564 0.525342
\(790\) 1.07039 0.0380829
\(791\) −1.36948 −0.0486931
\(792\) 6.03872 0.214577
\(793\) 32.8312 1.16587
\(794\) 16.7439 0.594218
\(795\) 3.82594 0.135692
\(796\) −21.1321 −0.749007
\(797\) 18.8390 0.667311 0.333656 0.942695i \(-0.391718\pi\)
0.333656 + 0.942695i \(0.391718\pi\)
\(798\) 1.82774 0.0647012
\(799\) 44.6997 1.58136
\(800\) 4.79511 0.169533
\(801\) −3.88188 −0.137159
\(802\) 8.96258 0.316480
\(803\) −22.2253 −0.784314
\(804\) −7.69779 −0.271480
\(805\) −0.915933 −0.0322824
\(806\) 0 0
\(807\) 29.1813 1.02723
\(808\) 8.59736 0.302454
\(809\) 53.0523 1.86522 0.932610 0.360885i \(-0.117525\pi\)
0.932610 + 0.360885i \(0.117525\pi\)
\(810\) −0.452643 −0.0159043
\(811\) −28.9397 −1.01621 −0.508106 0.861295i \(-0.669654\pi\)
−0.508106 + 0.861295i \(0.669654\pi\)
\(812\) 4.79305 0.168203
\(813\) 31.5650 1.10703
\(814\) 1.88823 0.0661823
\(815\) 4.24745 0.148782
\(816\) −5.60344 −0.196160
\(817\) 3.63687 0.127238
\(818\) 11.0924 0.387838
\(819\) −2.82334 −0.0986553
\(820\) 4.25438 0.148570
\(821\) −17.5436 −0.612275 −0.306138 0.951987i \(-0.599037\pi\)
−0.306138 + 0.951987i \(0.599037\pi\)
\(822\) −3.39948 −0.118570
\(823\) 1.19433 0.0416318 0.0208159 0.999783i \(-0.493374\pi\)
0.0208159 + 0.999783i \(0.493374\pi\)
\(824\) 5.92017 0.206239
\(825\) −28.9564 −1.00813
\(826\) −14.7427 −0.512965
\(827\) 43.1763 1.50139 0.750693 0.660651i \(-0.229720\pi\)
0.750693 + 0.660651i \(0.229720\pi\)
\(828\) −1.94752 −0.0676808
\(829\) −11.7627 −0.408535 −0.204267 0.978915i \(-0.565481\pi\)
−0.204267 + 0.978915i \(0.565481\pi\)
\(830\) −2.14752 −0.0745415
\(831\) −10.6731 −0.370245
\(832\) −2.71729 −0.0942050
\(833\) −33.1748 −1.14944
\(834\) −10.5941 −0.366843
\(835\) 5.88551 0.203676
\(836\) −10.6226 −0.367391
\(837\) 0 0
\(838\) 30.1990 1.04321
\(839\) −6.43921 −0.222306 −0.111153 0.993803i \(-0.535454\pi\)
−0.111153 + 0.993803i \(0.535454\pi\)
\(840\) 0.470308 0.0162272
\(841\) −7.72004 −0.266208
\(842\) −24.9352 −0.859324
\(843\) −25.3949 −0.874647
\(844\) 26.6522 0.917408
\(845\) −2.54220 −0.0874544
\(846\) −7.97717 −0.274261
\(847\) 26.4601 0.909178
\(848\) −8.45244 −0.290258
\(849\) −1.64065 −0.0563069
\(850\) 26.8692 0.921605
\(851\) −0.608961 −0.0208749
\(852\) −0.831569 −0.0284891
\(853\) 17.4546 0.597633 0.298817 0.954311i \(-0.403408\pi\)
0.298817 + 0.954311i \(0.403408\pi\)
\(854\) 12.5539 0.429585
\(855\) 0.796238 0.0272308
\(856\) −3.71557 −0.126996
\(857\) −15.1812 −0.518580 −0.259290 0.965799i \(-0.583489\pi\)
−0.259290 + 0.965799i \(0.583489\pi\)
\(858\) 16.4089 0.560192
\(859\) 17.6302 0.601533 0.300767 0.953698i \(-0.402758\pi\)
0.300767 + 0.953698i \(0.402758\pi\)
\(860\) 0.935828 0.0319115
\(861\) −9.76580 −0.332818
\(862\) 16.1355 0.549578
\(863\) 33.5411 1.14175 0.570876 0.821037i \(-0.306604\pi\)
0.570876 + 0.821037i \(0.306604\pi\)
\(864\) 1.00000 0.0340207
\(865\) −8.52010 −0.289692
\(866\) 1.99194 0.0676888
\(867\) −14.3986 −0.489002
\(868\) 0 0
\(869\) 14.2802 0.484421
\(870\) 2.08805 0.0707916
\(871\) −20.9171 −0.708749
\(872\) 15.9836 0.541273
\(873\) −17.2595 −0.584144
\(874\) 3.42585 0.115881
\(875\) −4.60673 −0.155736
\(876\) −3.68047 −0.124351
\(877\) −34.6928 −1.17149 −0.585746 0.810494i \(-0.699199\pi\)
−0.585746 + 0.810494i \(0.699199\pi\)
\(878\) 10.4789 0.353646
\(879\) −9.53171 −0.321497
\(880\) −2.73339 −0.0921424
\(881\) −12.8319 −0.432318 −0.216159 0.976358i \(-0.569353\pi\)
−0.216159 + 0.976358i \(0.569353\pi\)
\(882\) 5.92042 0.199351
\(883\) 19.0016 0.639456 0.319728 0.947509i \(-0.396408\pi\)
0.319728 + 0.947509i \(0.396408\pi\)
\(884\) −15.2262 −0.512111
\(885\) −6.42253 −0.215891
\(886\) −9.00174 −0.302419
\(887\) −32.9743 −1.10717 −0.553585 0.832793i \(-0.686741\pi\)
−0.553585 + 0.832793i \(0.686741\pi\)
\(888\) 0.312686 0.0104931
\(889\) −21.1279 −0.708608
\(890\) 1.75710 0.0588983
\(891\) −6.03872 −0.202305
\(892\) 12.0253 0.402638
\(893\) 14.0325 0.469581
\(894\) −13.0325 −0.435871
\(895\) 4.60976 0.154087
\(896\) −1.03903 −0.0347115
\(897\) −5.29196 −0.176693
\(898\) 27.8763 0.930243
\(899\) 0 0
\(900\) −4.79511 −0.159837
\(901\) −47.3628 −1.57788
\(902\) 56.7579 1.88983
\(903\) −2.14816 −0.0714864
\(904\) 1.31804 0.0438374
\(905\) 11.8266 0.393128
\(906\) 12.0972 0.401904
\(907\) 32.8258 1.08996 0.544981 0.838449i \(-0.316537\pi\)
0.544981 + 0.838449i \(0.316537\pi\)
\(908\) 0.964464 0.0320069
\(909\) −8.59736 −0.285156
\(910\) 1.27796 0.0423641
\(911\) −38.5568 −1.27744 −0.638721 0.769438i \(-0.720536\pi\)
−0.638721 + 0.769438i \(0.720536\pi\)
\(912\) −1.75909 −0.0582491
\(913\) −28.6501 −0.948181
\(914\) −7.57262 −0.250480
\(915\) 5.46898 0.180799
\(916\) 2.43645 0.0805027
\(917\) −4.85436 −0.160305
\(918\) 5.60344 0.184941
\(919\) −25.8811 −0.853738 −0.426869 0.904313i \(-0.640383\pi\)
−0.426869 + 0.904313i \(0.640383\pi\)
\(920\) 0.881529 0.0290632
\(921\) −2.88410 −0.0950342
\(922\) 10.0697 0.331627
\(923\) −2.25961 −0.0743760
\(924\) 6.27440 0.206413
\(925\) −1.49937 −0.0492989
\(926\) −31.0939 −1.02181
\(927\) −5.92017 −0.194444
\(928\) −4.61302 −0.151430
\(929\) 29.8957 0.980845 0.490422 0.871485i \(-0.336843\pi\)
0.490422 + 0.871485i \(0.336843\pi\)
\(930\) 0 0
\(931\) −10.4145 −0.341322
\(932\) 10.9965 0.360201
\(933\) −15.9285 −0.521475
\(934\) 19.2620 0.630273
\(935\) −15.3164 −0.500899
\(936\) 2.71729 0.0888173
\(937\) 36.7548 1.20073 0.600364 0.799727i \(-0.295023\pi\)
0.600364 + 0.799727i \(0.295023\pi\)
\(938\) −7.99822 −0.261151
\(939\) 21.7160 0.708675
\(940\) 3.61081 0.117772
\(941\) −4.16587 −0.135804 −0.0679018 0.997692i \(-0.521630\pi\)
−0.0679018 + 0.997692i \(0.521630\pi\)
\(942\) −11.6754 −0.380404
\(943\) −18.3047 −0.596082
\(944\) 14.1890 0.461811
\(945\) −0.470308 −0.0152991
\(946\) 12.4849 0.405920
\(947\) 14.4092 0.468237 0.234119 0.972208i \(-0.424780\pi\)
0.234119 + 0.972208i \(0.424780\pi\)
\(948\) 2.36477 0.0768040
\(949\) −10.0009 −0.324642
\(950\) 8.43501 0.273668
\(951\) −22.2506 −0.721526
\(952\) −5.82213 −0.188696
\(953\) 24.7635 0.802168 0.401084 0.916041i \(-0.368634\pi\)
0.401084 + 0.916041i \(0.368634\pi\)
\(954\) 8.45244 0.273658
\(955\) 10.5696 0.342024
\(956\) 6.76301 0.218731
\(957\) 27.8568 0.900481
\(958\) −3.98157 −0.128639
\(959\) −3.53215 −0.114059
\(960\) −0.452643 −0.0146090
\(961\) 0 0
\(962\) 0.849658 0.0273941
\(963\) 3.71557 0.119733
\(964\) 1.16965 0.0376720
\(965\) −1.21634 −0.0391554
\(966\) −2.02352 −0.0651058
\(967\) −36.8404 −1.18471 −0.592353 0.805678i \(-0.701801\pi\)
−0.592353 + 0.805678i \(0.701801\pi\)
\(968\) −25.4662 −0.818514
\(969\) −9.85694 −0.316650
\(970\) 7.81237 0.250840
\(971\) −11.8854 −0.381421 −0.190711 0.981646i \(-0.561079\pi\)
−0.190711 + 0.981646i \(0.561079\pi\)
\(972\) −1.00000 −0.0320750
\(973\) −11.0075 −0.352886
\(974\) 17.4003 0.557541
\(975\) −13.0297 −0.417284
\(976\) −12.0823 −0.386746
\(977\) 31.1938 0.997978 0.498989 0.866608i \(-0.333705\pi\)
0.498989 + 0.866608i \(0.333705\pi\)
\(978\) 9.38366 0.300056
\(979\) 23.4416 0.749196
\(980\) −2.67984 −0.0856043
\(981\) −15.9836 −0.510317
\(982\) 27.6396 0.882014
\(983\) 30.8821 0.984985 0.492492 0.870317i \(-0.336086\pi\)
0.492492 + 0.870317i \(0.336086\pi\)
\(984\) 9.39898 0.299629
\(985\) −10.4259 −0.332196
\(986\) −25.8488 −0.823194
\(987\) −8.28850 −0.263826
\(988\) −4.77994 −0.152070
\(989\) −4.02644 −0.128033
\(990\) 2.73339 0.0868727
\(991\) −44.9287 −1.42721 −0.713604 0.700550i \(-0.752938\pi\)
−0.713604 + 0.700550i \(0.752938\pi\)
\(992\) 0 0
\(993\) 3.01065 0.0955400
\(994\) −0.864022 −0.0274051
\(995\) −9.56529 −0.303240
\(996\) −4.74440 −0.150332
\(997\) 4.51937 0.143130 0.0715649 0.997436i \(-0.477201\pi\)
0.0715649 + 0.997436i \(0.477201\pi\)
\(998\) 9.21673 0.291750
\(999\) −0.312686 −0.00989295
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5766.2.a.bl.1.3 8
31.30 odd 2 5766.2.a.bn.1.3 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5766.2.a.bl.1.3 8 1.1 even 1 trivial
5766.2.a.bn.1.3 yes 8 31.30 odd 2