Properties

Label 576.4.l.a.143.2
Level $576$
Weight $4$
Character 576.143
Analytic conductor $33.985$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [576,4,Mod(143,576)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(576, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 2])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("576.143"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 576.l (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.9851001633\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 143.2
Character \(\chi\) \(=\) 576.143
Dual form 576.4.l.a.431.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-11.8474 + 11.8474i) q^{5} +12.7523 q^{7} +(-15.5373 - 15.5373i) q^{11} +(42.1911 - 42.1911i) q^{13} -76.6855i q^{17} +(108.540 + 108.540i) q^{19} +52.0013i q^{23} -155.724i q^{25} +(89.7171 + 89.7171i) q^{29} -12.9476i q^{31} +(-151.083 + 151.083i) q^{35} +(115.035 + 115.035i) q^{37} -307.899 q^{41} +(-342.056 + 342.056i) q^{43} +357.499 q^{47} -180.378 q^{49} +(-450.933 + 450.933i) q^{53} +368.154 q^{55} +(395.827 + 395.827i) q^{59} +(220.311 - 220.311i) q^{61} +999.712i q^{65} +(243.024 + 243.024i) q^{67} +414.259i q^{71} +91.5239i q^{73} +(-198.137 - 198.137i) q^{77} +236.635i q^{79} +(-204.243 + 204.243i) q^{83} +(908.526 + 908.526i) q^{85} -688.795 q^{89} +(538.035 - 538.035i) q^{91} -2571.85 q^{95} +968.890 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 48 q^{19} - 864 q^{43} + 2352 q^{49} + 576 q^{55} + 1824 q^{61} - 816 q^{67} - 480 q^{85} + 3600 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/576\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(325\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −11.8474 + 11.8474i −1.05967 + 1.05967i −0.0615638 + 0.998103i \(0.519609\pi\)
−0.998103 + 0.0615638i \(0.980391\pi\)
\(6\) 0 0
\(7\) 12.7523 0.688562 0.344281 0.938867i \(-0.388123\pi\)
0.344281 + 0.938867i \(0.388123\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −15.5373 15.5373i −0.425879 0.425879i 0.461343 0.887222i \(-0.347368\pi\)
−0.887222 + 0.461343i \(0.847368\pi\)
\(12\) 0 0
\(13\) 42.1911 42.1911i 0.900130 0.900130i −0.0953168 0.995447i \(-0.530386\pi\)
0.995447 + 0.0953168i \(0.0303864\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 76.6855i 1.09406i −0.837114 0.547028i \(-0.815759\pi\)
0.837114 0.547028i \(-0.184241\pi\)
\(18\) 0 0
\(19\) 108.540 + 108.540i 1.31057 + 1.31057i 0.920993 + 0.389580i \(0.127380\pi\)
0.389580 + 0.920993i \(0.372620\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 52.0013i 0.471436i 0.971822 + 0.235718i \(0.0757442\pi\)
−0.971822 + 0.235718i \(0.924256\pi\)
\(24\) 0 0
\(25\) 155.724i 1.24579i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 89.7171 + 89.7171i 0.574484 + 0.574484i 0.933378 0.358894i \(-0.116846\pi\)
−0.358894 + 0.933378i \(0.616846\pi\)
\(30\) 0 0
\(31\) 12.9476i 0.0750150i −0.999296 0.0375075i \(-0.988058\pi\)
0.999296 0.0375075i \(-0.0119418\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −151.083 + 151.083i −0.729646 + 0.729646i
\(36\) 0 0
\(37\) 115.035 + 115.035i 0.511126 + 0.511126i 0.914871 0.403746i \(-0.132292\pi\)
−0.403746 + 0.914871i \(0.632292\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −307.899 −1.17282 −0.586411 0.810013i \(-0.699460\pi\)
−0.586411 + 0.810013i \(0.699460\pi\)
\(42\) 0 0
\(43\) −342.056 + 342.056i −1.21309 + 1.21309i −0.243091 + 0.970003i \(0.578161\pi\)
−0.970003 + 0.243091i \(0.921839\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 357.499 1.10950 0.554750 0.832017i \(-0.312814\pi\)
0.554750 + 0.832017i \(0.312814\pi\)
\(48\) 0 0
\(49\) −180.378 −0.525883
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −450.933 + 450.933i −1.16869 + 1.16869i −0.186169 + 0.982518i \(0.559607\pi\)
−0.982518 + 0.186169i \(0.940393\pi\)
\(54\) 0 0
\(55\) 368.154 0.902579
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 395.827 + 395.827i 0.873428 + 0.873428i 0.992844 0.119417i \(-0.0381024\pi\)
−0.119417 + 0.992844i \(0.538102\pi\)
\(60\) 0 0
\(61\) 220.311 220.311i 0.462425 0.462425i −0.437025 0.899449i \(-0.643968\pi\)
0.899449 + 0.437025i \(0.143968\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 999.712i 1.90768i
\(66\) 0 0
\(67\) 243.024 + 243.024i 0.443137 + 0.443137i 0.893065 0.449928i \(-0.148550\pi\)
−0.449928 + 0.893065i \(0.648550\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 414.259i 0.692444i 0.938153 + 0.346222i \(0.112536\pi\)
−0.938153 + 0.346222i \(0.887464\pi\)
\(72\) 0 0
\(73\) 91.5239i 0.146741i 0.997305 + 0.0733703i \(0.0233755\pi\)
−0.997305 + 0.0733703i \(0.976624\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −198.137 198.137i −0.293244 0.293244i
\(78\) 0 0
\(79\) 236.635i 0.337007i 0.985701 + 0.168503i \(0.0538934\pi\)
−0.985701 + 0.168503i \(0.946107\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −204.243 + 204.243i −0.270103 + 0.270103i −0.829142 0.559039i \(-0.811170\pi\)
0.559039 + 0.829142i \(0.311170\pi\)
\(84\) 0 0
\(85\) 908.526 + 908.526i 1.15934 + 1.15934i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −688.795 −0.820360 −0.410180 0.912005i \(-0.634534\pi\)
−0.410180 + 0.912005i \(0.634534\pi\)
\(90\) 0 0
\(91\) 538.035 538.035i 0.619795 0.619795i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2571.85 −2.77754
\(96\) 0 0
\(97\) 968.890 1.01418 0.507092 0.861892i \(-0.330720\pi\)
0.507092 + 0.861892i \(0.330720\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1120.79 1120.79i 1.10419 1.10419i 0.110289 0.993900i \(-0.464822\pi\)
0.993900 0.110289i \(-0.0351776\pi\)
\(102\) 0 0
\(103\) 1811.42 1.73286 0.866430 0.499298i \(-0.166409\pi\)
0.866430 + 0.499298i \(0.166409\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 943.403 + 943.403i 0.852357 + 0.852357i 0.990423 0.138066i \(-0.0440885\pi\)
−0.138066 + 0.990423i \(0.544089\pi\)
\(108\) 0 0
\(109\) −227.732 + 227.732i −0.200117 + 0.200117i −0.800050 0.599933i \(-0.795194\pi\)
0.599933 + 0.800050i \(0.295194\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1679.37i 1.39807i 0.715090 + 0.699033i \(0.246386\pi\)
−0.715090 + 0.699033i \(0.753614\pi\)
\(114\) 0 0
\(115\) −616.083 616.083i −0.499565 0.499565i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 977.919i 0.753325i
\(120\) 0 0
\(121\) 848.186i 0.637255i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 363.995 + 363.995i 0.260454 + 0.260454i
\(126\) 0 0
\(127\) 1983.72i 1.38604i −0.720921 0.693018i \(-0.756281\pi\)
0.720921 0.693018i \(-0.243719\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −604.660 + 604.660i −0.403277 + 0.403277i −0.879386 0.476109i \(-0.842047\pi\)
0.476109 + 0.879386i \(0.342047\pi\)
\(132\) 0 0
\(133\) 1384.14 + 1384.14i 0.902410 + 0.902410i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 461.883 0.288039 0.144020 0.989575i \(-0.453997\pi\)
0.144020 + 0.989575i \(0.453997\pi\)
\(138\) 0 0
\(139\) −2075.03 + 2075.03i −1.26620 + 1.26620i −0.318161 + 0.948037i \(0.603065\pi\)
−0.948037 + 0.318161i \(0.896935\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1311.07 −0.766693
\(144\) 0 0
\(145\) −2125.83 −1.21752
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 960.479 960.479i 0.528091 0.528091i −0.391912 0.920003i \(-0.628186\pi\)
0.920003 + 0.391912i \(0.128186\pi\)
\(150\) 0 0
\(151\) 1041.85 0.561490 0.280745 0.959782i \(-0.409419\pi\)
0.280745 + 0.959782i \(0.409419\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 153.396 + 153.396i 0.0794910 + 0.0794910i
\(156\) 0 0
\(157\) −1899.04 + 1899.04i −0.965348 + 0.965348i −0.999419 0.0340711i \(-0.989153\pi\)
0.0340711 + 0.999419i \(0.489153\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 663.139i 0.324613i
\(162\) 0 0
\(163\) 1647.43 + 1647.43i 0.791638 + 0.791638i 0.981760 0.190123i \(-0.0608886\pi\)
−0.190123 + 0.981760i \(0.560889\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1582.34i 0.733205i 0.930378 + 0.366603i \(0.119479\pi\)
−0.930378 + 0.366603i \(0.880521\pi\)
\(168\) 0 0
\(169\) 1363.17i 0.620469i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1694.26 + 1694.26i 0.744579 + 0.744579i 0.973455 0.228877i \(-0.0735053\pi\)
−0.228877 + 0.973455i \(0.573505\pi\)
\(174\) 0 0
\(175\) 1985.84i 0.857802i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −538.851 + 538.851i −0.225003 + 0.225003i −0.810602 0.585598i \(-0.800860\pi\)
0.585598 + 0.810602i \(0.300860\pi\)
\(180\) 0 0
\(181\) 1601.85 + 1601.85i 0.657815 + 0.657815i 0.954863 0.297048i \(-0.0960020\pi\)
−0.297048 + 0.954863i \(0.596002\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −2725.74 −1.08325
\(186\) 0 0
\(187\) −1191.48 + 1191.48i −0.465935 + 0.465935i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 2604.11 0.986526 0.493263 0.869880i \(-0.335804\pi\)
0.493263 + 0.869880i \(0.335804\pi\)
\(192\) 0 0
\(193\) −3986.98 −1.48699 −0.743495 0.668742i \(-0.766833\pi\)
−0.743495 + 0.668742i \(0.766833\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −299.734 + 299.734i −0.108402 + 0.108402i −0.759227 0.650826i \(-0.774423\pi\)
0.650826 + 0.759227i \(0.274423\pi\)
\(198\) 0 0
\(199\) −2771.54 −0.987283 −0.493641 0.869666i \(-0.664334\pi\)
−0.493641 + 0.869666i \(0.664334\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1144.10 + 1144.10i 0.395568 + 0.395568i
\(204\) 0 0
\(205\) 3647.81 3647.81i 1.24280 1.24280i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 3372.85i 1.11629i
\(210\) 0 0
\(211\) −3155.78 3155.78i −1.02964 1.02964i −0.999547 0.0300882i \(-0.990421\pi\)
−0.0300882 0.999547i \(-0.509579\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 8104.98i 2.57095i
\(216\) 0 0
\(217\) 165.113i 0.0516525i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −3235.44 3235.44i −0.984793 0.984793i
\(222\) 0 0
\(223\) 4954.34i 1.48775i −0.668321 0.743873i \(-0.732987\pi\)
0.668321 0.743873i \(-0.267013\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 4344.90 4344.90i 1.27040 1.27040i 0.324522 0.945878i \(-0.394796\pi\)
0.945878 0.324522i \(-0.105204\pi\)
\(228\) 0 0
\(229\) 1409.26 + 1409.26i 0.406667 + 0.406667i 0.880575 0.473907i \(-0.157157\pi\)
−0.473907 + 0.880575i \(0.657157\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 315.304 0.0886534 0.0443267 0.999017i \(-0.485886\pi\)
0.0443267 + 0.999017i \(0.485886\pi\)
\(234\) 0 0
\(235\) −4235.44 + 4235.44i −1.17570 + 1.17570i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 3855.01 1.04335 0.521674 0.853145i \(-0.325308\pi\)
0.521674 + 0.853145i \(0.325308\pi\)
\(240\) 0 0
\(241\) −2826.65 −0.755520 −0.377760 0.925903i \(-0.623306\pi\)
−0.377760 + 0.925903i \(0.623306\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2137.01 2137.01i 0.557260 0.557260i
\(246\) 0 0
\(247\) 9158.87 2.35937
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −1055.38 1055.38i −0.265399 0.265399i 0.561844 0.827243i \(-0.310092\pi\)
−0.827243 + 0.561844i \(0.810092\pi\)
\(252\) 0 0
\(253\) 807.959 807.959i 0.200775 0.200775i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3642.49i 0.884094i −0.896992 0.442047i \(-0.854252\pi\)
0.896992 0.442047i \(-0.145748\pi\)
\(258\) 0 0
\(259\) 1466.97 + 1466.97i 0.351942 + 0.351942i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2762.58i 0.647712i −0.946106 0.323856i \(-0.895021\pi\)
0.946106 0.323856i \(-0.104979\pi\)
\(264\) 0 0
\(265\) 10684.8i 2.47684i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −687.157 687.157i −0.155750 0.155750i 0.624930 0.780680i \(-0.285127\pi\)
−0.780680 + 0.624930i \(0.785127\pi\)
\(270\) 0 0
\(271\) 8340.64i 1.86959i 0.355194 + 0.934793i \(0.384415\pi\)
−0.355194 + 0.934793i \(0.615585\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2419.52 + 2419.52i −0.530555 + 0.530555i
\(276\) 0 0
\(277\) −3316.47 3316.47i −0.719377 0.719377i 0.249100 0.968478i \(-0.419865\pi\)
−0.968478 + 0.249100i \(0.919865\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −1959.56 −0.416006 −0.208003 0.978128i \(-0.566696\pi\)
−0.208003 + 0.978128i \(0.566696\pi\)
\(282\) 0 0
\(283\) −98.9689 + 98.9689i −0.0207883 + 0.0207883i −0.717425 0.696636i \(-0.754679\pi\)
0.696636 + 0.717425i \(0.254679\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −3926.43 −0.807561
\(288\) 0 0
\(289\) −967.662 −0.196960
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 5930.48 5930.48i 1.18247 1.18247i 0.203362 0.979104i \(-0.434813\pi\)
0.979104 0.203362i \(-0.0651868\pi\)
\(294\) 0 0
\(295\) −9379.06 −1.85108
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2193.99 + 2193.99i 0.424354 + 0.424354i
\(300\) 0 0
\(301\) −4362.02 + 4362.02i −0.835291 + 0.835291i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 5220.23i 0.980032i
\(306\) 0 0
\(307\) 370.094 + 370.094i 0.0688025 + 0.0688025i 0.740671 0.671868i \(-0.234508\pi\)
−0.671868 + 0.740671i \(0.734508\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 3969.20i 0.723706i 0.932235 + 0.361853i \(0.117856\pi\)
−0.932235 + 0.361853i \(0.882144\pi\)
\(312\) 0 0
\(313\) 1293.74i 0.233630i 0.993154 + 0.116815i \(0.0372685\pi\)
−0.993154 + 0.116815i \(0.962732\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −471.086 471.086i −0.0834663 0.0834663i 0.664141 0.747607i \(-0.268797\pi\)
−0.747607 + 0.664141i \(0.768797\pi\)
\(318\) 0 0
\(319\) 2787.92i 0.489321i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 8323.47 8323.47i 1.43384 1.43384i
\(324\) 0 0
\(325\) −6570.14 6570.14i −1.12137 1.12137i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 4558.94 0.763960
\(330\) 0 0
\(331\) 1232.13 1232.13i 0.204605 0.204605i −0.597365 0.801970i \(-0.703786\pi\)
0.801970 + 0.597365i \(0.203786\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −5758.43 −0.939154
\(336\) 0 0
\(337\) 5124.30 0.828303 0.414152 0.910208i \(-0.364078\pi\)
0.414152 + 0.910208i \(0.364078\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −201.171 + 201.171i −0.0319473 + 0.0319473i
\(342\) 0 0
\(343\) −6674.29 −1.05066
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1034.16 + 1034.16i 0.159990 + 0.159990i 0.782562 0.622573i \(-0.213912\pi\)
−0.622573 + 0.782562i \(0.713912\pi\)
\(348\) 0 0
\(349\) −857.250 + 857.250i −0.131483 + 0.131483i −0.769786 0.638303i \(-0.779637\pi\)
0.638303 + 0.769786i \(0.279637\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 6438.74i 0.970820i 0.874287 + 0.485410i \(0.161330\pi\)
−0.874287 + 0.485410i \(0.838670\pi\)
\(354\) 0 0
\(355\) −4907.91 4907.91i −0.733760 0.733760i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 3177.72i 0.467169i 0.972336 + 0.233585i \(0.0750456\pi\)
−0.972336 + 0.233585i \(0.924954\pi\)
\(360\) 0 0
\(361\) 16703.0i 2.43520i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −1084.32 1084.32i −0.155496 0.155496i
\(366\) 0 0
\(367\) 3014.10i 0.428705i 0.976756 + 0.214353i \(0.0687642\pi\)
−0.976756 + 0.214353i \(0.931236\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −5750.45 + 5750.45i −0.804713 + 0.804713i
\(372\) 0 0
\(373\) 3831.87 + 3831.87i 0.531922 + 0.531922i 0.921144 0.389222i \(-0.127256\pi\)
−0.389222 + 0.921144i \(0.627256\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 7570.52 1.03422
\(378\) 0 0
\(379\) 7178.18 7178.18i 0.972871 0.972871i −0.0267701 0.999642i \(-0.508522\pi\)
0.999642 + 0.0267701i \(0.00852222\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 896.953 0.119666 0.0598331 0.998208i \(-0.480943\pi\)
0.0598331 + 0.998208i \(0.480943\pi\)
\(384\) 0 0
\(385\) 4694.82 0.621482
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −5572.80 + 5572.80i −0.726355 + 0.726355i −0.969892 0.243536i \(-0.921692\pi\)
0.243536 + 0.969892i \(0.421692\pi\)
\(390\) 0 0
\(391\) 3987.75 0.515778
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −2803.52 2803.52i −0.357115 0.357115i
\(396\) 0 0
\(397\) −5204.36 + 5204.36i −0.657933 + 0.657933i −0.954891 0.296958i \(-0.904028\pi\)
0.296958 + 0.954891i \(0.404028\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 14787.8i 1.84157i −0.390075 0.920783i \(-0.627551\pi\)
0.390075 0.920783i \(-0.372449\pi\)
\(402\) 0 0
\(403\) −546.275 546.275i −0.0675233 0.0675233i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3574.66i 0.435355i
\(408\) 0 0
\(409\) 4498.56i 0.543862i −0.962317 0.271931i \(-0.912338\pi\)
0.962317 0.271931i \(-0.0876622\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 5047.72 + 5047.72i 0.601409 + 0.601409i
\(414\) 0 0
\(415\) 4839.50i 0.572438i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 212.986 212.986i 0.0248331 0.0248331i −0.694581 0.719414i \(-0.744410\pi\)
0.719414 + 0.694581i \(0.244410\pi\)
\(420\) 0 0
\(421\) 1934.26 + 1934.26i 0.223919 + 0.223919i 0.810147 0.586227i \(-0.199387\pi\)
−0.586227 + 0.810147i \(0.699387\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −11941.7 −1.36296
\(426\) 0 0
\(427\) 2809.48 2809.48i 0.318408 0.318408i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 4971.77 0.555643 0.277821 0.960633i \(-0.410388\pi\)
0.277821 + 0.960633i \(0.410388\pi\)
\(432\) 0 0
\(433\) 1279.52 0.142009 0.0710044 0.997476i \(-0.477380\pi\)
0.0710044 + 0.997476i \(0.477380\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −5644.25 + 5644.25i −0.617851 + 0.617851i
\(438\) 0 0
\(439\) 5331.83 0.579668 0.289834 0.957077i \(-0.406400\pi\)
0.289834 + 0.957077i \(0.406400\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −10618.8 10618.8i −1.13886 1.13886i −0.988656 0.150199i \(-0.952008\pi\)
−0.150199 0.988656i \(-0.547992\pi\)
\(444\) 0 0
\(445\) 8160.45 8160.45i 0.869309 0.869309i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 1471.81i 0.154697i 0.997004 + 0.0773485i \(0.0246454\pi\)
−0.997004 + 0.0773485i \(0.975355\pi\)
\(450\) 0 0
\(451\) 4783.91 + 4783.91i 0.499480 + 0.499480i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 12748.7i 1.31355i
\(456\) 0 0
\(457\) 4489.34i 0.459524i 0.973247 + 0.229762i \(0.0737947\pi\)
−0.973247 + 0.229762i \(0.926205\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 2175.66 + 2175.66i 0.219806 + 0.219806i 0.808417 0.588610i \(-0.200325\pi\)
−0.588610 + 0.808417i \(0.700325\pi\)
\(462\) 0 0
\(463\) 3759.95i 0.377408i 0.982034 + 0.188704i \(0.0604287\pi\)
−0.982034 + 0.188704i \(0.939571\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −5824.44 + 5824.44i −0.577137 + 0.577137i −0.934113 0.356976i \(-0.883808\pi\)
0.356976 + 0.934113i \(0.383808\pi\)
\(468\) 0 0
\(469\) 3099.13 + 3099.13i 0.305127 + 0.305127i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 10629.2 1.03326
\(474\) 0 0
\(475\) 16902.3 16902.3i 1.63270 1.63270i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 12175.2 1.16138 0.580690 0.814125i \(-0.302783\pi\)
0.580690 + 0.814125i \(0.302783\pi\)
\(480\) 0 0
\(481\) 9706.90 0.920159
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −11478.9 + 11478.9i −1.07470 + 1.07470i
\(486\) 0 0
\(487\) 1409.76 0.131175 0.0655876 0.997847i \(-0.479108\pi\)
0.0655876 + 0.997847i \(0.479108\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −3130.87 3130.87i −0.287769 0.287769i 0.548429 0.836197i \(-0.315226\pi\)
−0.836197 + 0.548429i \(0.815226\pi\)
\(492\) 0 0
\(493\) 6880.00 6880.00i 0.628518 0.628518i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 5282.78i 0.476791i
\(498\) 0 0
\(499\) 5590.00 + 5590.00i 0.501489 + 0.501489i 0.911900 0.410412i \(-0.134615\pi\)
−0.410412 + 0.911900i \(0.634615\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 5278.26i 0.467885i 0.972250 + 0.233943i \(0.0751628\pi\)
−0.972250 + 0.233943i \(0.924837\pi\)
\(504\) 0 0
\(505\) 26557.0i 2.34014i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 1789.92 + 1789.92i 0.155868 + 0.155868i 0.780733 0.624865i \(-0.214846\pi\)
−0.624865 + 0.780733i \(0.714846\pi\)
\(510\) 0 0
\(511\) 1167.14i 0.101040i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −21460.7 + 21460.7i −1.83626 + 1.83626i
\(516\) 0 0
\(517\) −5554.56 5554.56i −0.472513 0.472513i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 3939.70 0.331289 0.165645 0.986186i \(-0.447030\pi\)
0.165645 + 0.986186i \(0.447030\pi\)
\(522\) 0 0
\(523\) −10743.7 + 10743.7i −0.898260 + 0.898260i −0.995282 0.0970218i \(-0.969068\pi\)
0.0970218 + 0.995282i \(0.469068\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −992.897 −0.0820707
\(528\) 0 0
\(529\) 9462.86 0.777748
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −12990.6 + 12990.6i −1.05569 + 1.05569i
\(534\) 0 0
\(535\) −22353.8 −1.80643
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2802.58 + 2802.58i 0.223962 + 0.223962i
\(540\) 0 0
\(541\) −845.856 + 845.856i −0.0672203 + 0.0672203i −0.739918 0.672697i \(-0.765136\pi\)
0.672697 + 0.739918i \(0.265136\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 5396.08i 0.424115i
\(546\) 0 0
\(547\) 2207.08 + 2207.08i 0.172519 + 0.172519i 0.788085 0.615566i \(-0.211073\pi\)
−0.615566 + 0.788085i \(0.711073\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 19475.9i 1.50581i
\(552\) 0 0
\(553\) 3017.65i 0.232050i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −981.595 981.595i −0.0746706 0.0746706i 0.668785 0.743456i \(-0.266815\pi\)
−0.743456 + 0.668785i \(0.766815\pi\)
\(558\) 0 0
\(559\) 28863.4i 2.18389i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 4253.32 4253.32i 0.318394 0.318394i −0.529756 0.848150i \(-0.677716\pi\)
0.848150 + 0.529756i \(0.177716\pi\)
\(564\) 0 0
\(565\) −19896.2 19896.2i −1.48148 1.48148i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 5343.19 0.393670 0.196835 0.980437i \(-0.436934\pi\)
0.196835 + 0.980437i \(0.436934\pi\)
\(570\) 0 0
\(571\) −1599.99 + 1599.99i −0.117263 + 0.117263i −0.763303 0.646040i \(-0.776424\pi\)
0.646040 + 0.763303i \(0.276424\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 8097.83 0.587309
\(576\) 0 0
\(577\) −6250.00 −0.450938 −0.225469 0.974250i \(-0.572391\pi\)
−0.225469 + 0.974250i \(0.572391\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −2604.57 + 2604.57i −0.185983 + 0.185983i
\(582\) 0 0
\(583\) 14012.5 0.995438
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −10453.2 10453.2i −0.735009 0.735009i 0.236598 0.971608i \(-0.423967\pi\)
−0.971608 + 0.236598i \(0.923967\pi\)
\(588\) 0 0
\(589\) 1405.34 1405.34i 0.0983126 0.0983126i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 6756.56i 0.467890i 0.972250 + 0.233945i \(0.0751635\pi\)
−0.972250 + 0.233945i \(0.924836\pi\)
\(594\) 0 0
\(595\) 11585.8 + 11585.8i 0.798274 + 0.798274i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 10583.3i 0.721907i 0.932584 + 0.360953i \(0.117549\pi\)
−0.932584 + 0.360953i \(0.882451\pi\)
\(600\) 0 0
\(601\) 27897.7i 1.89346i −0.322029 0.946730i \(-0.604365\pi\)
0.322029 0.946730i \(-0.395635\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 10048.8 + 10048.8i 0.675278 + 0.675278i
\(606\) 0 0
\(607\) 15554.4i 1.04009i 0.854139 + 0.520045i \(0.174085\pi\)
−0.854139 + 0.520045i \(0.825915\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 15083.2 15083.2i 0.998695 0.998695i
\(612\) 0 0
\(613\) 1060.22 + 1060.22i 0.0698561 + 0.0698561i 0.741172 0.671316i \(-0.234270\pi\)
−0.671316 + 0.741172i \(0.734270\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1588.09 0.103621 0.0518103 0.998657i \(-0.483501\pi\)
0.0518103 + 0.998657i \(0.483501\pi\)
\(618\) 0 0
\(619\) 16739.9 16739.9i 1.08697 1.08697i 0.0911258 0.995839i \(-0.470953\pi\)
0.995839 0.0911258i \(-0.0290465\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −8783.74 −0.564869
\(624\) 0 0
\(625\) 10840.6 0.693800
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 8821.52 8821.52i 0.559200 0.559200i
\(630\) 0 0
\(631\) −24451.3 −1.54262 −0.771308 0.636462i \(-0.780397\pi\)
−0.771308 + 0.636462i \(0.780397\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 23502.0 + 23502.0i 1.46874 + 1.46874i
\(636\) 0 0
\(637\) −7610.33 + 7610.33i −0.473363 + 0.473363i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 21231.7i 1.30827i −0.756376 0.654137i \(-0.773032\pi\)
0.756376 0.654137i \(-0.226968\pi\)
\(642\) 0 0
\(643\) −6155.73 6155.73i −0.377540 0.377540i 0.492674 0.870214i \(-0.336020\pi\)
−0.870214 + 0.492674i \(0.836020\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 2628.40i 0.159711i 0.996806 + 0.0798556i \(0.0254459\pi\)
−0.996806 + 0.0798556i \(0.974554\pi\)
\(648\) 0 0
\(649\) 12300.1i 0.743949i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −16580.7 16580.7i −0.993651 0.993651i 0.00632934 0.999980i \(-0.497985\pi\)
−0.999980 + 0.00632934i \(0.997985\pi\)
\(654\) 0 0
\(655\) 14327.3i 0.854680i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 10829.7 10829.7i 0.640160 0.640160i −0.310435 0.950595i \(-0.600475\pi\)
0.950595 + 0.310435i \(0.100475\pi\)
\(660\) 0 0
\(661\) −7601.63 7601.63i −0.447306 0.447306i 0.447152 0.894458i \(-0.352438\pi\)
−0.894458 + 0.447152i \(0.852438\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −32797.1 −1.91251
\(666\) 0 0
\(667\) −4665.41 + 4665.41i −0.270833 + 0.270833i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −6846.06 −0.393874
\(672\) 0 0
\(673\) 17454.0 0.999704 0.499852 0.866111i \(-0.333388\pi\)
0.499852 + 0.866111i \(0.333388\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −8654.19 + 8654.19i −0.491296 + 0.491296i −0.908714 0.417418i \(-0.862935\pi\)
0.417418 + 0.908714i \(0.362935\pi\)
\(678\) 0 0
\(679\) 12355.6 0.698329
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −17026.8 17026.8i −0.953898 0.953898i 0.0450852 0.998983i \(-0.485644\pi\)
−0.998983 + 0.0450852i \(0.985644\pi\)
\(684\) 0 0
\(685\) −5472.13 + 5472.13i −0.305225 + 0.305225i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 38050.7i 2.10394i
\(690\) 0 0
\(691\) −4489.84 4489.84i −0.247180 0.247180i 0.572632 0.819813i \(-0.305922\pi\)
−0.819813 + 0.572632i \(0.805922\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 49167.5i 2.68350i
\(696\) 0 0
\(697\) 23611.4i 1.28313i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −18090.5 18090.5i −0.974706 0.974706i 0.0249815 0.999688i \(-0.492047\pi\)
−0.999688 + 0.0249815i \(0.992047\pi\)
\(702\) 0 0
\(703\) 24971.9i 1.33973i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 14292.7 14292.7i 0.760302 0.760302i
\(708\) 0 0
\(709\) 5021.47 + 5021.47i 0.265988 + 0.265988i 0.827481 0.561493i \(-0.189773\pi\)
−0.561493 + 0.827481i \(0.689773\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 673.295 0.0353648
\(714\) 0 0
\(715\) 15532.8 15532.8i 0.812439 0.812439i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −4631.53 −0.240232 −0.120116 0.992760i \(-0.538327\pi\)
−0.120116 + 0.992760i \(0.538327\pi\)
\(720\) 0 0
\(721\) 23099.9 1.19318
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 13971.1 13971.1i 0.715686 0.715686i
\(726\) 0 0
\(727\) 7016.43 0.357944 0.178972 0.983854i \(-0.442723\pi\)
0.178972 + 0.983854i \(0.442723\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 26230.7 + 26230.7i 1.32719 + 1.32719i
\(732\) 0 0
\(733\) 9830.27 9830.27i 0.495347 0.495347i −0.414639 0.909986i \(-0.636092\pi\)
0.909986 + 0.414639i \(0.136092\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 7551.88i 0.377445i
\(738\) 0 0
\(739\) −25624.1 25624.1i −1.27551 1.27551i −0.943156 0.332350i \(-0.892158\pi\)
−0.332350 0.943156i \(-0.607842\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1936.75i 0.0956294i 0.998856 + 0.0478147i \(0.0152257\pi\)
−0.998856 + 0.0478147i \(0.984774\pi\)
\(744\) 0 0
\(745\) 22758.4i 1.11920i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 12030.6 + 12030.6i 0.586901 + 0.586901i
\(750\) 0 0
\(751\) 32386.7i 1.57365i −0.617178 0.786823i \(-0.711724\pi\)
0.617178 0.786823i \(-0.288276\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −12343.3 + 12343.3i −0.594992 + 0.594992i
\(756\) 0 0
\(757\) 1721.80 + 1721.80i 0.0826681 + 0.0826681i 0.747232 0.664564i \(-0.231383\pi\)
−0.664564 + 0.747232i \(0.731383\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 29323.2 1.39680 0.698400 0.715708i \(-0.253896\pi\)
0.698400 + 0.715708i \(0.253896\pi\)
\(762\) 0 0
\(763\) −2904.12 + 2904.12i −0.137793 + 0.137793i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 33400.7 1.57240
\(768\) 0 0
\(769\) −22066.6 −1.03478 −0.517388 0.855751i \(-0.673096\pi\)
−0.517388 + 0.855751i \(0.673096\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 13267.0 13267.0i 0.617313 0.617313i −0.327529 0.944841i \(-0.606216\pi\)
0.944841 + 0.327529i \(0.106216\pi\)
\(774\) 0 0
\(775\) −2016.25 −0.0934528
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −33419.5 33419.5i −1.53707 1.53707i
\(780\) 0 0
\(781\) 6436.46 6436.46i 0.294897 0.294897i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 44997.5i 2.04590i
\(786\) 0 0
\(787\) 14004.3 + 14004.3i 0.634306 + 0.634306i 0.949145 0.314839i \(-0.101951\pi\)
−0.314839 + 0.949145i \(0.601951\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 21415.8i 0.962655i
\(792\) 0 0
\(793\) 18590.3i 0.832485i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −12572.2 12572.2i −0.558760 0.558760i 0.370194 0.928954i \(-0.379291\pi\)
−0.928954 + 0.370194i \(0.879291\pi\)
\(798\) 0 0
\(799\) 27414.9i 1.21386i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 1422.03 1422.03i 0.0624937 0.0624937i
\(804\) 0 0
\(805\) −7856.50 7856.50i −0.343981 0.343981i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 40623.8 1.76546 0.882729 0.469883i \(-0.155704\pi\)
0.882729 + 0.469883i \(0.155704\pi\)
\(810\) 0 0
\(811\) −27924.9 + 27924.9i −1.20910 + 1.20910i −0.237777 + 0.971320i \(0.576419\pi\)
−0.971320 + 0.237777i \(0.923581\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −39035.7 −1.67774
\(816\) 0 0
\(817\) −74253.8 −3.17970
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 19156.4 19156.4i 0.814327 0.814327i −0.170952 0.985279i \(-0.554684\pi\)
0.985279 + 0.170952i \(0.0546843\pi\)
\(822\) 0 0
\(823\) −39729.9 −1.68274 −0.841371 0.540459i \(-0.818251\pi\)
−0.841371 + 0.540459i \(0.818251\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −9676.86 9676.86i −0.406889 0.406889i 0.473763 0.880652i \(-0.342895\pi\)
−0.880652 + 0.473763i \(0.842895\pi\)
\(828\) 0 0
\(829\) −31914.5 + 31914.5i −1.33708 + 1.33708i −0.438199 + 0.898878i \(0.644383\pi\)
−0.898878 + 0.438199i \(0.855617\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 13832.4i 0.575345i
\(834\) 0 0
\(835\) −18746.7 18746.7i −0.776953 0.776953i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 21568.7i 0.887525i −0.896145 0.443762i \(-0.853643\pi\)
0.896145 0.443762i \(-0.146357\pi\)
\(840\) 0 0
\(841\) 8290.69i 0.339936i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 16150.1 + 16150.1i 0.657490 + 0.657490i
\(846\) 0 0
\(847\) 10816.4i 0.438789i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −5981.98 + 5981.98i −0.240963 + 0.240963i
\(852\) 0 0
\(853\) 9556.39 + 9556.39i 0.383593 + 0.383593i 0.872395 0.488802i \(-0.162566\pi\)
−0.488802 + 0.872395i \(0.662566\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −14819.6 −0.590697 −0.295349 0.955390i \(-0.595436\pi\)
−0.295349 + 0.955390i \(0.595436\pi\)
\(858\) 0 0
\(859\) −4446.63 + 4446.63i −0.176621 + 0.176621i −0.789881 0.613260i \(-0.789858\pi\)
0.613260 + 0.789881i \(0.289858\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 32985.3 1.30108 0.650541 0.759471i \(-0.274542\pi\)
0.650541 + 0.759471i \(0.274542\pi\)
\(864\) 0 0
\(865\) −40145.2 −1.57801
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 3676.67 3676.67i 0.143524 0.143524i
\(870\) 0 0
\(871\) 20506.9 0.797761
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 4641.79 + 4641.79i 0.179338 + 0.179338i
\(876\) 0 0
\(877\) 4904.79 4904.79i 0.188852 0.188852i −0.606348 0.795200i \(-0.707366\pi\)
0.795200 + 0.606348i \(0.207366\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 5133.26i 0.196304i −0.995171 0.0981520i \(-0.968707\pi\)
0.995171 0.0981520i \(-0.0312931\pi\)
\(882\) 0 0
\(883\) 11367.4 + 11367.4i 0.433231 + 0.433231i 0.889726 0.456495i \(-0.150895\pi\)
−0.456495 + 0.889726i \(0.650895\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 33679.0i 1.27489i −0.770494 0.637447i \(-0.779991\pi\)
0.770494 0.637447i \(-0.220009\pi\)
\(888\) 0 0
\(889\) 25297.1i 0.954371i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 38803.0 + 38803.0i 1.45408 + 1.45408i
\(894\) 0 0
\(895\) 12768.0i 0.476857i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1161.63 1161.63i 0.0430950 0.0430950i
\(900\) 0 0
\(901\) 34580.0 + 34580.0i 1.27861 + 1.27861i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −37955.6 −1.39413
\(906\) 0 0
\(907\) −24197.4 + 24197.4i −0.885844 + 0.885844i −0.994121 0.108276i \(-0.965467\pi\)
0.108276 + 0.994121i \(0.465467\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −6916.65 −0.251546 −0.125773 0.992059i \(-0.540141\pi\)
−0.125773 + 0.992059i \(0.540141\pi\)
\(912\) 0 0
\(913\) 6346.75 0.230062
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −7710.83 + 7710.83i −0.277681 + 0.277681i
\(918\) 0 0
\(919\) 26324.8 0.944913 0.472457 0.881354i \(-0.343367\pi\)
0.472457 + 0.881354i \(0.343367\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 17478.0 + 17478.0i 0.623290 + 0.623290i
\(924\) 0 0
\(925\) 17913.7 17913.7i 0.636754 0.636754i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 26972.1i 0.952557i −0.879295 0.476278i \(-0.841985\pi\)
0.879295 0.476278i \(-0.158015\pi\)
\(930\) 0 0
\(931\) −19578.3 19578.3i −0.689207 0.689207i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 28232.1i 0.987473i
\(936\) 0 0
\(937\) 2342.01i 0.0816545i 0.999166 + 0.0408272i \(0.0129993\pi\)
−0.999166 + 0.0408272i \(0.987001\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −12461.8 12461.8i −0.431715 0.431715i 0.457496 0.889212i \(-0.348746\pi\)
−0.889212 + 0.457496i \(0.848746\pi\)
\(942\) 0 0
\(943\) 16011.2i 0.552911i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −23195.0 + 23195.0i −0.795919 + 0.795919i −0.982449 0.186530i \(-0.940276\pi\)
0.186530 + 0.982449i \(0.440276\pi\)
\(948\) 0 0
\(949\) 3861.49 + 3861.49i 0.132086 + 0.132086i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 19212.6 0.653049 0.326525 0.945189i \(-0.394122\pi\)
0.326525 + 0.945189i \(0.394122\pi\)
\(954\) 0 0
\(955\) −30852.0 + 30852.0i −1.04539 + 1.04539i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 5890.09 0.198333
\(960\) 0 0
\(961\) 29623.4 0.994373
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 47235.5 47235.5i 1.57571 1.57571i
\(966\) 0 0
\(967\) 40032.4 1.33129 0.665644 0.746269i \(-0.268157\pi\)
0.665644 + 0.746269i \(0.268157\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 12435.1 + 12435.1i 0.410981 + 0.410981i 0.882080 0.471099i \(-0.156143\pi\)
−0.471099 + 0.882080i \(0.656143\pi\)
\(972\) 0 0
\(973\) −26461.4 + 26461.4i −0.871855 + 0.871855i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 8094.29i 0.265055i −0.991179 0.132528i \(-0.957691\pi\)
0.991179 0.132528i \(-0.0423094\pi\)
\(978\) 0 0
\(979\) 10702.0 + 10702.0i 0.349374 + 0.349374i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 3321.21i 0.107762i −0.998547 0.0538811i \(-0.982841\pi\)
0.998547 0.0538811i \(-0.0171592\pi\)
\(984\) 0 0
\(985\) 7102.15i 0.229739i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −17787.4 17787.4i −0.571897 0.571897i
\(990\) 0 0
\(991\) 33606.0i 1.07722i −0.842554 0.538612i \(-0.818949\pi\)
0.842554 0.538612i \(-0.181051\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 32835.6 32835.6i 1.04619 1.04619i
\(996\) 0 0
\(997\) 2809.08 + 2809.08i 0.0892323 + 0.0892323i 0.750314 0.661082i \(-0.229902\pi\)
−0.661082 + 0.750314i \(0.729902\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 576.4.l.a.143.2 48
3.2 odd 2 inner 576.4.l.a.143.23 48
4.3 odd 2 144.4.l.a.107.10 yes 48
8.3 odd 2 1152.4.l.b.287.23 48
8.5 even 2 1152.4.l.a.287.23 48
12.11 even 2 144.4.l.a.107.15 yes 48
16.3 odd 4 inner 576.4.l.a.431.23 48
16.5 even 4 1152.4.l.b.863.2 48
16.11 odd 4 1152.4.l.a.863.2 48
16.13 even 4 144.4.l.a.35.15 yes 48
24.5 odd 2 1152.4.l.a.287.2 48
24.11 even 2 1152.4.l.b.287.2 48
48.5 odd 4 1152.4.l.b.863.23 48
48.11 even 4 1152.4.l.a.863.23 48
48.29 odd 4 144.4.l.a.35.10 48
48.35 even 4 inner 576.4.l.a.431.2 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.4.l.a.35.10 48 48.29 odd 4
144.4.l.a.35.15 yes 48 16.13 even 4
144.4.l.a.107.10 yes 48 4.3 odd 2
144.4.l.a.107.15 yes 48 12.11 even 2
576.4.l.a.143.2 48 1.1 even 1 trivial
576.4.l.a.143.23 48 3.2 odd 2 inner
576.4.l.a.431.2 48 48.35 even 4 inner
576.4.l.a.431.23 48 16.3 odd 4 inner
1152.4.l.a.287.2 48 24.5 odd 2
1152.4.l.a.287.23 48 8.5 even 2
1152.4.l.a.863.2 48 16.11 odd 4
1152.4.l.a.863.23 48 48.11 even 4
1152.4.l.b.287.2 48 24.11 even 2
1152.4.l.b.287.23 48 8.3 odd 2
1152.4.l.b.863.2 48 16.5 even 4
1152.4.l.b.863.23 48 48.5 odd 4